
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 73

Dynamic Slicing of Service-Oriented Software
[1]

 Kaushik Rana,
[2]

Jalpa Ramavat,
[3]

Durga Prasad Mohapatra
[1][2]

Computer Engineering Department, Vishwakarma Government Engineering College, Gujarat, India.
[3]

Department of Computer Science and Engineering, NIT Rourkela, Orissa, India.

Abstract - SoaML (Service oriented architecture Modeling Language) diagrams are the basic modeling artifacts for Service-

Oriented Architecture (SOA). These SoaML models can also be used for testing Service-Oriented Software (SOS). Testing can be

planned at design phase of software development life cycle. With this context, we present a novel technique to compute dynamic

slices for Service-Oriented Software (SOS) based on SoaML Sequence Diagram. In our technique, we first map each message in

sequence diagram with the corresponding web service messages. This mapping is observable. After that we construct an

intermediate representation of SoaML sequence diagram which we called as Service-Oriented Software Dependence Graph

(SOSDG) which is an intermediate representation that needs to be stored and traversed to get dynamic slice as and when web

service gets executed. This SOSDG identifies data, control, intra-service and inter- service dependencies from SoaML sequence

diagram and from web service execution. For a given slicing criterion our algorithm computes global dynamic slice from SOSDG

and identifies the affected service. The novelty of our work lies in computation of global dynamic slice based on SOSDG, it’s

dependencies induced within or across organizations and small slices.

Keywords: Progam Slicing, Service-Oriented Architecture(SOA), Testing, Web Service.

I. INTRODUCTION

Nowadays many organizations are shifting their focus

from technology oriented business process to Service-

Oriented Architecture (SOA) based business process. This

paradigm shift occurs due to major advantages offered by

SOA over the traditional manual business process. SOA

enables organizations to align their businees process with

changing customer needs,creating flexible, agile business

environments. Understanding such dynamic SOA enables

one to have great insight and comprehension of a business

process. But it is often a difficult task. Design models

helps organizations to simplify, visualize business

processes. UML has been widely used a general purpose

modeling language for object-oriented systems which is

not intended for modeling distributed systems like SOA.

SoaML (Service oriented architecture Modelling

Language), a language which models SOA, specified by

OMG and being supported by major IT vendors like IBM,

Visual Paradigm , open source organization Eclipse etc, is

an emerging standards for modeling distributed systems.

The rest of this paper is organized as follows. The next

section presents related work. Section 3 introduces a

service-oriented software choreography example of

buying a product from online seller and its mapping with

web services. Section 4 presents basic definitions relevant

to our proposed algorithm and extentions to dynamic

slicing technique. Our intermediate representation

SOSDG is discussed in Section 5. Section 6 presents our

algorithm MBGDS for computing global dynamic slice of

service-oriented software, it’s working and theoretical

complexity analysis. Section 7 presents proof of concept

covering our tool SOSDS’s design, implementation, data

sets and results obtained. Section 8 compare our work

with related work. And finally, Section 9 concludes the

work.

II. RELATED WORK

In this section we, briefly presents the reported work on

program slicing, architectural and UML model based slic-

ing. Most of the work reported in the literature are

focused on development of technique for slicing UML

models like class diagram, sequence diagram, use case

diagram, activity diagram etc.

A natural way of localizing an error is to consider only

those statements of a program, which tends to the erro-

neous behaviour being observed. Often this results in

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 74

find-ing the statements of a program relevant to the value

of a chosen variable at a given location of that program.

This approach is called program slicing. The given

variable and location form the slicing criterion. The

original concept of program slicing was proposed by

Mark Weiser [22] as another approach for debugging

sequential programs. He claims that program slicing

corresponds to the mental ab-straction performed by

programmers while debugging pro-grams. Agrawal et al.

[9] have presented a uniform ap-proach to compute

dynamic slices of programs that may in-volve

unconstrained pointers, composite variables, and pro-

cedures. Program slicing is an active area of research, and

this is reflected in various surveys as Frank Tip [8].

Zhao [14] was the first one to introduce the concept of

architectural slicing based on Architectural Description

Language (ADL) ACME. He define component-

connector dependency, connector component dependency,

and addi-tional dependency. He proposed an algorithm to

com-pute architectural slice based on SADG (Software

Ar-chitectural Dependency Graph). He extended his

previ-ous work [13] by introducing Architectural

Information Flow Graph with information flow arcs like

component-connector, connector-component, and internal

flow arcs based on Wright ADL. Kim et al. [36] have

introduced Dynamic Software Architecture Slicing

(DSAS) as set of architect components and connectors

that are relevent to the particular variable and events of

interest at some point dur-ing the execution of software

architecture. Korel et al.[3] have presented deterministic

and nondeterministic slicing based on EFSMs (Extended

Finite State Machines). They also develop a tool to

demonstrate their slicing technique. Kagdi [10] have

introduces concept of model slice, which extracts slice

from a class diagram.

Samuel et al. [26] have presented a technique to test

object-oriented software using dynamic slice technique on

UML sequence diagram. They used message guards on

se-quence diagram to generate dynamic slice with respect

to each conditional predicates. Slices are generated from

the dependencies graph for all the variables at each

message point in sequence diagram. Their approach

suggest that they computed static slice.

Samuel et al. [27] have generated test case from UML

communication diagram. They generated communication

tree from communication diagram (CD), performs post-

order traversal on conditional predicates and apply

function minimization technique to generate test

data.They imple-mented a tool named UTG (UML

behavioral Test case Gen-erator) to demonstrate

generation of test cases.

Soldal et al.[23] defines a test generation scheme based on

a conformance testing and a formal operational seman-

tics for sequence diagrams, which takes input as sequence

diagrams that may contain the operators assert and neg

and that produces tests in the form of sequence diagrams.

The algorithm is based on a formal operational semantics

for se-quence diagrams and is an adaption of J. Tretmans

et al.[11]. The operational semantics and the test

generation al-gorithm are implemented in term rewriting

language Maude defined by M. Clavel [19].

