

A note on Ultra L-Topologies

Pinky Department of Mathematics Cochin University of Science and Technology, Cochin, Kerala, India

Abstract— In this paper, we investigate the lattice structure of the set FX of all Ltopologies on a given finite set X when membership lattice L is a finite Boolean lattice. All the ultra L-topologies and their number in the lattice FX are determined.

Key words: - L-topology, Lattice, Boolean Lattices, Ultra L-topology.

I. INTRODUCTION

In 1960's many authors like A.K Steiner, Van Rooij studied the lattice structure of the set of all topologies on a given set X. As a result it is known that this lattice is complete, atomic, dually atomic and complemented but neither modular nor distributive in general. Forlich [2] has proved that it is also dually atomic and if |X| = n, then there are n(n-1) dual atoms in the lattice of topologies on the set X. Analogously, the lattice structure of the set of L-topologies on a given set came into interest. Johnson [5,6] has investigated lattice structure of the set of Ltopologies on a given set X and proved that this lattice is complete, atomic but not modular, not complemented and not dually atomic in general. In this paper, we investigate the lattice structure of the lattice F_x of all L-topologies on a given finite set X when membership lattice L is a finite boolean lattice. It is easy to see that F_x is complete, atomic but not modular and not distributive. However, in this paper we prove that if |X| = n and $L = 2^m$, then the number of ultra Ltopologies in the lattice F_x is nm(nm-1). All the ultra L-topologies are also identified

II. PRELIMINARIES

Throughout this paper, X stands for a finite set having n elements, L for a finite boolean lattice with the least element 0 and the greatest element 1 and F_x stands for the lattice of all L-topologies on X. The constant function in L^X , taking value α is denoted by $\underline{\alpha}$ and x_y

where $\gamma(\neq 0) \in L$, denotes the *L*-fuzzy point $\begin{pmatrix} \gamma & if \\ \gamma & if \end{pmatrix}$

defined by
$$x_{\gamma}(y) = \begin{cases} \gamma & y & y - x \\ 0 & otherwise \end{cases}$$
. Any

 $f \in L^X$ is called as an L-subset of X.

Definition 2.1 An element of L is called an atom if it is a minimal element of $L \setminus \{0\}$.

Definition 2.2 An element of L is called a dual atom if it is a maximal element of $L \setminus \{1\}$.

Definition 2.3 Let (X, F) be an L-topological space and suppose that $g \in L^X$ and $g \notin F$. Then the collection F(g) $\{g_1 \lor (g_2 \land g) : g_1, g_2 \in F\}$ is called the simple extension of F determined by g

Every finite boolean lattice is isomorphic to power set of some set, suppose *L* is isomorphic to P(Y) where $Y = \{y_1, y_2, y_3, \dots, y_m\}$. Then $\alpha_i = \{y_i\}$ and $\beta_i = Y \setminus \{y_i\}$ for $1 \le i \le m$ are atoms and dual atoms in *L* respectively.

Let $\alpha_k = \{y_k\}$ for some $1 \le k \le m$ be any atom in L and $A_{\alpha_k} = \{\delta_p = \{y_k, y_p\}: 1 \le p \le m$ and $p \ne k\}$ be the set of those m-1 elements in Lthat immediately succeed α_k . Let $\delta_q = \{y_k, y_q\}$ be an arbitrary element of A_{α_k} and L_q^k denotes the sublattice of L generated by the set $\{\alpha_k, \delta_p : \delta_p \in A_{\alpha_k} \text{ and } p \ne q\}$. Then L_q^k is a

complete sublattice of L with the least element α_k and the greatest element β_q .

 $L \setminus L_q^k$ is also a complete sublattice of L generated by the set $\{\alpha_i, \delta_q : 1 \le i \le m \text{ and } i \ne k\}$ with the least element 0 and greatest element 1.

Clearly, (i) if $\alpha_k \leq \mu$ for some $\mu \in L \setminus L_q^k$, then $\delta_q \leq \mu$.

(ii)
$$\delta_q \wedge \gamma = \alpha_k, \ \forall \gamma \in L_q^k$$
.

(iii) $L_q^k \cap (L \setminus L_q^k) = \phi$.

