An Analytical Study of CPU Scheduling Algorithms

[1][2] M. Tech., Babasaheb Bhimrao Ambedkar University, Lucknow
[1] manishraj.bhatt@gmail.com, [2] nikhil199241@gmail.com

Abstract—Present paper is the study about most of the CPU scheduling algorithms and its features. In this paper the compression between the algorithms on the same CPU is shown. Using this comparison one can easily understand that what is performing inside the CPU. The aim of this survey is to analyze that CPU scheduler which have maximum efficiency and may also satisfy all the objectives of the scheduling.

Keywords: SJF (Shortest Job First Scheduling), RRS (Round Robin Scheduling), PBS (Priority Based Scheduling), Starvation, Scheduler.

I. INTRODUCTION

We can say that operating system is the heart of any computer system which manages the resources between the hardware and software. Operating system is a system software which is loaded first in the memory of computer system every time when it starts. Without any operating system we cannot imagine the proper functioning of any computer system. Operating system provides a base or we can say platform where any application system may run. In any computer system there are various applications, processes or tasks which are running or executing simultaneously. Therefore where there are multiple tasks which are running together, there must be a proper and effective manner of using the CPU time. There may also be number of processes which are running on the same instant of time. Therefore there must be a particular fashion for each and every processes which may allow them to share the CPU time among them for their execution [1] [2].

II. CPU SCHEDULER

Every time operating system selects one of the process from the ready queue for execution when the CPU is in ideal or in unoccupied condition. A scheduler is something which can conduct the scheduling process. To keep all the resources of the computer system busy and to allow various processes to share the resources among them to achieve the quality of service scheduler is used [7] [8]. Following three types of the schedulers are used by an operating system:

1) Long-term scheduler: - Which process will be admitted to the ready queue for the execution is decided by the long term scheduler therefore it can also be named as admission scheduler. Processes are either approved or detained by the dispatcher in this decision. Therefore what
processes are to be run on the system is prescribed by this scheduler [8].

2) **Mid-term scheduler:** - In mid-term scheduler some of the processes which are on the main memory are moved temporarily to the secondary memory or vice-versa. The process of moving processes from RAM to secondary memory or vice-versa is named as “Swapping out or swapping in” [8].

3) **Short-term scheduling:** - Those processes which are in ready queue or in memory for execution are selected by the short-term scheduler because it is capable of taking frequent decision. Short-term scheduler is preemptive and non-preemptive both [8].

IV. DISPATCHER

The processes selected by the scheduler receive the control of the CPU from a module known as dispatcher. It includes the following functions:-

a) Switching context
b) Switching to user mode
c) Jumping to the proper location in the user program to restart that program

Dispatcher is called on during every time the process switches therefore it should be fast. Dispatch latency is the time taken in stop one process and starts another one again [7] [9].

V. SCHEDULING CRITERIA

Different scheduling algorithms have different criteria following properties of algorithms must be considered:-

- **CPU utilization:** - Our aim is to keep the CPU busy as much as possible. It means that we have the maximum CPU utilization without wasting any CPU cycle [7].

- **Throughput:** - If processes are executing continuously it means that the CPU is busy and work is being done. Throughput is basically the measure of the processes which have completed their execution in a particular time slice [7].

- **Turnaround time:** - For a particular process the turnaround time is the total time taken by the process to complete its execution which includes the waiting time also it means the time between creation and completion of the process [7].

- **Waiting time:** - The time period of the process spent in the ready queue is known as the waiting time. Waiting time must be minimum for the processes [7].

- **Response time:** - The amount of time taken after the submission of any processes till the first response is known as the response time [7].

- **Context Switch:** - It is the process of restoring the CPU state so that the execution of the process may be resumed from the same point [7].

The waiting time, turnaround time and response time must be minimized and the throughput and CPU utilization must be increased.

VI. SCHEDULING ALGORITHMS

Basically the CPU scheduling is the process of taking the decisions that which process have been allotted the CPU time from the ready queue. There are following different scheduling algorithms:-

1) **First-Come, First-Served Scheduling:** - The process which request the processor first will be selected first. This is the one of the simplest scheduling algorithm and also termed as FIRST IN FIRST OUT (FIFO) because according to the arrival time of the processes they are moved to the ready queue for execution. This is a non-preemptive algorithm [10].
2) **Shortest-Job-First Scheduling:** - The processes are arranged by the scheduler according to their burst time so that the process which has minimum CPU burst can be executed first. It can also be termed as SHORTEST PROCESS NEXT (SPN) and uses the FCFS scheduling when there are two or more processes having same CPU burst[7] [10].

![Figure 1.1 Diagram representing FCFS scheduling](image1)

![Figure 2.1 Diagram representing SJF scheduling](image2)

3) **Priority Scheduling:** - Each processes have its priority and the process which is selected from the ready queue for the execution have the highest priority among them. FCFS is used when their is two or more processes having the same priority. The processes having high priority have the lowest waiting time and the processes with lowest priority can suffer from starvation problem. A process can be marked or considered as block which is waiting for the CPU from long time ready to run. Priority scheduling either preemptive or non-preemptive [4] [10].

![High priority](image3)

![Low priority](image4)
4) **Round-Robin Scheduling**: - Mostly time sharing systems use the round robin algorithm it is one of the oldest algorithm which assigns a fixed time slice for each processes and that fixed time period is known as quantum. In this algorithm each processes have the equal CPU time. Same as the FCFS the processes are moved to the ready queue for the execution but have a fixed time quantum [2] [4].

VII. CONCLUSION

Various CPU scheduling algorithms are discussed in this paper according to their CPU overhead, Throughput, Turnaround-time and Response time. The FCFS have the low Throughput, Turnaround-time and Response time. SJF have the high Throughput medium Turnaround-time, CPU overhead and response time. Priority scheduling have the low Throughput medium CPU overhead and high Turnaround-time and response time. Round-Robin have high CPU overhead and response time and have medium Throughput and Turnaround-time.

REFERENCES

