
ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 78

Online Big File Storage Mechanism

[1]
 Ms.Noopur Adarsh Purwar

[2]
Prof.Nilima Nikam

[3]
 Prof.Vaishali Londhe

[1][2][3]
Yadavrao Tasgaonkar Institute and technology Bhivpuri, Karjat

Abstract:-- Online data storage refers to the practice of storing electronic data with a third party service accessed via the Internet.

It is an alternative to traditional local storage (such as disk or tape drives) and portable storage (such as optical media or flash

drives). It can also be called "hosted storage," "Internet storage". One of the biggest benefits of online storage is the ability to

access data from anywhere. As the number of devices the average person uses continues to grow, syncing or transferring data

among devices has become more important. Not only does it help transfer data between devices, online data storage also provides

the ability to share files among different users. This paper presents the different techniques which help in making online storage an

easier way of storing data. Data deduplication is one of important techniques for eliminating duplicate copies of repeating data,

and has been widely used in online storage to reduce the amount of storage space and save bandwidth. To protect the

confidentiality of sensitive data while supporting deduplication,we have also proposed an encryption technique which helps in

encrypting the data before storing it. Our approach to deduplication ,encryption and compression in online storage aims at

reduction in storage space and efficient use.

Index Terms:— BFS Big File Storage, Compression, Deduplication, Encryption

I. INTRODUCTION

 Any and every computer user knows that backing

up data is absolutely vital to maintaining the integrity of

their files and folders. Users who do not back up data

appropriately are highly susceptible to losing access to

important information due to hardware failures, file

corruption, viruses, disasters, accidental deletions, and

even theft. When this happens, many people are often

devastated by the loss of important and unrecoverable

data. Despite having this knowledge, many computer

users still fail to backup their data regularly, or they

simply rely on intermittent backups to USB and thumb

drives. Today, there are more backup solutions than ever

before, including online backup services that allow you to

store your data, so there is little reason to forego routinely

backing up important data. This paper focuses on the

infrastructure services dealing with storage and network

usage. Deduplication and compression, which are

described in detail later, are some of the important data

optimization services that the online storage system offers

[9].

 We have proposed an architecture wherein there

is a chunk storage mechanism which leverages parallel

computing capabilities of the underlying hardware. That

make it easier to store data and scale-out the storage

system. We have developed a deduplication mechanism to

avoid storage of duplicate files by differentiating them on

the basis of their content rather than their name.We also

propose usage of a compression algorithm to efficiently

store chunks of a file thus managing and utilizing storage

space efficiently. A storage based on the proposed

architecture helps in saving a lot of storage space. Data

deduplication is a specialized technique for eliminating

duplicate copies of repeating data in storage.[2]

Deduplication techniques are widely employed to backup

data and minimize network and storage overhead by

detecting and eliminating redundancy among data.[4]

1.2 Contributions in this research

 In this paper ,we propose an online storage

mechanism which helps in storing big file data securely

and efficiently. We propose the following:

∑ A light-weight meta-data design for a file. Every file

has nearly the same size of meta-data. BFS has O(1) space

complexity of meta-data of a file, while size of meta-data

of a file in Dropbox , HDFS has space complexity of O(n)

where n is size of original file[1].

∑ Propose a chunk storage mechanism which leverages

parallel computing capabilities of the underlined

hardware. This allows faster storage and processing of

data as compared traditional sequential processing

of data.

∑ A deduplication mechanism across users of the

system. This is based on the actual content of the file

rather than the name used for the file.

∑ Propose usage of a compression algorithm to

compress chunks of a file.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 79

∑ An encryption algorithm which helps in encrypting

the data being stored. This keeps the data secure and

confidential.

1.3 Organization

 This paper is organized as follows. In Section 2,

we present the system model of big file storage system.

The development is presented in Section 3. The results are

presented in section 4,.Finally, we draw our conclusions

in section 5.

II. SYSTEM ARCHITECTURE

The system architecture of the system is as shown in

figure 1.

 Shown Below is the diagram of Online Big File

Storage Mechanism(BFS).A user uploads files on the

server through its web interface.As soon as the file /files

are uploaded,the file goes through a series of mechanism

like deduplication,compression ,encryption and metadata

design.The file spilts into chunks and a meta data is

created for that particular file.The working of the modules

is explained with the help of diagrams in the below

sections.

Figure 1: Online Big File Storage Mechanism

Figure 2: ChunkInfo based metadata design

Figure 3: Deduplication based on ref FileId

 As seen in figure 1. a user/users select a file /files

for uploading to the Big File storage system. The file goes

through a set of processes before getting stored in the

underlying storage. First, the metadata is generated for a

file. Next the file is checked for duplicacy. It is then

encrypted and split into chunks of predefined size.Each

chunk is then encrypted. Finally each chunk is

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 80

compressed and stored. This is the approach followed in

the BFS system.

