

International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018

On Strong (G, D)-Number of Inflated Graphs

[1] G.SusiVinnarasi, [2] V.Selvalakshmi, [3] S. Kalavathi, [4] K.Palani [1][2] PG Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi [3] Research Scholar ManonmaniamSundaranar University [4] Department of Mathematics A.P.C.Mahalaxmi College for Women Thoothukudi

Abstract:-Strong (G, D)-number of Graphs was introduced by Palani K and SanthaanaGomathi C. Let G be a (V, E) graph. A dominating set is said to be a strong dominating set of G if it strongly dominates all the vertices of its complement. A (G, D)-set D of G is said to be a strong (G, D)-set of G if it strongly dominates all the vertices of V-D. Strong (G, D)-number of Product graphs was discussed by S.Velammal,S.Rajalakshmi and K Palani. Strong (G, D)-number of Middle graphs was discussed by M.Mahalakshmi,A.Sony& K Palani. In this paper, we find the strong (G, D)-number of Inflated Graphs of some standard graphs.

I. INTRODUCTION

"Graph Theory" is an important branch of Mathematics. It has grown rapidly in recent times with a lot of research activities. In 1958, domination was formulized as a theoretical area in graph theory by C. Berge. He referred to the domination number as the coefficient of external stability and denoted as $\beta(G)$. In 1962, Ore [6] was the first to use the term 'Domination' number by $\delta(G)$ and also he introduced the concept of minimal and minimum dominating set of vertices in graph. In 1977, Hedetniemiet.al[5] introduced the accepted notation $\gamma(G)$ to denote the domination number. Let G = (V,E) be any graph. A dominating set of a graph G is a set D of vertices of G such that every vertex in V-D is adjacent to atleast one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number of G. It is denoted by $\gamma(G)$. The concept of geodominating (or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in [2, 3, 4]. Let u, $v \in V(G)$. A u-v geodesic is a u-v path of length d(u, v). A vertex x is said to lie on a u-v geodesic p if x is any vertex on p. A set S of vertices of G is a geodominating (or geodetic) set if every vertex of G lies on an x-y geodesic for some x,y in S. The minimum cardinality of geodominating set is the geodomination (or geodetic) number of G. It is denoted by g(G). K. Palaniet.al[7,8,9] introduced the concept (G,D)- set of graphs. A (G,D)- set of graph G is a subset S of vertices of G which is both dominating and geodominating (or geodetic) set of G. A (G,D)- set of G is said to bea minimal (G,D) set of G if no proper subset of S is a (G,D)- set of G. The minimum cardinality of all minimal (G,D)-set of G is called the (G,D)- number of G. It is denoted by $\gamma_G(G)$. In [10] C. SanthaanaGomathi K. Palani and S.Kalavathi initiated the study of strong (G,D)-number of a graph. A strong (G,D)-set is a (G,D)-set D which strongly dominates all the vertices of V-D. K. Palani et.al [11,12] investigate the (G,D)- number of Middle and Product Graphs. Given a graph G with $\delta(G) \ge 1$, a graph denoted by G_I is obtained

as follows:To each $u \in V(G)$, a clique A_u of order deg_Gu is obtained and a bijection $\phi_u: N(u) \to A_u$ is constructed. $\phi_u(v)$ is denoted by v' for all $v \in N(u)$, $V(G_I) = \bigcup_{u \in V(G)} A_u$ and $E(G_I) = \bigcup E(A_u) \bigcup \{u'v': uv \in E(G)\}$. $v' \in A_u$, $u' \in A_v$. The graph G_I is known as the *inflated graph of G*. In this paper, we investigate the strong (G,D)-number of Inflated graphs of some standard graphs. The following theorems are from [10].

- 1.1 Theorem: $sY_G(P_n) = 2 + \left[\frac{n-2}{3} \right]$
- 1.2 Theorem: $sY_G(C_n) = \left[\frac{n}{3}\right]$
- 1.3 Theorem: Any strong (G,D)-set contains all the extreme vertices of G. In particular, all the end vertices of G.