Throughout this paper, we will use all these notations.

III. ULTRA *L*-TOPOLOGY

An L-topology F on X is called an ultra L-topology if the only L-topology on X strictly finer than F is the discrete L-topology.

Remark 3.1 Let U be an L-topology in F_x . In order to show that U is an ultra L-topology, it is sufficient to show that simple extension of U by any L-subset $g \in$ L^x such that $g \notin U$, is the discrete L-topology.

Now certain properties of ultra L-topologies are derived. Let U be an arbitrary ultra L-topology in F_x .

Lemma 3.2 Atleast one L-fuzzy point does not belong to U.

Proof. Suppose all L -fuzzy points belong to U. Since for each $f \in L^X$, $f = \lor x_{\lambda}$ such that

 $x_{\lambda} \leq f \Longrightarrow f \in U, \forall f \in L^{X} \Longrightarrow U = L^{X}$, which is a contradiction.

Lemma 3.3 If two *L*-fuzzy points a_{λ} and b_{η} do not belong to *U*, then a = b.

Proof. Suppose the lemma is not true, then the simple extension $U(a_{\lambda})$ is an *L*-topology such that $b_{\eta} \notin U(a_{\lambda}) \Rightarrow U(a_{\lambda}) \neq L^{X}$. But $U \subset U(a_{\lambda})$, which is a contradiction.

Lemma 3.4 There is exactly one element $a \in X$ and one atom $\alpha_i \in L$ for some $1 \le i \le m$ such that $a_{\alpha_i} \notin U$.

Proof. By lemmas 3.2 and 3.3, \exists exactly one element say $a \in X$ such that $a_{\lambda} \notin U$ for some $\lambda \neq 0 \in L \implies a_{\alpha_i} \notin U$ for some $1 \leq i \leq m$ since L is atomic.

If possible, let $a_{\alpha_i}, a_{\alpha_j} \notin U$ for some $1 \leq i, j \leq m$ such that $i \neq j$. Then the simple extension $U(a_{\alpha_i})$ is an *L*-topology such that $a_{\alpha_j} \notin U(a_{\alpha_i}) \Rightarrow U(a_{\alpha_i}) \neq L^X$. But $U \subset U(a_{\alpha_i})$, which is a contradiction.

Theorem 3.5 Let $a \in X$ be an arbitrary element. Then $U_q^k(a) = \{f \in L^X : f(a) \neq \lambda \text{ for any} \\ \lambda \in L_q^k\}$ is an ultra L -topology such that $a_1 \in U_q^k(a)$ but $a_{\alpha_k} \notin U_q^k(a)$. Proof. Clearly, $\underline{0}, \underline{1} \in U_q^k(a)$. Let $\{f_i\}_{1 \le i \le r}$ be an arbitrary family of L -subsets in $U_q^k(a)$. Then $f_i(a) \in L \setminus L_q^k$, $\forall 1 \le i \le r$ and since $L \setminus L_q^k$ is a complete sublattice of L $\Rightarrow \bigvee_{i=1}^r f_i(a), \bigwedge_{i=1}^r f_i(a) \in L \setminus L_q^k \Rightarrow \bigvee_{i=1}^r f_i, \bigwedge_{i=1}^r f_i \in U_q^k(a)$

. Thus, $U_q^k(a)$ is an *L*-topology.

Clearly, (i) $x_{\eta} \in U_q^k(a)$, $\forall x \neq a \in X$ and $\forall \eta \neq 0 \in L$.

(ii) $\forall \gamma \neq 0 \in L \setminus L_q^k \Longrightarrow a_{\alpha_i} \in U_q^k(a), \quad \forall 1 \le i \le m$ such that $i \ne k$.

(iii)
$$\alpha_k \in L_q^k \Longrightarrow a_{\alpha_k} \notin U_q^k(a)$$
.

Let $g \notin U_q^k(a)$ be an arbitrary L-subset. Then $g(a) = \xi$ for some $\xi \in L_q^k$. Let S = simple extension of $U_q^k(a)$ determined by g. Then $g \in S$

and $a_1, a_{\delta_q} \in U_q^k(a) \subset S \Longrightarrow a_{\alpha_k} \in S \implies S = L^X$.

