

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

Predictive analysis and Design of Simulation Model for Effective Traffic Management for Two major junctions of Pune City

^[1]Kalyani Kulkarni, ^[2]Sneha Khedekar, ^[3]Ninad Pande

Abstract :- This paper deals with traffic volume studies to determine the volume of traffic moving on the roads and classification of roadway vehicles at a particular section during particular time. Volumes of a day or an hour can vary greatly depending on the different day of the week or different time period of a day. Traffic volume survey is determination of number, movement and classification of roadway vehicles at a given location.

Traffic volume is the most delicate information to implement transportation planning, design and to start new transportation modes. The data collection and collector both should be good and sound. Traffic volume counting should be accurate. Choose vantage point; if don't have then select a reference station. In case of manually counting try to keep a hand counting machine. In this paper we have chosen simulation model as the problem of uncontrolled traffic is rising in the city. The management of traffic has become a necessity. The model and its analysis are helpful for prediction of the traffic volume at the end of five years at selected junctions in Pune city facing maximum traffic congestion.

Keywords: - traffic volume, simulation model, major junctions, prediction, five years

I. INTRODUCTION

Effective traffic management is the need of the hour as the vehicular population and the problem caused by traffic congestion are ever increasing. There is no system adopted for traffic management in our city; however no mechanism has been implemented for co-operation and co-ordination.

Several studies related to traffic density, volume, congestion problems were conducted. This covered traffic systems like bus rapid transit, non motorised transport and public transport.

Due to scarcity of resources and desire to streamline the arrangement, a simulation model has been put to use. We plan to design a simulation model that will help us predict the traffic situation as well as the traffic volume at a particular junction for future.

Through this simulation model we can apply the remedial measures such as changes in road dimension, alternative routes to avoid traffic congestion, construction of flyovers or subways.

Traffic volume studies are conducted to determine the volume of traffic moving on the roads and classifications of roadway vehicles at a particular section during a particular time. Volumes of a day or an hour can vary greatly, depending on the different day of the week or different time period of a day. Traffic Volume survey is the determination of the number, movement and classifications of roadway vehicles at a given location.

II. AIM & OBJECTIVES

The aim of the study is to design the simulation model for forecasting and solving issues related to traffic congestion by predicting the traffic volume in the future from the analysis of the current traffic volume. To achieve this aim following objectives were set:

- 1. Identification of the traffic problem in a certain
- area (nal stop and mundhwa-keshavnagar junction).Study of traffic volume and data collection.
- 2. Study of traffic volume and data c 3. Design of simulation model.
- Recommendation of remedial measures.

III. METHODOLOGY

- 1. Problem identification based on current traffic congestion problems.
- 2. Selection of junctions, time periods, vehicle type.
- 3. Data collection by manual/counter method.
- 4. Analysis based on Monte Carlo Simulation method.
- 5. Prediction of increase in traffic volume for next 5 years based on results obtained.
- 6. Remedial measures suggested tackling traffic problem.

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

IV. DATA COLLECTION

For the predictive analysis we needed the current traffic volume. Out of the many methods available for finding the current traffic volume we selected the manual method. Considering the generalized traffic scenario at both the junctions, for collection of this traffic volume we selected the time slots of one hour in the peak hours in the morning and evening and one hour in the slack hours in the afternoon. We recorded the traffic by taking video recording.

a) NAL STOP

This junction connects prime commercial areas such as Deccan and Shivajinagar. It also connects prime residential areas like Kothrud, Karvenagar and Warje. These areas have large number of schools and colleges and are considered the heart of the city. Thus we observe crowded roads having mixed traffic conditions.