 The figure 2 shows the metadata design of

existing online storage systems available in the market. In

this metadata design as we can see along with FileInfo,

another datastructure ChunkInfo is created. FileInfo stores

the metadata of a file and ChunkInfo stores metadata

related to the chunks of a file.

 The figure 3 shows improved metadata design of

BFS wherein the need for ChunkInfo datastructure is

eliminated resulting in improved storage.

III. DEVELOPMENT

 The following figures depict a basic use case of

file storage and retrieval performed using the Big File

Storage system.

Figure 4:Upload Flow

Step 1: User uploads a file on the server.

Step 2: The BFS creates a metadata of the particular file.

Step 3: Based on the content of the file,the system creates

an SHA value of the file based on its content.

Step 4: It then checks the database for files which have

the same SHA value.If the content of the file is same,then

BFS creates a reference FileId and points to the original

file

Step 5: The file is split in different number of chunks

where each chunk is of the same predefined size except

the last chunk.

Step 6: The chunks are then encrypted using AES

encryption standard.and compressed using Snappy Java

Algorithm.

Use Case A. Uploading a file

The processes running inside the proposed BIG FILE

STORAGE system are split into following phases.

1) Metadata generation :- Metadata generation for a file

is essential so as to be able to uniquely identify a file and

its chunks.

2) Deduplication:- Using metadata generated a file being

uploaded by a user is cross checked for duplicacy

3) Encryption (AES) and splitting of file: A new non

duplicated file is split up into chunks based on the

metadata generated and each chunk is encrypted.

4) Compression: Every chunk of the file generated in the

previous step is compressed thus enhancing the storage

capability of the storage system.

Phase 1: Metadata generation

 Typically, in any data storage system such as

Dropbox , the size of meta-data increases respectively

with the size of original file. The metadata design in these

systems contains a list of chunk metadata structure which

stores information such as chunk id, chunk size, hash

value of chunk and other chunk metadata. Size of this list

is equal to the number of chunks which will be generated

from the actual file. The overall size of this list grows and

becomes a performance bottleneck for the overall system

as the file sizes and the number of files being stored

grows. As shown in the figure the metadata design in such

systems is not optimized and it eats up the storage space

and processing power of the system as the system

matures. We propose a solution in which the size of

metadata is independent of the number of chunks

generated from a file. The solution just stores the id of

first chunk, and the number of chunks which is generated

by original file.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 81

Figure 5: Metadata stored in file storage

The figure above shows how metadata is stored in the Big

File Storage

Because the id of chunk is increasingly assigned from the

first chunk, we can easily calculate the ith chunk id by the

formula:

chunkid[i] = fileInfo.StartChunkID + i (1)

Meta-data is mainly described in FileInfo data structure

which consists of following fields:

∑ File Name- the name of file;

∑ Encrypted: the file will be encrypted

∑ SHA value: 32 bytes - hash value by using sha-256

algorithm of file data;

∑ Start ChunkID : 8 bytes - the identification of the

first chunk of file, the next chunk will have id as

startChunkID+1 and so on;

∑ Number of Chunks :Chunk: 8 bytes - the

number of chunks of the file;

∑ File ID: 8 bytes - unique identification of file in the

whole file;

∑ Reference FileID: 8 bytes - id of file that have

previous existed in System and have the same sha256 - we

treat these files as one, refFileID is valid if it is greater

than zero;

∑ File Size : 8 bytes - size of file in bytes;.

Phase 2: Deduplication:-

 Data deduplication is a method of optimizing the

storage by eliminating redundant data. Only one unique

instance of the data is actually retained on storage media,

such as disk or tape. Redundant data is replaced with a

pointer or reference to the unique data copy. For example,

a typical email system might contain 100 instances of the

same one megabyte (MB) file attachment. If the email

platform is backed up or archived, all 100 instances are

saved, requiring 100 MB storage space. With data

deduplication, only one instance of the attachment is

actually stored; each subsequent instance is just

referenced back to the one saved copy. In this example, a

100 MB storage demand could be reduced to only 1 MB.

Figure 6: Data Deduplication process

In Figure 7,

1. Data store contains multiple instances of the same data

2. Deduplication process checks the content of the files to

identify duplicates

3 .If the content of the file found is same, a

pointer/reference is created to original file

Algorithm 1: Metadata generation and Deduplication

check

Terms Description

1) Createfileinfo()

2) Idgeneratorservice

3) Hashgeneratorutils.

Hashfile()

4) Dbutils.retrievefil

einfo()

5) Dbutils.savefileinf o()

Creates basic

metadata for the file

such as filename,

fileId, fileSize, No. of

chunks that will be

created from the file.

Generates a sequence

of ids for the fileId

field and the start

chunkId field in the

FileInfo datastructure

Generates an SHA256

hash value derived

from the content of the

file. It is used during

the deduplication

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 82

process.