Lallchandani et al. [12, 17] have used generic class di-

agram and generic sequence diagram and integrated them

to generate Model Dependency Graph (MDG). They pro-

posed an algorithm AMSMT (Architectural Model Slic-

ing through MDG Traversal) to produce the static and dy-

namic architectural model slices. The algorithm traverses

the edges of Model Dependency Graph (MDG) according

to slicing criterion. They developed a tool which

computes a dynamic slice from UML architectural

models.

NODA et al. [16] have extended their own work on dy-

namic slicing of sequence diagram. They generated Be-

havior Model (B-model), defines various dependencies

and calculates slice. They support their work by

incorporat-ing exceptions and multi-threading programs.

They imple-mented a tool as Eclipse plug-in to

demonstrate their pro-posed method.

Prasanna et al. [20] have presented a model based ap-

proach for automated generation of test cases in object-

oriented systems. They consider UML object diagram and

genetic algorithms tree crossover operator to generate

new generation tree. The new generation of trees are

converted into binary trees. Then, depth first search

traversal is per-formed on binary trees to generte test

cases.

Sharma et al. [24] have presented Use case Diagram

Graph (UDG) and Sequence Diagram Graph (SDG) for

generating test cases from use case and sequence

diagrams respectively. They integrated UGD and SDG

into Sys-tem Testing Graph (STG). The STG is traversed

to get test cases.They uses a PIN authentication scenario

of an ATM system. Also they implemented a tool with the

help of Mag-icDraw and Rational Rose.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 75

Kundu et al. [5] have presented an approach for generat-

ing test cases from UML 2.0 activity diagrams with use

case scope. They define an activity path coverage

criterion. Ad-ditionally, the generated test cases are

capable of detecting various types of faults which may

occur.

Swain et al. [31] have illustrated a method to derive test

cases from analysis artifacts such as use cases, and their

cor-responding sequence diagrams. They generated test

cases from Use Case Dependency Graph (UDG) and

Concurrent Control Flow Graph (CCFG) from use case

diagram and corresponding sequence diagram

respectively. They gen-erated test case using full

predicate coverage criteria. They used Library

Information System (LIS) to demonstrate their work.

Nayak et al. [2] have proposed an approach of synthe-

sizing test data from information available from class dia-

grams, sequence diagrams and Object Constraint

Language (OCL) constraints. They generated a Structured

Composite Graph (SCG), incorporating system wide

information from which test case are generated

Shanthi et al. [1] have focused on test case genera-tion

from UML sequence diagram using genetic algorithm.

They extract information from sequence diagram and cre-

ates a Sequence Dependency Table (SDT). With the help

of SDT test path are generated. And then Genetic

Algorithm are used to prioritize test cases.

Kosindrdecha [25] have proposed a technique to derive

and generate tests from state chart diagram. They car-ried

out an extensive literature survey and classified vari-ous

test generation technique as specification-based tech-

niques, sketch diagram-based techniques, and source

code-based techniques.

Grigorjevs et al. [15] presented a testing technique for

model generation from UML sequence diagram to UML

Testing profile. They discusses principles of model trans-

formation to generate test cases from sequence diagram

and shows practical approach to specific model.

Patnaik et al. [4] have put an effort to represent dead-lock

situations with the help of graph in a distributed en-

vironment. They proposed an algorithm to detect

deadlock with the help of real time banking system and

generated test cases for it.

Panthi et al. [39, 38] have generated test cases from

sequence diagram automatically. They named their ap-

proach as Automatically Test Sequences Generation from

Sequence Diagram (ATGSD). In ATGSD, they first con-

vert the sequence diagram into Sequence graph then, the

graph is traversed to select the predicate functions. Next

they transform the predicate into source code. Then, they

construct the Extended Finite State Machine (EFSM)

from the code. Finally, they generate the test data

corresponding to the transformed predicate functions and

store the gener-ated test data for future use. They

demonstrate their work based on bank ATM system and

tool based on ModelJunit library.

Sumalatha et al. [37] have presented a new technique to

generate test case from integrating UML activity and se-

quence diagram. They uses breadth first search on activity

sequence graph which is generated from merging activity

and sequence diagram. Priya et al. [30] have generated

test path from UML sequence diagram of a medical

consulta-tion system. Swain et al. [28] uses condition

slicing and generate test cases from UML interaction

diagrams. They generated test cases from message flow

dependence graph from UML sequence diagram and then

applies conditioned slicing on a predicate node of the

graph.

Meena [6] have proposed an approach to generate test

cases from UML sequence diagram and interaction

overview diagram. They transforms the sequence dia-

gram and interaction overview diagram to an intermediate

form called UML interaction graph (UIG) using XMI

code. Then, UIG is traversed to find the all valid path and

generate test cases. Kaur et al. [21] have developed a

methodology to derive test cases using conditional

predicate.

III. SERVICE-ORIENTED SOFTWARE EXAMPLE:

ONLINE SHOPPING SYSTEM

Let’s take a real world example to demonstrate service-

oriented software choreography. Buying a product from

the online retailer is a good example of service-oriented

soft-ware choreography. Generally, a product seller

registers its product with online retailer. Other service

providers may also register for shipping and logistic

service with retailer too. These registration service

interface is being provided by online retailer. When a

customer wants to buy a product, he(she) searches it over

the online retailer. Thus, searching a product by customer

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 76

represents a web service. Once the product is found the

customer goes for buying it. The buy-ing service is a

composite service which checks for user login. Again this

login service is being provided by re-tailer for their

registered users or users may sign up or else uses the

third-party login service like www.facebook.com or

www.gmail.com. Once the customer successfully logged

on, he(she) can go for make payment or adding the prod-

uct to shopping cart for later payment or uses the Cash On

Delivery (COD) service options. The payment service in-

terface is being provided by various banks. User selects

the type of card, the bank and other information and pro-

ceeds for payment. Once the transaction is successful the

order is being confirmed and the product is being sent to

the customer address. This service-oriented software

chore-ography is best described using SoaML sequence

diagram shown as in Fig. 1.

In this service choreography, we can see that the prod-uct

registration(), couriercompany registration(), login(),

signup(), search(), and add to cart() are the services being

provided by online retailer, while make payment(), make

courier() and thirdparty login() services are being

provided by other service providers or parties.