Table 1Nal stop readings – 9-10am

Road direction	Sr. No.	2 wheeler	3 wheeler	4 wheeler	heavy	
Towards Deccan	1	2172	280	756	72	
Towards Kothrud	2	1028	340	456	132	
Towards Mhatre bridge	3	2316	186	588	36	in
		5516	806	1800	240	836

_ c014

Table 2Nal stop readings – 2-3 pm

Road direction	Sr. No	2 wheeler	3 wheeler	4 wheeler	heavy	
Towards Deccan	1	1184	288	536	100	
Towards Kothrud	2	1624	356	672	108	
Towards Mhatre bridge	3	1902	240	534	66	
		4710	884	1742	274	7610

Table 3Nal stop readings – 7-8 pm

Road direction	Sr.no	2 wheeler	3 wheeler	4 wheeler	heavy	
Towards Deccan	1	1920	432	858	120	
Towards Kothrud	2	2234	376	875	112	
Towards Mhatre bridge	3	1452	225	658	62	
		5606	1033	2391	294	932

From the above data we get to know about the current overall traffic scenario at Nal Stop. From the analysis of this data we can clearly see that the two wheeler traffic is the maximum compared to the other three vehicle types.

b) KESHAVNAGAR - MUNDHWA JUNCTION

The area connected by this junction has largely developed over the past few years due to many corporate companies having their large campuses and also development of residential and commercial places like Magarpatta City, Amanora Park Town, Seasons Mall and many other famous hotel chains

Table 4 Mundhwa readings – 9-10am

ROAD DIRECTION	Sr no.	2 wheeler	3 wheeler	4 wheeler	heavy	
towards nagar road	1	1052	210	845	108	
towards seasons	2	1952	198	863	114	
towards keshavnagar	3	757	157	923	49	
towards passport off.	4	1423	212	821	98	
		5184	777	3452	369	9782

TABLE 5Mundhwa readings – 2-3pm

		2850	160	1975	164	5250
Towards passport off.	4	782	107	334	19	
Towards keshawnagar	3	452	67	578	43	
Towards seasons	2	986	91	523	49	
Towards nagar road	1	639	103	430	53	
Road direction	sr no.	2 wheeler	3 wheeler	4 wheeler	heavy	

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

Table 6 Mundhwa readings – 7-8 pm

Road direction	sr. no.	2 wheeler	3 wheeler	4 wheeler	Heavy
towards nagar road	1	1120	202	861	111
towards seasons	2	2051	201	884	117
towards keshawnagar	3	921	221	924	101
towards passport off.	4	1578	163	817	54
		5670	787	3486	483

This suggests that the two wheeler based traffic is the maximum. But as compared to the other areas of the city, the 4 wheeler based traffic is greater as the connecting areas have large commercial and corporate zones.

V. ANALYSIS

Analysis of data collected was divided in 2 cases:

1. Case A: Keeping direction and time constant (vehicular type analysis) NAL STOP JUNCTION Time : 9-10am

Direction	Sr. No.	2 wheeler	cum. Freq	range
Deccan	1	2172	2172	0- 2171
Kothrud	2	1028	3200	2172- 3199
mhatre bridge	3	2316	5516	3200- 5516

Vehicle type: Two wheeler

5516

year	random nos	freq
1	451	2172
2	1156	2172
3	2791	1028
4	4672	2316
5	5353	2316

10004

Vehicle type: Three wheeler traffic

Direction	3 wheeler	cum. Freq	range
Deccan	280	280	0- 279
kothrud	340	620	280- 619
mhatre bridge	186	806	620- 806
	804		

'ear	random nos	freq
1	101	280
2	304	340
3	413	340
4	599	340
5	734	186
		1486

Vehicle type: Four wheeler traffic

Direction	4 wheeler	CF	range
Deccan	756	756	0-755
Kothrud	456	1212	756- 1211
mhatre bridge	588	1800	1212- 1800
	1800		