Retrieves any existing

metadata from the

database using the

hash value. If found

then the file being

uploaded is considered

duplicate.

This method persists

the FileInfo metadata

created in the

database.

Data: file

Result: Metadata

1 begin

2 FileInfoService.saveFileInfoAndSplit

(file)

/* The entry point of the entire flow. */

3 FileSplitter.createFileInfo()

/* Create a FileInfo object. FileInfo object is

populated fileId, fileSize, the total number of chunks

which the file will be split into.refFileId is populated later.

4 HashGeneratorUtils.hashFile

(fileName);

/* Generate the hash value using SHA256

MessageDigest api. Hash value is generated for each

incoming file upload request. */

5 retrieveFileInfo(hash)

/* check for exiting metadata based on the hash value

generated above*/

6 if (existingMetadata) is found then

populate refFileId with fileId of the existing metadata

else

persist new metadata and

continue to split the file

7 end

Algorithm 2: Encryption and Chunk generation

Terms Description

AES Encryptor Decryptor

getAesEncryptCipher()

chunkNoToChunkIdMap()

getChunkSize()

FileIO

Uses the 128 bit AES

encryption algorithm to

encrypt the chunks

generated.

Creates an AES encrypt

mode cipher with the SHA

value as the secret key

Prepares a map of the

chunkNo. To chunkId .

It uses the FileInfo

object’s start chunkId and

no. of chunks field to

generate a map of the

chunkNoToChunkId

Predefined chunk size

The FileIO api which is

used to split the file in a

number of chunks each of

the predefined size except

the last chunk.

Data: file

Result: chunks

1 begin

2 FileSplitter.split(FileInfo)

/* The entry point of the entire flow. */

3 AESEncryptorDecryptor.

getAesEncryptCipher

(SHA,ENCRYPT.MODE)

/* Creates an AES 128 bit encrypt cipher. The SHA

value is used as the secret key in encrypt mode

The encrypt cipher is used for encrypting the chunks

generated from the file*/

4 Utilities.getChunkNoToChunkIdMap

(getFileInfo())

/* Prepare a map of chunkNo. to chunkId . This map

will be used in naming the chunks and saving them

on the file system */

5 if(filesize <chunksize)

/*splitting of the file is not done and the file is

saved as is/*

Else

/* split the file in the number of chunks.

Encrypt all the chunks*/

6 end

Phase 3: Compression

 The main advantages of compression are a

reduction in storage hardware and the resulting cost

savings. A compressed file requires less storage capacity

than an uncompressed file, and the use of compression

can lead to a significant decrease in expenses for disk

and/or solid-state drives. A compressed file also requires

less time for transfer, and it consumes less network

bandwidth than an uncompressed file. We have proposed

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 83

compression technique using Snappy algorithm which is

helping in further reducing the size of the file and helps in

saving storage space.

Algorithm 3: Chunk generation and compression

Terms Description

Chunk Deflater

Compress Chunk()

Uses the Snappy Java api

to compress and

decompress the chunks

Uses Snappy Output

Stream to compress

 the incoming

chunk

Compression of the chunks is carried out simultaneously

while the chunk is generated and encrypted .

Data: Encrypted chunk

Result: chunks

1 begin

2 chunkDeflater.compress

(incomingChunk,outgoingChunk)

/*start compressing the chunk

generated */

3 SnappyOutputStream.write

(SHA,ENCRYPT.MODE)

/* SnappyOutput stream uses a buffer size of

[64*1024] and writes a compressed chunk on the

storage*/

4 end

Use Case B. Downloading a file

Figure 7:Download Flow

Step 1: User logs into the account and selects which file

to download

Step 2: The server retrives metadata of the file from the

database

Step 3: The decompression engine first decompresses all

the chunks of the file using Snappy Java Algorithm.

Step 4: After decompression ,the chunks are decrypted by

the decryption engine

Step 5: Then all the chunks of the file are combined by

the file combiner engine

Step 6: The file is thus recreated and is downloaded at the

users end.

Terms Description

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 84

getFileInfo And Combine ()

retrieve File Info()

chunk Deflater decompr ess
Chunk()

get Aes Decrypt Cipher()

File Combiner.join()

The entry point

of File Info Service

download flow

Retrieve FileInfo

metadata based on the

filename Decompress

the chunks of the file

Decrypt the chunks of

the file.Uses

SnappyInputStream to

decompress the chunk

Join the chunks to get

the original file

Algorithm 4: Chunk Decompression, Decryption and

file generation

Data: Compressed and Encrypted chunks

Result: Decompressed, decrypted and chunks

1 begin

2 DbUtils.retrieveFileInfo

/* Retrieve FileInfo metadata from

the database for the file to be

downloaded*/

3 FileCombiner.getNumberParts

/*Prepare a map of the chunkNoTochunkId which

will be used to look up the chunk */

4 ChunkDeflater.decompressChunk

/* Use the SnappyInput stream

api to decompress*/

5 getAesDecryptCipher.decrypt

/*Use the AES 128 bit

decryption process to decrypt the

chunk.*/

6 Join the chunks using the FileIO api

7 end

IV. RESULTS

A.Metadata Design

Figure 8:Metadata Size comparison with traditional

storage

The above figure shows the impact of the metadata design

on storage.The x-axis shows the file size stored and the y

axis shows the metadata size.The traditional storage

shows the considerable increase in metadata size with

respect to file size.While the BFS shows that the metadata

size does not increase with respect to file size.