2. Strong (G,D)-Number of Inflated graphs.

Here we investigate the strong (G,D)-Number of Inflated graphs of P_n , C_n , K_n , K_1 , N_n

2.1 Proposition:

$$sY_G(I(P_n)) = 2 + \left\lceil \frac{2n-4}{3} \right\rceil.$$

Proof:

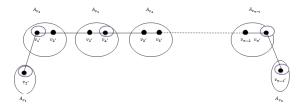


Figure 2.1

In a path, there are 2 end vertices and n-2 vertices of degree 2. Therefore, Inflated graph of P_n is again a path on 2(n-2)+2=2n-2 vertices. Hence, by theorem1.1, $sY_G(I(P_n))=sY_G(P_{2n-2})$

$$=2+\left\lceil\frac{2n-4}{3}\right\rceil$$

2.2. Illustration:

$$sY_G(I(P_7)) = 6$$

Proof:

International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018

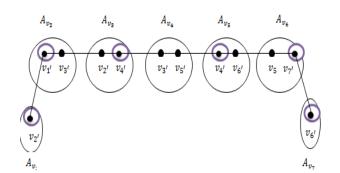


Figure 2.2

$$I(P_7) \cong P_{12}$$
Therefore, $sY_G(I(P_7)) = sY_G(P_{12})$

$$= 2 + \lceil (\frac{14 - 4}{3} \rceil$$

 $sY_G(I(P_7)) = 2+4=6$

2.3. Proposition:

$$sY_G(I(C_n)) = \left\lceil \frac{2n}{3} \right\rceil.$$

Proof:

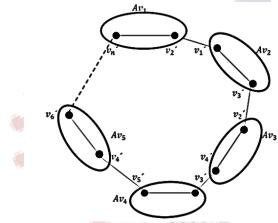


Figure 2.3

In a cycle, every vertex is of degree 2. Therefore, the inflated graph of C_n is again a cycle of 2n vertices. Hence, by theorem 1.2, $sY_G(I(C_n)) = sY_G(C_{2n}) = \left[\frac{2n}{3}\right]$.

2.4. Illustration:

Inflated graph of C_3 is given in the following figure.

Proof:

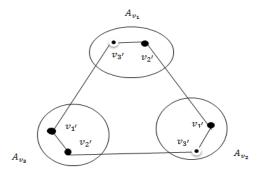


Figure 2.4

Therefore,
$$sY_G(I(C_3)) = sY_G(C_6)$$

= $2 + \left\lceil \frac{10}{3} \right\rceil = 6$.

2.5.Proposition:

$$sY_G(I(K_n)) = n - 1$$

Proof:

 K_n is a regular graph of degree n-1.

Hence, $I(K_n)$ contains n cliques with n-1 vertices. Let them be $K_{n-1}^1, K_{n-1}^2, K_{n-1}^3, \dots \dots K_{n-1}^n$.

Consider one of the cliques with n-1 vertices, say K_{n-1}^1 . Label the vertices of this clique as $v_1, v_2, v_3, \dots v_{n-1}$.

Now, label the vertices adjacent to $v_1, v_2, v_3, \dots v_{n-1}$ in the remaining n-1 cliques as $v_{11}, v_{21}, v_{31}, \dots v_{(n-1)1} - - - - - - \rightarrow (1)$ as in figure 2.5.

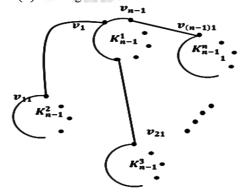


Figure 2.5

These n-1 vertices dominate the vertices of $I(K_n)$.

Also, $I(K_n)$ is a regular graph. Therefore, any dominating set of $I(K_n)$ is also a strong dominating set of $I(K_n)$.

Further, distance between any two vertices in (1) is 3 and every vertex other than those in (1) lie in a geodesic joining two vertices of (1).

Therefore, $S = \{v_{11}v_{21}, v_{31}, \dots v_{(n-1)1}\}$ is a strong (G, D) set of $I(K_n)$.

Therefore, $sY_G(I(K_n)) \le |S| = n - 1$

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

Further, no set with less than |S| vertices is a strong (G, D) – set of $I(K_n)$.

$$\therefore s Y_G \big(I(K_n) \big) \ge |S|$$

$$\therefore s Y_G \big(I(K_n) \big) = |S| = n - 1.$$

2.6. Illustration:

 $sY_G(I(K_4))=3.$

Proof:

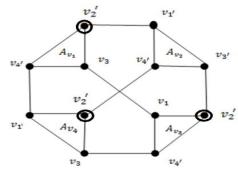


Figure 2.6

From the figure 2.6, we have $sY_G(I(K_4)) = 3 = 4-1$.