The successful registration of sellers or courier compa-

nies depends on Service Level Aggrement (SLA) defined

by mutual understanding between parties. This SLA

defines interfaces, choreography and any terms and

conditions. The Service Level Agreement(SLA), binds

both the parties about how a service is to be provided and

consumed. These service contracts can be best modeled as

SoaML service contract diagram as shown in Fig. 2.

III. A STATIC MAPPING OF SERVICE

CHOREOGRAPHY MESSAGE WITH

WEB SERVICE

By looking up the choreography messages one can carry

out a generic mapping of service choreography messages

with web service. Fig. 3 shows this mapping along with

choreography message fragments. It maps the input

message to the corresponding Simple Object Access

Protocol (SOAP) request message of web service and

output messages with Simple Object Access Protocol

(SOAP) response messages. This mapping is useful to run

and analyze the web service with corresponding SOAP

messages.

IV. EXTENTIONS TO DYNAMIC SLICING

TECHNIQUE

Before presenting our dynamic slicing algorithm, we

introduce a few definitions that would be used in our

algo-rithm. Also, we extend definitions pertaining to

compute dynamic slice.

Definition 1: def(m)

let m be a message node in Service-Oriented Software

Choreography (SOSC). A node n is said to be def(m)

node if n it defines(assigns) values to variables of

message m.

Definition 2: use(m)

let m be a message node in SOSC. A node n is said to be

use(m) node if n uses the values of variables assigned by

message m.

Definition 3: recentDef(m)

For each message m, recentDef(m) represents the node

corresponding to the most recent definition of the

message variable def(m) in particular Service Execution

History (SEH).

Definition 4: Web Service Control Flow Graph

(WSCFG)

A Web Service Control Flow Graph (WSCFG) of a

Service-Oriented Software Choreography SOSC is a

directed graph (N, E, Start, Stop), where each node n 2 N

represents message of service choreography SOSC, while

each edge e 2 E represents control transfer among nodes.

Nodes Start and Stop are two unique nodes representing

entry and exit of the program P, respectively. There is a

directed edge from node a to node b if control may flow

from node a to node b. The WSCFG of a service-oriented

software given in Fig. 1 is shown in Fig. 4.

Definition 5: Service Execution Case

A test case is a triplet [I,S,O] where I is the input to the

system at state S and O is the expected output. It consists

of run-time input values read by the sequential program.

This definition is insufficient for SOA based software

which gives various challenges due to its inherent features

like

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 77

Figure 1. An SoaML sequence diagram for

buying a product

Figure 2. An SoaML service contract diagram involving

multiple parties

dynamic binding, agility and many others.

We define Service Execution Case (SEC) as being the set

of information required to guarantee repeatability. By

repeatability, we mean that each service executes same

message and execution of each message sees the same

values for each of the service variables. A Service

Execution Case must consider non-determinism.

Definition 6: Service Execution Point

In sequential program, the execution point is a point in

that flow of execution. An execution point is defined for a

process and for the occurrence of statement that has been

executed by this process. Because of multiple flow of

execution in Service-Oriented Software (SOS) we define

a Service Execution Point (SEP) by a pair

 where

Mij is the jth occurrence of message Mi executed by the

web service .

This definition imposes that the service has already been

executed that occurrence of the message or currently

executing it. It allows the same messages to be executed

by various services.

Definition 7: Service Execution History

An execution history is defined for specific execution

case. A Service Execution History (SEH) is the sequence

of Service Execution Points (SEPs) in the order in which

they are executed by the services.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 78

Definition 8: Service Choreography Execution His-tory

It merges the Service Execution History (SEH) of each

service into a single set. Sorting such set is difficult due to

distributed environment. But it is the important to

maintain the order in which one SEP has influenced the

execution of another. It is possible to have more than one

Service Choreography Execution History SCEH for given

service execution case.

Definition 9: Slicing Criterion for Service-Oriented

Software Choreography

We define the slicing criterion for the Service-Oriented

Soft-ware Choreography (SOSC) as the triplet (var,

 , SEC) where var is the message variable used at

m, and

 is Service Execution Point (SEP) with

input Ser-vice Execution Case (SEC).

IV.I EXTENTIONS TO DEPENDENCY

In this subsection we define some new dependencies like

intra- service and inter- service dependencies which arises

due to service-oriented software and then we define local

dynamic slice and global dynamic slice.

Definition 10: Intra-Service Dependency

In a sequential program the occurrence of the statements

on which the current statement is dependent have already

been executed. This is not necessarily correct for Service-

Oriented Software (SOS). Intra-Service Dependencies are

used to indicate that the state of service at that point

depends on the execution of a message by another service.

We define intra-service dependence edge as

being an edge denoting that:

1. the two nodes () are being executed by two dis-

tinct services, and respectively; and

2. the state of service at node directly depends on

the execution of the node nj by service .

3. These service and are being provided by a single

service provider.

Intra-service dependencies can also reflect data or control

dependencies.

Definition 11: Inter-Service Dependency

We define inter-service dependence edge as

being an edge denoting that:

1. the two nodes are being executed by two dis-

tinct services and respectively; and

Figure 3. A static mapping of service chore-ography

messages

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 79

Figure 4. The WSCFG of the service choreography of

Fig 1

2. the state of service at node directly depends on the

execution of the node by service .

3. These service and are being provided by more

than one service provider.

Inter-service dependencies may also reflect data or

control dependencies.

The dynamic slice computation is based on all the types

of dependencies that have been defined earlier. We define

two types of dynamic slices Global Dynamic Slice and

Local Dynamic Slice.

Definition 12: Global Dynamic Slice of Service-Oriented

Software Choreography

We define global dynamic slice of Service-Oriented

Software Choreography SOSC with respect to the slicing

criterion (var,

 , SEC) as the subset of Service

Choreography SOSC messages whose execution really

affected the value of message variable var, as observed at

the service execution point

 , for the service

execution case SEC.

Definition 13: Local Dynamic Slice of Service-Oriented

Software Choreography

We define local dynamic slice for a service Sl with

respect to a slicing criterion (var,

 ,, SEC) as the

subset of service Sl messages whose execution really

affect the value of the given message variable var, as

observed at the service execution point

 , for the

service execution case SEC. It is a way to filter out

messages other than executed by service Sl.