Year	RN	freq
1	356	756
2	609	756
3	904	456
4	1270	588
5	1696	588
		3144

Vehicle type: Heavy Vehicles

Direction	heavy	CF	range
Deccan	72	72	0-71
Kothrud	132	204	72-203
mhatre bridge	36	240	204-240
	240		

year	RN	freq
1	29	72
2	45	72
3	97	132
4	169	132
5	235	36
		444

2. Case B : Vehicle and duration constant: NAL STOP JUNCTION

Towards deccan

Time: 9	-10am		
vehicle type	towards deccan	CF	range
2 wheeler	2172	2172	0-2171
3 wheeler	280	2452	2172- 2451
4 wheeler	756	3208	2452- 3207
Heavy	72	3280	3208- 3280
	3280	_	

year	RN	freq
1	1014	2172
2	1736	2172
3	2463	756
4	2902	756
5	3127	756
		6612

Time: 2	2-3pm		
vehicle type	towards deccan	CF	range
2 wheeler	1184	1184	0-1183
3 wheeler	288	1472	1184- 1471
4 wheeler	536	2008	1472- 2007
Heavy	100	2108	2008- 2108
	2108	_	

year	RN	freq
1	966	1184
2	1270	288
3	1542	536
4	1754	536
5	2008	100
		2644

Time: 7-8pm

Similar calculations were done for case A and B for other junctions and time periods.

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

VI. RESULTS & OUTCOME

1. Case A : Keeping direction and time constant OUTCOME: Which type of vehicle is causing max. traffic.

	2 wh	eeler	3 wh	eeler	4 wh	eeler	hea	ivy
Road	2015- 16	2020- 21	2015- 16	2020- 21	2015- 16	2020- 21	2015- 16	2020- 21
Nal stop								
time 9-10	5516	10004	806	1486	1800	3144	240	444
time2-3	4710	8954	884	1596	1742	3086	274	524
time 7-8	5606	9292	1055	1992	2391	4124	294	518
Mundhwa- keshavnagar								
time 9-10	5184	7136	777	989	3452	4351	369	467
time2-3	2859	3988	468	487	1865	2498	164	213
time 7-8	5670	7522	787	950	3486	4326	483	500

Fig.1 Comparison of 2 wheeler vehicle traffic based on time:

vehicle type	towards deccan	CF	range
2 wheeler	1920	1920	0- 1919
3 wheeler	432	2352	1920- 2351
4 wheeler	858	3210	2352- 3209
Heavy	120	3330	3210- 3330
	3330		

year	RN	freq
1	1014	1920
2	1432	1920
3	2008	432
4	2556	858
5	3073	858
		5988

Location: Nal Stop

Location: Nal Stop

Fig.3Comparison of 4 wheeler vehicle traffic based on time:

Location: Nal Stop

Fig.4Comparison of heavy vehicle traffic based on time:

All Rights Reserved © 2017 IJERMCE

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

Fig.5Comparison of 2 wheeler vehicle traffic based on time:

Location: Mundhwa-Keshavnagar

Fig.6 Comparison of 3 wheeler vehicle traffic based on time:

Location: Mundhwa-Keshavnagar

Fig.7 Comparison of 4 wheeler vehicle traffic based on time:Location: Mundhwa-Keshavnagar

Fig.8 Comparison of heavy vehicle traffic based on time:

Location: Mundhwa-Keshavnagar

2.	CASE	B:	Keeping	vehicle	type	and	duration	and
di	rection	co	nstant					

	time: 9-10am		
Road	2015-16	2020-21	
nal stop	h		
Towards deccan	3280	6612	
towards kothrud	1956	3996	
Towards mhatre bridge	3126	5994	
deven	8362	16602	
mundhwa-keshavnagar			
Towards nagar road	2215	4432	
Towards seasons	3127	5079	
Towards keshavnagar	1886	3517	
Towards passport off.	2554	4700	
	9782	17728	

	time: 2-3pm		
Road	2015-16	2015-16	
nal stop			
Towards deccan	2108	2108	
towards kothrud	2760	2760	
Towards mhatre bridge	2742	2742	
	7610	7610	
mundhwa-keshavnagar			
Towards nagar road	1225	1225	
Towards seasons	1649	1649	
Towards keshavnagar	1140	1140	
Towards passport off.	1242	1242	
	9782	17728	