2.7. Illustration: $sY_G(I(K_5)) = 4$.

Proof:

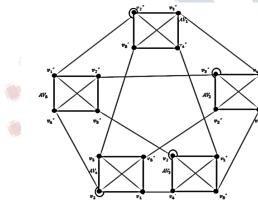


Figure 2.7

From the figure 2.7, $sY_G(I(K_5)) = 4$ = 5 - 1

2.8. Illustration:

 $sY_G(I(K_7)) = 6.$

Proof:

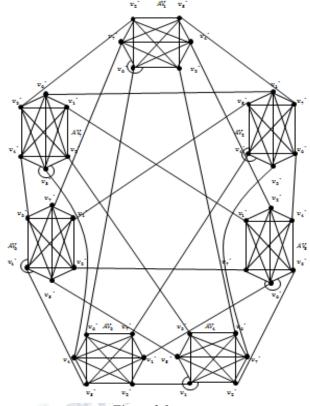


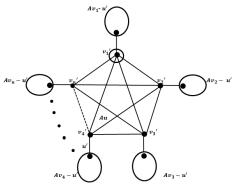
Figure 2.8

In the inflated graph of K_7 , each vertex is of degree 6. In figure 2.8, the rounded vertices form a minimum strong (G,D)-set.

Therefore, $sY_G(I(K_7)) = 6 = 7 - 1$.

2.9. Proposition:

$$sY_G\left(I(K_{1,n})\right)=n+1$$



Proof:

Figure.2.9

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

Here $S = \{Au_i - u'/ i=1 \text{ to n }\}$ is the set of end vertices and hence every strong (G,D)-set contains S. Further, <V(I ($K_{1,n}$))- S> is complete. Hence, $S\cup$ $\{Au-v_i'\}$ forms a minimum strong (G,D)-set of $I(K_{1,n}) \ \forall \ i=1 \ to \ n$.

Therefore, $sY_G(I(K_{1,n})) = |S| + 1 = n + 1$.

2.10. Illustration:

$$sY_G\left(I(K_{1,5})\right) = 6$$

Proof:

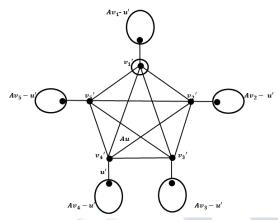


Figure 2.10

From the figure 2.10, it is clear that the set of vertices $S = \{Au_i - u' / i=1 \text{ to } 5 \} \cup \{Au - v_1'\}$ forms a strong (G,D)-set of $I(K_{1,5})$.

Therefore, $sY_G(I(K_{1,5})) = 6 = 5 + 1.$

2.11. Proposition

Let $D_{m,n}$ denote the Double star. Then,

$$sY_G(I(D_{m,n})) = m + n + 2$$

Proof:

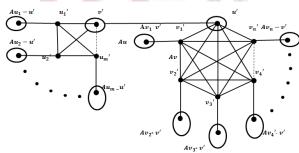


Figure 2.11

Without loss of generality, assume that m < n. As in the previous theorem, let the vertices be referred along with the clique name in which they appear. Let $S_1 = \{Au_1-u', Au_2-u', ..., Au_m-u'\}$

$$S_2 = \{Av_1-v', Av_2-v', \dots, Av_n-v'\}$$

 $S_1 \cup S_2$ is the set of extreme vertices of $I(D_{m,n})$.

Therefore, $S = S_1 \cup S_2$ is a subset of every strong (G,D)- set of $I(D_{m,n})$.

Further, $SU\{Au-v,Av-u\}$ is a minimum strong (G,D)- set of $K_{m,n}$.

Hence, $sY_G(I(D_{m,n})) = |S| + 2 = m + n + 2$.