V. SERVICE-ORIENTED SOFTWARE

DEPENDENCE GRAPH (SOSDG): OUR

INTERMEDIATE REPRESENTATION OF

SERVICE-ORIENTED SOFTWARE

This section introduces a method for efficient represen-

tation of Service-Oriented Software in SOA environment.

This representation is later used to compute dynamic

slices. We name this representation Service-Oriented

Software De-pendence Graph (SOSDG). Each message in

a sequence di-agram is represented as a node along with

their number, in SOSDG. This message node also maps

with correspond-ing input or output message of web

service. This SOSDG captures control dependencies from

static analysis of se-quence diagram. It also captures data,

intra-service and inter-service dependencies from run time

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 80

analysis of cor-responding web service execution. The

inter-service depen-dencies may cross organizational

boundaries. We also de- pict web service nodes for

simplifying the SOSDG along with mapped numbers. The

web service node may belong to more than one service

provider. Fig. 5 shows the SOSDG for Fig. 1.

Further, Service-Oriented Software Dependence Graph

(SOSDG) can be defined for a Service Choreography Ex-

ecution History (SCEH). It is a two-tuple (S,G), where S

is the set of service nodes and G is the set of Web Service

Control Flow Graph (WSCFG). The Web Service Control

Flow Graph (WSCFG) is a two-tuple (M,A), where M is

the set of message nodes and A is the set of dependence

edges that we defined earlier. The Web Service Control

Flow Graph (WSCFG) shows the control dependencies of

mes-sage occurance within that graph. In addition data,

intra-service and inter-service dependence connects

occurrence of messages of distinct graphs. This set of

Web Service Dependence Graphs and the edges between

them form the Service-Oriented Software Dependence

Graph (SOSDG). For any instance of Service

Choreography Execution His-tory (SCEH) it contains all

the web services which have ex-ecuted at least one

message in that SCEH. If a web service is contained in

that set, its Web Service Control Flow Graph (WSCFG) is

a subgraph of the Service-Oriented Software Dependence

Graph (SOSDG). When a web service executes its first

message it is added to S and this message forms the first

node of its WSCFG. When a web service executes other

messages, its WSCFG is updated.

VI. MARKING BASED GLOBAL DYNAMIC

SLICING (MBGDS) ALGORITHM

In this section, first we briefly describe our MBGDS al-

gorithm. Then, we present the pseduo-code of the algo-

rithm. Subsequently, we discuss the complexity of our al-

gorithm.

VI.I OVERVIEW OF THE MBGDS ALGO-RITHM

We first provide a brief overview of our global dynamic

slicing algorithm. Before execution of a service-oriented

software choreography SOSC and its services, WSCFG

and SOSDG are constructed statically. We permanently

mark the control dependence edges as they don’t change

during the execution of services. We consider all the data

dependence edges, intra-service dependence edges and

inter-service dependence edges for marking and

unmarking during run-time. During execution of the

SOSC and services we mark an edge when its associated

dependence exists, and unmark when its associated

dependence ceases to exist. After each message m is

executed, we unmark

Figure 5. The SOSDG of the service choreog-raphy of

Fig. 1

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 81

all incoming marked dependence edges excluding the

control dependence edges, associated with the service Si,

corresponding to the previous execution of the node m.

Then, we mark the dependence edges corresponding to

the present execution of the node m.

During the execution of the Service-

Oriented Software Choreography SOSC, let Global

Dynamic Slice(s,m) with respect to the slicing criterion

(s,m) denote the global dynamic slice with respect to the

most recent execution of the node m, for given SEC. Let

{(z1,m),(z2,m),….(zk,m)}g be all the marked incoming

dependence edges of m in the updated SOSDG after the

execution of message m. Then, it is clear that global

dynamic slice with respect to the present execution of the

node m, for the service Si, with input SEC, is given by

Global Dynamic Slice (s,m) = {z1, z2,….. zk}

Global Dynamic Slice (z1,m)

Global Dynamic Slice (z2,m)

Global Dynamic Slice (zk,m)

Let {m1, m2,….. mk} be all the message variables used or

defined as node m. Then we define global dynamic slice

of the message m as

Global Dynamic Slice (s,m) =

Global Dynamic Slice (m1,m)

Global Dynamic Slice (m2,m)

…Global Dynamic Slice (mk,m)

Our slicing algorithm works in three main phases:

Phase 1: Construction of the intermediate representation

graph,

Phase 2: Managing the SOSDG at run-time, and

Phase 3: Computing and displaying the global dy-namic

slice.

In phase 1 of our MBGDS algorithm, the WSCFG is

constructed from a static analysis of the SOSC. Also at

this stage, using the WSCFG the static SOSDG is con-

structed. The phase 2 of the algorithm is responsible for

maintaining the SOSDG during run-time. The

maintenance of the SOSDG at run-time involves marking

and unmark-ing the different dependencies such as data

dependencies, control dependencies, intra-service

dependencies and inter-service dependencies as they arise

and ceases. The phase 3 is responsible for computing the

global dynamic slice for a given slicing criterion using

updated SOSDG. It also lookups the global dynamic slice

during run-time. So, when a request for a slice is made, it

is obtained quickly. Thus, after statically constructing the

SOSDG of a given service

 in a service-oriented software choreography SOSC, our

global dynamic slicing algorithm can compute global dy-

namic slice with respect to any given slicing criterion. We

now present our MBGDS algorithm for service-oriented

software choreography in the form of pseudo-code.

Algorithm : Marking Based Global Dynamic Slicing

(MBGDS) Algorithm.

Input : Service-Oriented Software Choreography (SOSC)

and Slicing Criterion (var,

 , SEC) // Slicing

criterion given during run-time

Output : Computed Global Dynamic Slice // Global

dynamic slices extracted during run-time

Phase 1: Constructing Static Graphs WSCFG and SOSDG

1. WSCFG Construction

(a) Node Construction

i. Create two special nodes start and stop

ii. For each message m of a Service-Oriented

Software Choreography (SOSC) do the the following:

A. create a node m

B. Initialize the node with message variables used or

defined.

