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Abstract— Cloud computing is popularizing the computing paradigm in which data is outsourced to a third-party service 

provider (server) for data mining. Outsourcing, however, raises a serious security issue: how can the client of weak 

computational power verify that the server returned correct mining result? In this paper, we focus on the specific task of 

frequent item set mining. We consider the server that is potentially untrusted and tries to escape from verification by using its 

prior knowledge of the outsourced data. We propose efficient probabilistic and deterministic verification approaches to check 

whether the server has returned correct and complete frequent item sets. Our probabilistic approach can catch incorrect results 

with high probability, while our deterministic approach measures the result correctness with 100% certainty. We also design 

efficient verification methods for both cases that the data and the mining setup are updated. We demonstrate the effectiveness 

and efficiency of our methods using an extensive set of empirical results on real datasets. 

Keywords: Cloud computing, data mining as a service (DMas), security, result integrity verification. 

 

I. INTRODUCTION 

 

The increasing ability to generate vast quantities of data 

presents technical challenges for efficient data mining. 

Outsourcing data mining computations to a third-party 

service provider (server) offers a cost-effective option, 

especially for data owners (clients) of limited resources. 

This introduces the data-mining-as-a-service (DMaS) 

paradigm. Cloud computing provides a natural solution 

for the DMaS paradigm. A few active industry projects, 

for example, Google’s Prediction APIs and Microsoft’s 

Daytona project, provide cloud-based data mining as a 

service to users. 

 In this paper, we focus on frequent item set mining as the 

outsourced data mining task. Informally, frequent item 

sets refer to a set of data values (e.g., product items) 

whose number of co-occurrences exceeds a given 

threshold. Frequent item set mining has been proven 

important in many applications such as market data 

analysis, networking data study, and human gene 

association study. Previous research has shown that 

frequent item set mining can be computationally 

intensive, due to the huge search space that is exponential 

to data size as well as the possible explosive number of 

discovered frequent item sets . Therefore, for those clients 

of limited computational resources, outsourcing frequent 

item set mining to computationally powerful service 

providers (e.g., the cloud) is a natural solution. 

 Although it is advantageous to achieve sophisticated 

analysis on tremendous volumes of data in a cost effective 

way, end users hesitate to place full trust in cloud 

computing. This raises serious security concerns. One of 

the main security issues is the integrity of the mining 

result. There are many possible reasons for the service 

provider to return incorrect answers . For instance, the 

service provider would like to improve its revenue by 

computing with less resources while charging for more. 

Since sometimes the mining results are so critical that it is 

imperative to rule out errors during the computation, it is 

important to provide efficient mechanisms to verify the 

result integrity of outsourced data mining computations. 

In this paper, we focus on the problem of verifying 

whether the server returned correct and complete frequent 

itemsets. By correctness, we mean that all Itemsets 

returned by the server are frequent. By completeness, we 

mean that no frequent itemset is missing in the returned 

result. 

 

II. ALGORITHM 

 

1. .APRIORI ALGORITHM: 

Apriori uses a "bottom up" approach, where frequent 

subsets are extended one item at a time (a step known as 

candidate generation), and groups of candidates are tested 

against the data. The algorithm terminates when no 

further successful extensions are found. 

The pseudo code for the algorithm is given below for a 

transaction database {\displaystyle T} T, and a support 
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threshold of {\displaystyle \epsilon } \epsilon . Usual set 

theoretic notation is employed, though note that 

{\displaystyle T} T is a multiset. {\display style C_{k}} 

C_{k} is the candidate set for level {\display style k} k. 

At each step, the algorithm is assumed to generate the 

candidate sets from the large item sets of the preceding 

level, heeding the downward closure lemma. {\display 

style count[c]} count[c] accesses a field of the data 

structure that represents candidate set {\display style c} c, 

which is initially assumed to be zero. Many details are 

omitted below, usually the most important part of the 

implementation is the data structure used for storing the 

candidate sets, and counting their frequencies. 

 

Ck: Candidate item set of size k 

Lk : frequent item set of size k 

L1 = {frequent items}; 

for (k = 1; Lk != ; k++) do begin 

Ck+1 = candidates generated from Lk; 

 

for each transaction t in database do 

increment the count of all candidates in Ck+1 that are 

contained in t 

Lk+1 = candidates in Ck+1 with min_ support 

end 

return k Lk; 

 

2. CLUSTERING ALGORITHM: 

Clustering is a process of partitioning a set of data (or 

objects) into a set of meaningful sub-classes, called 

clusters. 

Help users understand the natural grouping or structure in 

a data set. Clustering: unsupervised classification: no 

predefined classes.  

Algorithmic steps for k-means clustering: 

Let X = {x1,x2,x3,……..,xn} be the set of data points and 

V = {v1,v2,…….,vc} be the set of centers. 

 

1) Randomly select ‘c’ cluster centers. 

2) Calculate the distance between each data point and 

cluster centers. 

3) Assign the data point to the cluster center whose 

distance from the cluster center is minimum of all the 

cluster centers.. 

4) Recalculate the new cluster center using: where, ‘ci’ 

represents the number of data points in ith cluster. 

5) Recalculate the distance between each data point and 

new obtained cluster centers. 

6) If no data point was reassigned then stop, otherwise 

repeat from step 3. 