B. Deduplication

Table I

Space Saved In BFS System

File Number

of Files

File Size

before

Deduplication

Space saved

After

Deduplication

1. 10 500 MB 440 MB

2. 15 700 MB 550 MB

3. 25 1000 MB 815 MB

 The above table shows the different size of files

we have saved in BFS .As the content of the file is

checked for deduplication and if the file already exists,

the system just refers to the original file by creatibg a

reference fileid.Thus,it helps in saving storage space.The

first reading shows that 10 files were uploaded ,out of

which one was a copy,so the file was referenced to the

original file.In the second reading,15 files were

uploaded,out of which 3 files were copy,so only the 12

files got saved ,copy files were referenced to the original

one.More than 50% of the space is saved overall thus

increasing scalability.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

 Vol 1, Issue 8, December 2016

 All Rights Reserved © 2016 IJSEM 85

C. Compression

Table II

File Size Before And After Compression

 As we can see from the above table, the first

reading shows the text file uploaded. The file size of the

text was 100 MB ,but after compression the file size got

reduced to 80 MB. The second reading shows the audio

file(mp3) which was of size 40 MB but got

reduced to 33.5 MB after

compression.Similarly, the video file of 700 Mb got

reduced to 615MB after compression.Thus compression

helps in reducing storage space and increasing scalability.

V. CONCLUSION

 BFS optimizes an online storage system by

redesigning a simple metadata system to create an

efficient storage mechanism. Every file in the system has

a constant size of metadata regardless of the file size. The

data deduplication methodology of BFS uses SHA-256

based hash function to fast detect duplicate files being

uploaded and thus reduces data redundancy. The chunks

generated from the file are encrypted using AES-128

algorithm which improves the security aspect of the

online storage. Finally the encrypted chunks are

compressed using a fast compression algorithm Snappy

Java which further reduces storage space on the server.

REFERENCES

[1]. Thanh Trung Nguyen, Tin Khac Vu, Minh

Hieu Nguyen:”BFC:High Performance Distributed Big-

File Cloud Storage Based on Key Value

Store.”,Information Technology Faculty Le Quy Don

Technical University, Ha Noi, Viet Nam VNG Research,

Viet Nam ,IEEE ,SNPD 2015, June 1-3 2015, Takamatsu,

Japan

[2]. Jin Li,Yan Kit Li;Xiaofeng Chen;Patrick

P.C Lee;WenjingLou”A Hybrid Approach for Secure

Authorized Deduplication”IEEE Transactions on Parallel

and Distributed Systems,Pages :1206-1216,Volume

:26,Issue :5,2015

[3]. L. Chappell and G. Combs. Wireshark network

analysis: the official Wireshark certified network analyst

study guide. Protocol Analysis Institute, Chappell

University, 2010.

[4]. Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang

and Yang Xiang Senior and Mohammad Mehedi Hassan

and Abdulhameed Alelaiwi “Secure Distributed

Deduplication Systems with Improved Reliability” IEEE

Transactions on Computers, Volume: 64, Pages: 3569 –

3579, Issue: 12,2015

[5]. I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R.

Sadre, and A. Pras. Inside dropbox: understanding

personal cloud storage services. In Proceedings of the

2012 ACM conference on Internet measurement

conference, pages 481–494. ACM, 2012.

[6]. P. FIPS. 197: the official aes standard. Figure2:

Working scheme with four LFSRs and their IV

generation LFSR1 LFSR, 2, 2001.

[7]. S. Ghemawat and J. Dean. Leveldb is a fast key-

value storage library written at Google that provides an

ordered mapping from string keys to

string values. https://github.com/google/leveldb.

Accessed November 2, 2014.

[8]. S. Ghemawat, H. Gobioff, and S.-T. Leung. The

google file system. In ACM SIGOPS Operating Systems

Review, volume 37, pages 29–43. ACM, 2003.

[9]. Amrita Upadhyay; Pratibha R Balihalli;

Shashibhushan Ivaturi; Shrisha Rao

“Deduplication and compression techniques in cloud

design” 2012 IEEE International Systems

Conference SysCon 2012

Pages: 1 - 6,,2012