(b) Add control flow edges

for each node do the following

for each node do the following

Add control flow edge () if con-trol flow from

node to node .

2. SOSDG Construction

(a) Add control dependence edges

for each test(predicate) node do the fol-lowing

for each node in the scope of do the following

Add control dependence edge () and mark it.

(b) Add data dependence edges

for each node do the following

for each message variable used at do the following

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 82

for each reaching definition of message variable do the

following Add data dependence edge () and unmark

it.

(c) Add intra-service dependence edges

for each node in service do the following

for each node in service do the following

Add intra-service dependence edge () if edge is

either data or control dependence edge and the state of

service at node directly depends on the execution

of the node by service and both services are

provided within organization. Unmark it.

(d) Add inter-service dependence edges

for each node in service do the following

for each node in service do the following

Add inter-service dependence edge () if edge is

either data or control dependence edge and the state of

service at node directly depends on the execution of

the node by service and both services are provided

by more than one service providers. Unmark it.

Phase 2: Managing SOSDG at run-time

1. Initialization: Do the following before execution of

each message m of services Si of the Service-Oriented

Software Choreography (SOSC), con-sisting of set

(S1,S2,...,Sk).

(a) Set Global Dynamic Slice(s,m) = for every message

m used or defined at every node m of the SOSDG.

(b) Set recentDef(m) = NULL for each message variables

in service .

// end of initialization

2. Runtime Updation of SOSDG: Run the web ser-vices

and carry out the following after each mes-sage m of the

service corresponding to the SOSC s, and SEC for each Si

of SOSC gets executed.

(a) Unmark all incoming marked dependence edges

excluding the control dependence edges, if any,

associated with message m of the service ,

corresponding to the previous execution of the node m.

(b) Update data dependencies: For every message variable

used at node m, mark the incoming data dependence edge

corresponding to the most recent definition recentDef(m)

of the service in SEH.

(c) Update intra-service dependencies: If m is use(m)

node, then mark the incoming intra-service dependence

edge, if any, corre-sponding the associated def(m) node

which belongs to same party.

(d) Update inter-service dependencies: If m is use(m)

node, then mark the incoming inter-service dependence

edge, if any, corre-sponding the associated def(m) node

which belongs to other party.

(e) Update the global dynamic slice for different de-

pendencies:

i. Handle data dependency: Let

f(,m),...,(,m)gbe the set of marked incoming data

dependencies to m. Then,

where {d1, d2,….. dk} are the initial nodes of the

corresponding marked incoming edges of m.

ii. Handle control dependency: Let (c, m) bethe

marked control dependence edge. Then,

Global Dynamic Slice(m) =

iii. Handle intra-service dependency: Let m be a use(m)

node and (x,m) be the marked intra-service dependence

edge associated with corresponding def(m) node x within

organization. Then,

Global Dynamic Slice(m) =

Global Dynamic Slice(m) [fxg [Global Dynamic

Slice(x).

iv. Handle inter-service dependency: Let m be a use(m)

node and (y,m) be the marked inter-service dependence

edge associated with corresponding def(m) node y across

an organization. Then,

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 83

Global Dynamic Slice(m) =

Phase 3: Computing and displaying the global dynamic

slice.

1. Global Dynamic Slice Computation:

(a) For every message variable m used at node m do the

following:

Let (d, m) be a marked data dependence edge

corresponding to the most recent definition of the

message variable, (c,m) be the marked control

dependence edge, (x,m)

be the marked intra-service dependence edge, and (y,m)

be the marked inter-service dependence edge. Then,

Global Dynamic Slice(s, m) =

(b) For message variable defined at node m, do

Global Dynamic Slice (s, m) =

2. Global Dynamic Slice Look Up

(a) If a slicing command (s,m) is given for a service-

oriented software choreography SOSC, SEC and for

particular message vari-able var carry out the following:

i. Look up Global Dynamic Slice(s, m) for the content of

the slice.

ii. Display the resulting slice.

(b) If the services of SOSC has not terminated, go to step

2 of Phase 2.

VI.II WORKING OF MBGDS ALGORITHM

We are interested in computing the global dynamic slice

of service-oriented software choreography shown in Fig.

1 with respect to the slicing criterion (order no,

(S8,M111), fseller name= XY, contact address= China,

product name=AB, quantity=1000, price=12999, user

name= YZ, password= temp 123456g). The updated

SOSDG after applying Phase 2 of our algorithm is shown

in Fig. 6. We will explain how our algorithm computes

the slice. To the input given in SEC, our algorithm

MBGDS will executes the message nodes f1, 1.1,

8.1.1.2.1, 8.1.1.2.1.1, 8.1.1.2.1.1.1,8.1.1.2.1.1.1.1, 9, 9.1,

4, 4.1, 9.2, 11g. The global dynamic slice is computed as

below:

Global Dynamic Slice = Global Dynamic

Slice (9:2) {11} = {1, 1.1, 8.1.1.2.1, 8.1.1.2.1.1,

8.1.1.2.1.1.1, 9, 9.1, 4, 4.1, 9.2, 11}

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 84

VI.III SALIENT FEATURE OF MBGDS

ALGORITHM

The important features of the MBGDS algorithm are

listed below.

 It computes correct global dynamic slices with

respect to any valid slicing criterion.

 It can handle inter-service communication and intra

service communication by using WSDL.

 No trace files are generated. All information are

maintained and updated dynamically for all services

and are

Figure 6. The updated SOSDG of the service

choreography of Fig. 1

Discarded at run-time of a SOSC on termination of a

service.

It does not create any additional message nodes during

run-time. This saves the expensive message node creation

steps.

When a request for a slice is made, it is easily available

through slicer service. No serialization of the events of the

services are required due to slicing based on sequence

diagram. It can be easily extended to accommodate

dynamic slices of cloud based programs.

VI.IV COMPLEXITY ANALYSIS OF MBGDS

ALGORITHM

In the following section, we analyze the time and space

complexities of our MBGDS algorithm.

Time complexity:

To determine the time complexity of our MBGDS algo-

rithm, we have considers barometer instructions which

significantly contributes for the computation of the slice.