 

III. MODULE 

Product Upload: 

The admin wants to upload new product to the cloud, it 

needs to verify the validity of the cloud and recover the 

real secret key. We show the time for these two processes 

Happened in different time periods. They only happen in 

the time periods when the client needs to upload new 

product to the cloud. Furthermore, the work for verifying 

the correctness of the can fully be done by the cloud 

. 

Product Search: 

We can consider the dishonest cloud server as a suspect, 

the data user as a search data to the server .If the server 

show the search relevant data. Then the user select and 

buying the product. After continue the relevant product to 

show the user side. If the user want buying the product 

and complaint the irrelevant product. The product search 

based on  index based .The cloud provide the data based 

on index terms. The relevant product specified for the 

user frequently buying product of services.. 

 

Auditing: 

Public auditing schemes mainly focus on the delegation of 

auditing tasks to a third party auditor (TPA) so that the 

overhead on clients can be offloaded as much as possible. 

However, such models have not seriously considered the 

fairness problem as they usually assume an honest owner 

against an untrusted CSP. Since the TPA acts on behalf of 

the owner, then to what extent could the CSP trust the 

auditing result? What if the owner and TPA collude 

together against an honest CSP for a financial. In this 

sense, such models reduce the practicality and 

applicability of auditing schemes. Tpa check the user 

remarks of the product to be verify.Then the product to be 

removed from the list based on number of user putting the 

negative comments of the products. 

 

A. Figures and Tables 

TID Transaction 
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(a) Transaction dataset D 

 

 

 

 

 

 

 

 

 

(b) Item-based Inverted index EI 

Fig. 2: An example of the dataset and its inverted index 

 

1) Authenticated Data Structure: Before sending the 

dataset D to the server, the client constructs an 

authenticated data structure. Before we discuss the details 

of the authenticated data structure, we first discuss the 

item-based inverted index. The authenticated data 

structure will be constructed from the inverted index. In 

particular, given a dataset D, its item-based inverted index 

EI consists of a set of inverted lists fL1;L2; : : : ;Lmg, 

where m is the number of unique items in D. Each 

inverted list Li 2 EI corresponds to the item Ii in D, and 

maintains the index of transactions that contains the item 

Ii. As an example, consider the transaction dataset D 

shown in Figure 2 (a), Figure 2 (b) shows its item-based 

inverted index of D. 

Now we are ready to discuss how to construct the 

authenticated data structure. We use the Merkle hash tree 

T of the inverted index as our authenticated data structure. 

In particular, the client picks a random value s 2 Z which 

is kept secret. Then, for each leaf lj of T that corresponds 

to the j-th inverted list Lj in EI , the client constructs 

acc(lj) = g , Q , x2Lj (s+x), where g is a generator of the 

group G1 from an instance of bilinear pairing parameters. 

Then the client applies a collision-resistant hash function 

hash( ) recursively over the nodes of T . Each leaf lj of T 

is assigned the value hj = hash(v1jj : : : jjvwjjacc(lj)), 

where v1; : : : ; vw are the values in the j-th inverted list 

Lj that lj corresponds to, while each internal node v with 

children a and b is assigned to hv = hash(hajjhb). The root 

of the tree is signed to produce signature sig(EI ). The 

client sends T to the server with D, and keeps sig(EI ) 

locally. The complexity of constructing a Merkle tree of 

level d1= e levels and m leaves is O(m + H), where 2 (0; 

1) is a user-specified constant, and H =Pm j=1 jlj j. 

At this point, the client can find all frequent 1-itemsets 

and infrequent 1-itemsets from the inverted index. It 

maintains such information for later verification. 

2) Verification Procedure: Before outsourcing the dataset 

D to the server, the client constructs the item-based 

inverted index EI of D, as well as the Merkle hash tree T 

of EI . The client keeps the hash value of the root element 

of T , and sends D and T to the server. 

 

B. Architecture: 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Probabilistic VS. Deterministic Approaches: 

We ran experiments to compare the performance of our 

probabilistic and deterministic approaches. Table III 

shows the comparison result on S3 dataset of various 

settings. We pick the error ratios of 1%, and vary the 

probabilistic guarantee threshold from 90% to 100% 

(probability =100% corresponds to our deterministic 

approach). In general, the deterministic approach brings 

higher overhead at the server side than the probabilistic 

approach. However, this is the sacrifice that we have to 

pay for higher result integrity guarantee. The probabilistic 

approach fails as it cannot provide required probabilistic 

correctness guarantee due to the data distribution. The 

deterministic approach does not have such limit. 

 

IV. CONCLUSION 

 

In this paper, we present two integrity verification 

approaches for outsourced frequent item set mining. The 

probabilistic verification approach constructs evidence in 

frequent item sets. In particular, we remove a small set of 

items from the original dataset and insert a small set of 

artificial transactions into the dataset to construct 

evidence (in)frequent item sets. The deterministic 
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approaches requires the server to construct cryptographic 

proofs of the mining result. The correctness and 

completeness are measured against the proofs with 100% 

certainty. Our experiments show the efficiency and 

effectiveness of our approaches. An interesting direction 

to explore is to extend the model to allow the client to 

specify her verification needs in terms of budget besides 

precision and recall threshold.. 
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