Thus simple extension of $U_q^k(a)$ by any of the *L*-subset not belonging to it, makes a_{α_k} an *L*-open set. Hence $U_q^k(a)$ is an ultra *L*-topology.

Remark 3.6 In the theorem 3.5, δ_q can be replaced by any element $\delta_p \in A_{\alpha_k}$ and corresponding to the element δ_p , the sublattice L_p^k and ultra L-topology $U_p^k(a)$ can be formed in the same way as formed for δ_q . Therefore, theorem 3.5 provides nm(m-1) ultra L-topologies $U_q^k(x)$ where $x \in X$ and $1 \le k, q \le m$ such that $k \ne q$.

Theorem 3.7 Let U be any ultra L - topology in F_X such that $a_1 \in U$ and $a_\lambda \notin U$ for some $a \in X$ and $\lambda (\neq 0,1) \in L$. Then $U = U_q^k(a)$ for some $1 \le k, q \le m$ such that $k \ne q$.

Proof. Case 1: λ is an atom. Then $\lambda = \alpha_k$ for some $1 \le k \le m$ and $a_{\alpha_k} \notin U$. By lemma 3.3, $x_\eta \in U$, $\forall x \ne a) \in X$ and $\forall \eta \ne 0) \in L$ and by lemma 3.4, $a_{\alpha_i} \in U$, $\forall 1 \le i \le m$ such that $i \ne k$.

Since $a_1 \in U$, there exists no *L*-subsets $f, g \in U$ such that $f(a) = \alpha_k$ or $f(a) \wedge g(a) = \alpha_k$. Therefore, for atmost one $\delta_q \in A_{\alpha_k}$, there exists *L*-subsets $h \in U$ such that $h(a) = \delta_q$ and if $a_{\delta_q} \notin U$, then $U \subset U_q^k(a)$, which is a contradiction. Thus $a_{\delta_q} \in U$.

If there exists some L-subset $f \in L^X$ in U such that $f(a) = \gamma$ for any $\gamma \in L_q^k$, then $a_1, a_{\delta_q}, f \in U \Longrightarrow a_{\alpha_k} \in U$, which is a contradiction. Therefore $f \in L^X$ such that $f(a) = \gamma$ for any $\gamma \in L_q^k$, are the only L-subsets not belonging to U. Hence $U = \{ f \in L^X : f(a) \neq \gamma$ for any $\gamma \in L_q^k \} = U_q^k(a)$, which is an ultra *L*-topology by theorem 3.5.

<u>Case 2</u> : λ is not an atom.

Since *L* is atomic, $a_{\lambda} \notin U \Longrightarrow a_{\alpha_i} \notin U$ for some $1 \le i \le m$ and then by case 1, $U = U_t^i(a)$ for some $1 \le t \le m$ such that $t \ne i$.

Remark 3.8 It is easy to see that if a and b are any two elements of X such that $a \neq b$, then $S_{a,b_{\alpha_i}} = \{f \in L^X : f(a) \neq 0 \Longrightarrow b_{\alpha_i} \leq f\}$ is an L

Theorem 3.9 Simple extension $S_{a,b_{\alpha_i}}(a_{\beta_k}) = \{f \in L^X : f(a) \lor \beta_k = 1 \Longrightarrow b_{\alpha_i} \le f\}$ of the *L*-topology $S_{a,b_{\alpha_i}}$ by a_{β_k} for some $1 \le k \le m$, is an ultra *L*-topology. Proof. Let $f_{\lambda} = a_{\lambda} \lor b_{\alpha_i}, \forall \lambda (\ne 0) \in L$. Clearly, $f_{\lambda} \in S_{a,b_{\alpha_i}} \subset S_{a,b_{\alpha_i}}(a_{\beta_k}), \forall \lambda (\ne 0) \in L$. Then $a_{\beta_k} \land f_{\lambda} = a_{\gamma} \in S_{a,b_i}(a_{\beta_k}), \forall \gamma (\ne 0) \in L$ such that $\gamma \le \beta_k$. Also $x_{\lambda} \in S_{a,b_i}, \forall x (\ne a) \in X$ and $\forall \lambda (\ne 0) \in L$. Therefore a_{η} , where $\eta (\ne 0) \in L$ such that $\eta \lor \beta_k = 1$, are the only *L*-fuzzy points not belonging to $S_{a,b_i}(a_{\beta_k})$.