The first instruction is related with time required for

running web services and updation of SOSDG. The

second instruction corresponds to the time required to

look up the data structure to retrieve the slice. Let n be the

total number of messages of the web services. Then O(n2)

time is required to compute and update SOSDG. And n

will be the length of execution of web services involved

in SOSC, then the run-time complexity of the MBGDS

algorithm would be O(n
3
). We consider constant amount

of time i.e., O(1) for slice look up, which is negligible.

Space complexity

Let a service-oriented software choreography SOSC have

n messages. The space complexity for step 1 of Phase 1

would be O(n
2
)+O(n)+O(3). The required space for step 2

of Phase 2 would be O(n
2
)+O(n

3
)+O(n

2
).

For n messages in SOSC, the space required to store dy-

namic slice would be O(n3) and O(n2) space is required

to store the recentDef. So,the space complexity of our

MBGDS algorithm would be O(n3).

VII. PROOF OF CONCEPT

In this section, we present a tool for SOSDG construc-tion

and discuss the experimental results obtained using the

tool.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 85

VII.I SOSDS: AN SOS DYNAMIC SLICING TOOL

In this section, we present a brief description of a tool

which we have developed to implement our global

dynamic slicing algorithm for Service-Oriented Software

(SOS). We have named our tool as Service-Oriented

Software Dynamic Slicer (SOSDS). Our tool can compute

the global dynamic slice of a service-oriented software

with respect to any given slicing criterion. Currently, the

SOSDS supports inter-service communication and intra-

service communica-tion using WSDL. In the following,

we briefly discuss the design, implementation, and

working of our slicing tool.

VII.II DESIGN OF SOSDS

The high level design of our implementation SOSDS has

been depicted in Fig. 7.

Figure 7. Schematic design of SOSDS

The SOSDS takes input an SoaML sequence diagram

comprising the parties and their interactions, in XMI for-

mat. This is parsed by the DOM Parser module, which

gathers information regarding parties participating in

inter-actions along with the messages exchanged among

them. The DOM parser reads the entire input XMI file

and cre-ates a tree structure in memory. When the DOM

parser encounters an XML tags in the XMI, it parses the

tag to de-scribe what type of tags was encountered. The

information obtained using the DOM Parser Module is

then used to initialize all the data structures needed to

construct the static WSCFG as stated in phase 1 of our

MBGDS algorithm.

Further, SOAP messages generated during run-time

execution of services and it’s clients serves as input to our

SOSDS. These inputs helps the interceptor module to

intercept SOAP messages exchanged among services

during run-time. The intercepted SOAP messages

provides information like time-stamp, request encoding,

request preamble, request length, response encoding,

response preamble, response length and more importantly,

SOAP message body along with HTTP headers. These

runtime information helps in initializing the data structure

needed to construct dynamic SOSDG as stated in phase 2

of our MBGDS algorithm.

The GUI module construct WSCFG and SOSDG of the

SoaML model in consultant with DOM parser and

interceptor module. The slicer service modules takes the

slicing criterion as input from the slicer service client and

outputs the computed global dynamic slice. The GUI

module updates the graph to reflect the computed global

dynamic slices.

VII.III IMPLEMENTATION

We have implemented our MBGDS algorithm for web

services written in Java. Our dynamic slicing tool is coded

in Java and uses interceptor module of WS Monitor [41].

When the web service and their clients are made to run

our slicing tool SOSDS, first the interceptor module inter-

cepts the SOAP messages and stores the data in a

hashmap called message info. Meanwhile the DOM

parser module analyze the XML tags and consturct the

WSCFG from an SoaML sequence diagram (XMI

representation) given as in-put. Using the WSCFG and

the message info, the SOSDG is constructed statically.

While constructing the SOSDG we store the data in a

hashmap called service info. Each of this service info

contains information: time-stamp, request encoding,

request preamble, request length, response en-coding,

response preamble, response length, SOAP message

body, HTTP headers. For constructing the SOSDG, we

have used the following flags: data flow flag, control flow

flag, intra-service flag, inter-service flag etc. For storing

the SOSDG we have used the hashmap: Map sosdg = new

HashMap();. If there is an edge from message node i to j

then execute sosdg.put("i","j", 1).

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 86

After constructing the SOSDG statically, we run the

services along with their clients. After execution of each

message we invoke the update global dynamic slice()

method, which marks and unmarks the edges of SOSDG

appropriately and updates the global dynamic slice. When

the global dynamic slice of a message node and service is

requested our slicer SOSDS provides the global dynamic

slice for the given slicing criterion and also visualize

SOSDG. The visualization of both the graphs, WSCFG

and SOSDG was carried out by using JGrpahT Library

[18].

VII.IV DATA SET USED IN EXPERIMENTS

As per our knowledge there does not exist any bench-

mark data sets to validate Service-Oriented Software

(SOS). Due to non-availability of such benchmark

models, we use example available from the assignment

submissions of the service-oriented computing course of

my department. The case study was implemented in a

laboratory. A batch of 20 students taking a laboratory

assignment in their service-oriented computing course at

VGEC, Chandkheda were considered. They were first

asked to analysis and design an SoaML sequence diagram

for a system description given in exercises of chapter 6 of

a software engineering book [29]. Also instructed to

implement each of the system as service-oriented

software system and to use JAX-WS API to create web

services. Even, we gave flexibility to choose system based

on their own choice from any real SOA world examples.

The SoaML sequence diagrams were constructed using

Visual Paradigm [40], and had exported in corresponding

XMI files. For experiment we selected important SoaML

sequence diagrams (XMI representations), web services

along with associated clients submitted by them. The

maximum XMI file size was up to 15708 Lines of Tag

(LOT) involving 11 services in service choreography with

maximum up to 2145 Lines of Code (LOC). However,

currently SOSDS can handle only intra-service and inter-

service dependencies. We are extending it to handle the

composition and exception handling dependencies.

VII.V EXPERIMENTAL RESULTS

We have tested the working of SOSDS using case study

examples as stated in [29] with inter-service and intra-

service dependencies using WSDL.