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

	time: 7-8pm	
Road	2015-16	2015-16
nal stop		
Towards deccan	3330	3330
towards kothrud	3597	3597
Towards mhatre bridge	2397	2397
	9324	9324
mundhwa-keshavnagar		
Towards nagar road	2294	2294
Towards seasons	3253	3253
Towards keshavnagar	2167	2167
Towards passport off.	2612	2612
	10326	10326

Location: Nal Stop Time: 9am-10am

Fig.10 Comparison of traffic based on direction of traffic: Location: Nal Stop

Time: 2pm-3pm

Fig.11 Comparison of traffic based on direction of traffic:

Location: Nalstop Time: 7pm-8pm

Fig.12Comparison of traffic based on direction of traffic:

Location: Mundhwa-Keshavnagar Time: 9am-10am

Fig.13 Comparison of traffic based on direction of traffic:

Location: Mundhwa-Keshavnagar Time: 2 pm - 3 pm

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

Fig.14. Comparison of traffic based on direction of traffic:

Location: Mundhwa-Keshavnagar Time – 7pm-8pm

Comparison of total traffic at various time slots Location: Nalstop

Comparison of total traffic at various time slots Location: Mundhwa-Keshavnagar

VII. CONCLUSION

From the analysis of the current traffic condition, and depending on the data we predicted the traffic volume data after a five year period. The irrational rise in the traffic volume data is studied and depending on the data remedial measures are suggested. The irregular rise in vehicular traffic is shown with the help of bar graphs. From the simulation data we can see that the traffic volume has almost doubled in the predicted time period (5 years). The same simulation model can be used to predict the traffic volume for even 10 or greater number of years. But, as there is so much traffic rise in just five years recommendations are made on the predictive analysis of five years. The remedial measures suggested can be included in the development plans by the Municipal Corporation or local governing authorities to avoid the traffic congestion problems in future.

Remedial measures that can be implemented are:

- 1. Road widening can be done where there is enough space available.
- 2. Delhi pattern can be followed i.e. vehicles having odd number in the unit place of the number plate are allowed on odd days and vehicles having even number on even days. It is more of complicated remedy having much criticism but if followed perfectly it is a good solution.
- 3. Reductions of existing elements, for e.g. bus stops on critical turns can be shifted to some other location and can be avoided near to junctions.
- 4. Provision of grade separation and flyovers.
- 5. Diversion of traffic can be done wherever parallel road options are available.
- 6. Change of pattern of vehicular flow, provision of one ways.
- 7. Use of smart traffic control and signalling systems by use of traffic volume sensor.

REFERENCES

- Amudapuram Mohan Rao , Kalaga Ramachandra Rao, "MEASURING URBAN TRAFFIC CONGESTION – A REVIEW", International Journal for Tra-c and Transport Engineering, 2012, 2(4): 286 – 305
- [2] Mingkuan Wang, Li Kexin, "Transportation Model Application for the Planning of Low Carbon City Take Xining City in China as Example The 4th International Conference on Ambient Systems, Networks and

Special Issue

INSIGHT'17 - Advanced Transportation Systems And Infrastructure Development in Developing India

Technologies (ANT 2013), the 3rd International Conference on Sustainable Energy Information Technology (SEIT-2013)

- [3] Arvind Jayaraman, Ashley Micks, Ethan Gross," Creating 3D Virtual Driving Environments for Simulation-aided Development of Autonomous Driving and Active Safety, SAE International
- [4] The road traffic management corporation: Case study (International)
- [5] Explore the cost of road traffic management and construction issues to think: (Case Study: International)
- [6] Prof. K.v.Krishna rao (iit powai), "Evaluation of development plan towards sustainability for pune metropolitian area" Zonal details of pune city from sarang awhad commisioner (pune city traffic dept.)