Hence

-topology.

$$\begin{split} & \mathbf{S}_{a,b_i}(a_{\beta_k}) = \{ f \in L^X : f(a) \lor \beta_k = 1 \Longrightarrow b_{\alpha_i} \leq f \} \\ & \text{and } g \in L^X \text{ such that } g(a) = \ell \text{ and } g(b) = \mu , \\ & \text{where } \ell, \mu (\neq 0) \in L \text{ such that } \ell \lor \beta_k = 1 \text{ and } \\ & \mu \land \alpha_i = 0, \text{ are the only } L \text{ -subsets not belonging to } \\ & \mathbf{S}_{a,b_{\alpha_i}}(a_{\beta_k}) \text{ . Simple extension of } \mathbf{S}_{a,b_{\alpha_i}}(a_{\beta_{\beta_k}}) \text{ by } \\ & \text{any of the } L \text{ -subsets not belonging to it, makes each } \\ & a_\eta, \text{ where } \eta (\neq 0) \in L \text{ such that } \eta \lor \beta_k = 1, \text{ an } L \\ & \text{-open set. Hence } \mathbf{S}_{a,b_{\alpha_i}}(a_{\beta_{\beta_k}}) \text{ is an ultra } L \text{ -topology.} \end{split}$$

Remark 3.10 Theorem 3.9 provides $nm^2(n-1)$ ultra *L*-topologies $S_{x,y_{\alpha_i}}(x_{\beta_k})$ where $x, y \in X$ such that $x \neq y$ and $1 \leq i, k \leq m$.

Theorem 3.11 Let $a \in X$ be an arbitrary element. If Uis an ultra L-topology such that $a_1 \notin U$, then $U = \mathsf{S}_{a,b_{\alpha_i}}(a_{\beta_k})$ for some $b(\neq a) \in X$ and $1 \leq i,k \leq m$. Proof. By lemma 3.3, $x_{\lambda} \in U$, $\forall x(\neq a) \in X$ and $\forall \lambda (\neq 0) \in L$. $a_1 \notin U \Longrightarrow a_{\alpha_k} \notin U$ for some $1 \leq k \leq m$ and by lemma 3.4, $a_{\alpha_i} \in U$, $\forall 1 \leq i \leq m$ such that $i \neq k \implies a_{\beta_k}, a_{\lambda} \in U$, $\forall \lambda (\neq 0) \in L$ such

that $\lambda \leq \beta_k$.

Clearly, β_k is the only dual atom in L such that $a_{\beta_k} \in U$.

Let $B = \{\gamma \in L : \alpha_k \leq \gamma\}$. For any $\gamma \in B$, $\gamma \vee \beta_k = 1$ $\Rightarrow a_\gamma \notin U$. Thus a_γ where $\gamma \in B$, are the only *L*-fuzzy points not belonging to *U*.

Let $\gamma(\neq 1) \in \mathbf{B}$ be an arbitrary element. If possible, let there exists no L-subset in U which assumes value γ at a and let $f \in L^X$ such that $f(a) = \gamma$ and f(x) = 1, $\forall x(\neq a) \in X$. Then $f \notin U$ and the simple extension U(f) is an L-topology such that $a_{\gamma} \notin U(f) \Rightarrow U(f) \neq L^X$. But $U \subset U(f)$, a contradiction. Similar is the case when $\gamma = 1$, in this case consider $f \in L^X$ defined as f(x) = 0 for some $x(\neq a) \in X$ and f(y) = 1, $\forall y(\neq x) \in X$. Let $\{f_i\}_{1 \le i \le r}$ be the collection of all those L-subsets in

U which assumes value γ at a and $g = \bigwedge_{i=1}^{r} f_i$. Then $g \in U$ and since U is an ultra L-topology, $g = a_{\gamma} \lor b_{\alpha_i}$ for some atom $\alpha_i \in L$ and $b(\neq a) \in X$.