The system configuration used to run SOSDS is Win-

dows 7 Professional service pack 1, Intel(R) Core(TM)

i3-3240 CPU@ 3.40GHz running at 3.40 GHz, with 4.00

GB RAM. All measured times reported in this section are

overall times, including parsing and building of the both

WSCFG and SOSDG representation. We studied the run-

time requirements of our MBGDS algorithm for these

case studies and for several runs. Table 1 summarizes the

aver-age run-time requirements of MBGDS algorithm. As

we are not aware of existence of any algorithm for

dynamic slicing of service-oriented programs, so we have

not presented any comparative results. We have presented

only the results obtained from our experiments. Since, we

computed the dynamic slices at different messages of a

services, we have calculated the average run-time

requirements of the MBGDS algorithm. The performance

results of our implementation

Table 1. Average runtime of MBGDS algorithm

 Sl. No. Name XMI # Ser- #LOC Average

 of vices

 Case-

 Study

 (#LOT) Run-

 Time

 (in

 Sec)

 1 OSS 15708 11 2145 37.45

 2 HAS 5712 4 795 14.04

 3 BAS 9150 6 1189 21.06

 4 RRTS 5812 4 810 13.10

 5 RAS 5789 5 986 12.22

 6 JIS 5101 4 790 12.11

 7 LIS 9240 6 1190 20.09

 8 SCCS 5400 3 589 13.87

 9 SAS 5119 4 789 14.78

 10 MPSS 5139 3 580 12.45

 11 SAMS 5333 5 988 13.89

 12 MSAS 5219 4 794 14.12

 13 RRS 5318 4 809 14.09

 14 MGCAS 5278 5 989 13.18

 15 HRS 2411 2 397 13.18

agree with the theoretical analysis. From the experimental

results, it can be observed that the average run-time

increases sub-linearly as the no. of service increases in a

service choreography.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 87

VIII. COMPARISION WITH RELATED WORK

To our best of knowledge, no algorithm for dynamic

slicing of service-oriented software has been proposed so

far. We therefore compare the performance of our

algorithm with the existing algorithms for static and

dynamic slicing of models/languages. A comparison

between the related work is presented in Table 2

However, our MBGDS algorithm for dynamic slicing of

service-oriented software incorporates several newer

things as compared to other work reported in the

literature. One new thing is in the computation of a

dynamic slice based on both the sequence diagram and

web services. The computed slice is based on the

dependencies existing among different services that are

distributed across various site. Slicing

Table 2. Comparison with related work

based on both model and services can efficiently correlate

different services during run-time, and help understand

how changing any one of service will impact the rest of

the service choreography.

IX. CONCLUSION

In this paper, we have proposed a novel algorithm for

computing dynamic slices of service-oriented programs.

We have named our algorithm Marking Based Global

Dynamic Slicing (MBDS) algorithm. We consider the

SoaML sequence diagram and services. Our algorithm

uses Service-Oriented Software Dependency Graph

(SOSDG) as the intermediate representation. The

MBGDS algorithm is based on marking and unmarking

the edges of the SOSDG as and when the dependencies

arise and cease at run-time.

Our algorithm does not use any trace file to store the

execution history. Also, it does not create additional

message nodes during run-time. This saves the expensive

file I=O and node creation steps. Another advantage of

our approach is that when a request for a slice is made, it

is easily avail-able. We have developed a slicer to verify

the proposed algorithm.

REFERENCES

[1] A.V. K. Shanthi and G. Mohan Kumar,

”Automated Test Cases Generation From UML Sequence

Dia-gram”, International Conference on Software and

Computer Applications (ICSCA 2012),Volume 41, 2012.

[2] Ashalatha Nayak and Debasis Samanta,

”Automatic Test Data Synthesis Using UML Sequence

Diagrams ”, Journal of Object Technology, Volume 9,

No.2, March-April 2010.

[3] Bogdan Korel, Inderdeep Singh, Luay Tahat, and

Boris Vaysburg, ”Slicing of State Based Models”, In the

Proceeding of International Conference of Soft-ware

Maintenance, pp 34-43.2003.

[4] Debashree Patnaik, Arup Abhinna Acharya,

Durga Prasad Mohapatra, ”Generation of Test Cases

Using UML Sequence Diagram in a System With

Commu-nication Deadlock”, International Journal of

Com-puter Science and Information Technologies,

Volume 2(3) , 2011.

[5] Debasish Kundu and Debasis Samanta, ”A

Novel Approach to Generate Test Cases From UML

Activ-ity Diagrams”, Journal of Object Technology, Vol-

ume 8, No.3, May-June 2009.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 88

[6] Deepak Kumar Meena, ”Test Case Generation

From UML Interaction Overview Diagram and Sequence

Diagram”, A Master Thesis, June 2013.

[7] Durga Prasad Mohapatra, ”Dynmic Slicing of

Object-Oriented Programs”, [PhD. thesis]. IIT Kharagpur,

May 2005.

[8] Frank Tip, ”A Survey of Program Slicing Tech-

niques”, Journal of Programming Languages ,Vol-ume 3,

No 3, pp 121-189, 1995.

[9] Hiralal Agrawal, R. A. DeMillo, and E. H.

Spafford, ”Dynamic Slicing in the Presence of Pointers,

Ar-rays and Records”, In the Proceeding of the Fourth

Symposium on Testing, Analysing and verification

(TAV4), pp 60-73, ACM/IEEE-CS, October 1991.

[10] Huzefa Kagdi, Jonathan I. Maletic, and Andrew

Sut-ton, ” Context-free Slicing of UML Class Models”, In

the Proceeding of 21st IEEE International Confer-ence on

Software Maintenance (ICSM’ 05) pp. 635-638,

Washington, DC, USA, 2005.

[11] J. Tretmans, ”Testing Concurrent Systems: A

For-mal Approach”. In 10th International Conference on

Concurrency Theory (CONCUR99), No 1664 in LNCS,

pp. 4665,Springer-Verlag, 1999.

[12] Jaiprakash T. Lallchandani, R. Mall, ”Static

Slicing of UML Architectural Models”, Journal of Object

Technology, Volume 8, No 1, pp.159-188. 2009.