2.12. Illustration:

Inflated graph of $D_{3,5}$

Proof:

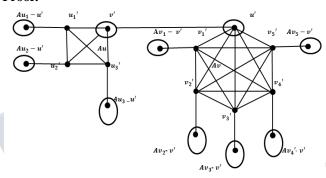


Figure .2.12

From the figure 2.12, it is clear that the rounded vertices form a minimum strong (G,D)- set of $I(D_{3,5})$.

$$\therefore sY_G\left(I(D_{3,5})\right) = 10$$

2.13Proposition:

The inflated graph of W₅

Proof:

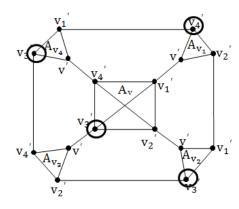


Figure 2.13

From the figure 2.13, it is clear that the rounded vertices form a minimum strong (G,D)-set of $I(W_5)$.

 $\therefore sY_G(I(W_5))=4.$

International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018

2.14.Proposition: $sY_G(I(W_7)) = 6.$

Proof:

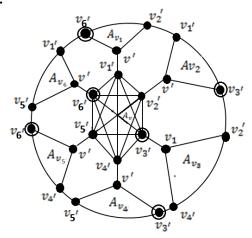


Figure 2.14

Let the vertices be referred along with the clique name in which they appear (i.e)Au- v_1' , Av₁- v_4' etc. Obviously, S={Av- v_3' , Av₁- v_6' , Av₁- v_6' , Av₂- v_3' , Av₄ v_3' , Av₅- v_6' } is one of the minimum strong

(G,D)- sets of $I(W_7)$ as in figure 2.14.

Hence, $sY_G(I(W_7)) = |S| = 6$.

2.15. Proposition:

Inflated graph of $K_{2,3}$

Proof:

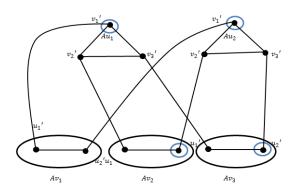


Figure.2.15

I ($K_{2,3}$) as in figure 2.15.It is clear that $S = \{Au_1 - v_1', Au_2 - v_1'Av_2 - u_2', Av_3 - u_2'\}$ is a minimum strong (G, D) set of $I(K_{2,3})$. Hence, $sY_G(I(K_{2,3})) = |S| = 4$.

BIBILIOGRAPHY:

- [1] Buckley F, Harary F and Quintas V L, Extremal results on the geodetic number of a graph, Scientia, volume A2 (1988), 17-26.
- [2] Chartrand G, Harary F and Zhang P, Geodetic sets in graphs, DiscussionesMathematicae Graph theory, 20 (2000), 129-138e.
- [3] Chartrand G, Harary F and Zhang P, On the Geodetic number of a graph, Networks, Volume 39(1) (2002), 1-6.
- [4] Chartrand G, Zhang P and Harary F, Extremal problems in Geodetic graph Theory, CongressusNumerantium 131 (1998), 55-66.
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals Of Domination in graphs, Marcel Decker, Inc., New York 1998.
- [6]Ore.O Theory of Graphs, American Mathematical Society Colloquium Publication 38 (American Mathematical Society Providence RI) 1962.
- [7] Palani .K and Kalavathi. S, (G,D) Number of some special graphs, International Journal Of Engineering and Mathematical Sciences January-June 2014, Volume 5,Issue-1, pp.7-15ISSN(Print) 2319 4537, (Online) 2319 4545.
- [8] Palani. K and Nagarajan. A (G,D) number of graphs,International Journal Of Engineering and Mathematics Research. ISSN 0976 5840 Volume 3(2011), pp 285 -299.
- [9] Palani. K ,Nagarajan. A and Mahadevan. G, Results connecting domination, geodetic and (G,D)— number of graph, International Journal Of Combinatorial graph theory and applications, Volume 3, No.1, January June (2010)(pp.51 -59).
- $\begin{tabular}{ll} [10] Santhaana Gomathi & C, Palani & K and Kalavathi & S, Strong (G,D)-Number of a graph-communicated. \end{tabular}$
- [11]Mahalakshmi M, Sony A, Palani K and Kalavathi S, Strong (G,D)-Number of Middle graphs -communicated.
- [12] Velammal S, Rajalakshmi S, Palani K and Kalavathi S, Strong (G,D)-Number of Product graphs-communicated.