Since $\gamma \in B$ was an arbitrary element, the same process can be done for any element of B. Let $\delta_1, \delta_2 \in B$ be two

elements. Then $\alpha_{\nu} \leq \delta_{1}$ arbitrary and $\alpha_k \leq \delta_2 \Longrightarrow \alpha_k \leq \delta_1 \wedge \delta_2 = \delta_3$ (say). Let $\{h_i\}_{1 \leq i \leq s}$ and $\{g_i\}_{1 \le i \le t}$ be the collections of all those Lsubsets in U which assume value δ_1 and δ_2 respectively at a. Let $G = \bigwedge_{i=1}^{s} h_i$ and $H = \bigwedge_{j=1}^{t} g_j. \quad \text{Then} \quad G = a_{\delta_1} \vee b_{\alpha_i}$ and $H = a_{\delta_2} \lor c_{\alpha_i}$, where $b, c(\neq a) \in X$ and $\alpha_i, \alpha_i \in L$. If $b \neq c$ or $i \neq j$, then $G \wedge H = a_{\delta_{\gamma}} \in U$, a contradiction since $\delta_3 \in \mathbf{B} \Longrightarrow b = c \text{ and } \alpha_i = \alpha_i.$

Therefore \exists a unique element $b(\neq a) \in X$ and a unique atom $\alpha_i \in L$ such that $b_{\alpha_i} \leq h, \forall h \in U$ such that $h(a) = \eta$ where $\eta \in B$. Clearly, there is no *L*-subset g_1 in *U* such that $g_1(a) = \gamma$ and $g_1(b) = \rho$ where $\gamma \in B$ and $\rho \in L$ such that $\rho \land \alpha_i = 0$. Hence U =

$$\{f \in L^{X} : f(a) \lor \beta_{k} = 1 \Longrightarrow b_{\alpha_{i}} \le f\} = \mathsf{S}_{a, b_{\alpha_{i}}}(a_{\beta_{k}})$$

, which is an ultra L-topology by theorem 3.10. **Theorem 3.12** Let X be a finite set having nelements and L be a finite boolean lattice isomorphic to the power set P(Y) where |Y| = m, then there are nm(nm-1) ultra L-topologies in the lattice F_X . Proof. Let U be an arbitrary ultra L-topology in F_X . By lemma 3.2, $a_\lambda \notin U$ for some $a \in X$ and $\lambda(\neq 0) \in L$.

Case 1: $a_{\lambda} \notin U$ for some $0 < \lambda < 1$ but $a_1 \in U$. Then by theorem 3.7, $U = U_q^k(a)$ for some $a \in X$ and $1 \le k, q \le m$ such that $q \ne k$.

Case 2 : $a_1 \notin U$.

Then by theorem 3.13, $U = \mathsf{S}_{a,b_{\alpha_i}}(a_{\beta_k})$ for some

 $a, b \in X$ such that $a \neq b$ and $1 \leq i, k \leq m$.

By remarks 3.6 and 3.10, it follows that total number of ultra L-topologies in F_X is nm(nm-1).

IV. ACKNOWLEDGEMENT

The first author wishes to thank the University Grants Commission, India for giving financial support.

REFERENCES

[1] O. Frolich, Das Halbordungssystem der Topologischen Raume auf einer Menge, Math. Annal. 156 (1964), 79-95.

[2] T.P. Johnson, On the lattice of fuzzy topologies I, Fuzzy Sets Syst. 48 (1992), 133-135.

[3] T.P. Johnson, On the lattice of L-topologies, Indian Journal of Mathematics, 46 (2004), 21-26.

[4] Liu Ying- Ming, Luo Mao-Kang, Fuzzy Topology, World Scientific Publishing Co., River Edge, New Jersey, 1997.

connecting engineers...deretoping research [5] A.K. Steiner, The lattice of topologies: structure and complementation, Trans. Am. Math. Soc. 122(1966) 379-398.

[6] A.C.M. Van Rooij, Lattice of all topologies is complemented, Can. J. Math. 20 (1968) 805-807.