[13] Jianjun Zhao, ”Applying Slicing Technique to

Soft-ware Architectures”, In Fourth IEEE International

Conference on Engineering of Complex Computer

Systems ,pp 87 -98,1998.

[14] Jianjun Zhao, ”Slicing Software Architecture”, A

Technical Report of Information Processing Society of

Japan,97-SE-117, pp 85-92, Nov 1997.

[15] Jurijs Grigorjevs, ”Model-Driven Testing

Approach Based on UML Sequence Diagram”, Scientific

Jour-nal of Riga Technical University Computer Science.

Applied Computer Systems, Volume 47, 2011.

[16] Kunihiro NODA, Takashi KOBAYASHI,

Kiyoshi AGUSA, Shinichiro YAMAMOTO, ”Sequence

Dia-gram Slicing”, 16th IEEE Asia-Pacific Software En-

gineering 2009 Conference, 2009.

[17] Lallchandani and R. Mall, A Dynamic Slicing

Tech-nique for UML Architectural Models, IEEE Trans-

action on Software Engineering, Volume 37, No 6, 2011.

[18] JGraphT Library, [online]. Available:

jgrapht.org, [accessed on 18/03/2014].

[19] M. Clavel, F. Duran, S. Eker, P. Lincoln, N.

Marti-Oliet, J. Meseguer, and C. Talcott, ”Maude Manual

(Version 2.1.1)”, SRI International, Menlo Park, Apr.

2005.

[20] M. Prasanna and K.R. Chandran, ”Automatic

Test Case Generation for UML Object Diagrams Using

Genetic Algorithm”, International Journal of Ad-vance

Software Computer Application” Volume 1, No. 1, July

2009.

[21] Manpreet Kaur and Rupinder Singh, ”Generation

of Test Cases From Sliced Sequence Diagram”, Inter-

national Journal of Computer Applications, Volume 97,

No.5, July 2014.

[22] Mark Weiser, ”Programmers Use Slices When

Debugging”,j-CACM, Volume 25, No 7, pp 446-452,

1982.

[23] Mass Soldal Lund and Ketil Stlen, ”Deriving

Tests From UML 2.0 Sequence Diagrams With neg and

as-sert”, AST06, Shanghai, China, May 23 2006.

[24] Monalisa Sharma and Rajib Mall, Automatic

Test Case Generation From UML Models, 10th Inter-

national Conference on Information Technology, pp.196-

201, 2007.

[25] Nicha Kosindrdecha, Jirapun Daengdej, ” A Test

Generation Method Based on State Diagram”, Jour-nal of

Theoretical and Applied Information Technol-ogy, 2010.

[26] Philip Samuel, Rajib Mall and Sandeep Sahoo,

”UML Sequence Diagram Based Testing Using Slic-ing”,

IEEE Indicon 2005 Conference, Chennai, In-dia, 11-13

Dec.2005.

[27] Philip Samuel, Rajib Mall, Pratyush Kanth,

”Auto-matic Test Case Generation From UML Communi-

cation Diagram”, Information and Software Technol-

ogy(49), Elsevier, 158-171, 2007.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 89

[28] Ranjita Kumari Swain, Vikas Panthi, Prafulla

Kumar Behera, ”Test Case Design Using Slicing of UML

In-teraction Diagram”,2nd International Conference on

Communication, Computing and Security (ICCCS-

2012),Elsevier,2012.

[29] Rajib Mall, Fundamentals of Software Engineer-

ing, PHI Learning Private Limited, second edition,

February 2009.

[30] S. Shanmuga Priya, P. D. Sheba Keizia

Malarchelvi, ”Test Path Generation Using Uml Sequence

Dia-gram”, International Journal of Advanced Research

in Computer Science and Software Engineering, Vol-ume

3, Issue 4, April 2013.

[31] Santosh Kumar Swain, Durga Prasad Mohapatra,

and Rajib , ”Test Case Generation Based on Use Case and

Sequence Diagram”, International Journal of Soft-ware

Engineering , Volume 3, Issue 2,pp 21-52, July 2010.

[32] SOA Testing Technique, [online]. Available:

http://www.blog.soatetsting.com, [accessed on

18/03/2014].

[33] Srikant Inaganti, Sriram Arvamudan, ”Testing

SOA Application”, BPTrends, April 2008, [online].

Avail-able: www.bptrends.com., [accessed on

18/03/2014].

[34] Sun, J., Liu, Y., Dong, J. S., Pu, G., and Tan, T.

H, ” Model-based Methods For Linking Web Service

Choreography and Orchestration”, In the Proceeding of

the 17th Asia Pacific Software Engineering Con-ference

(2010), pages 166-175, 2010.

[35] SOA testing tool survey, [online]. Available:

”http://soatestingresearch.blogspot.in/2008/10/soa-testing-

tool-survey.html”, [accessed on 18/03/2014].

[36] Taeho Kim, Yeong-Tae Song, Lawrence Chung,

and Dung T. Huynh, ”Dynamic Software

ArchitectureSlicing”, 23rd International Computer

Software and Applications Conference, COMPSAC ’99,

pp. 61-66, Washington, DC, USA, 1999.

[37] V.Mary Sumalatha, G.S.V. P Raju, ”UML Based

Automated Test Case Generation Technique Us-ing

Activity-Sequence Diagram”, The International Journal of

Computer Science and Applications (TI-JCSA), Volume

1, No 9, November 2012.

[38] Vikash Panthi and Durga Prasad Mohapatra,

”Au-tomatic Test Case Generation Using Sequence Di-

agram”, In the Proceedings of ICAdc, AISC 174, Springer

India, pp 277-284, 2013.

[39] Vikash Panthi, Durga Prasad Mohapatra,

”Automatic Test Case Generation Using Sequence

Diagram”, In-ternational Journal of Applied Information

System (IJAIS), Volume 2, No.4, May 2012.

[40] Visual Paradigm for UML Enterprise Edition,

[on-line]. Available: http://www.visual-paradigm.com,

[accessed on 18/03/2014].

[41] WS Monitor Tool,[online]. Available:

https://java.net/projects/wsmonitor, [accessed on

18/03/2014].

