
 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

12

A Software Quality Prediction Model for Aspect

Oriented System using Neuro-Fuzzy Approach
[1]

Ritu,
[2]

O. P. Sangwan
[1]

[2]

 Department of Computer Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, India.
Corresponding Author Email:

[1]
 Rituchopra84@gmail.com,

[2]
 sangwan_op@yahoo.co.in

Abstract— Nowadays, the usage of software has increased exponentially in various fields like education systems, industries, health

systems, and many others. Various software architectures are already available in the market e.g. modular oriented, component-based,

object-oriented, aspect-oriented, etc. Aspect-Oriented (AO) system software has gained much attention due to its superior features to the

aforementioned systems. However, AO systems face the challenges of being complex and hard testing environment, a quality assessment

of these systems is necessary. In this paper, a software quality estimation model for aspect oriented system using neuro-fuzzy approach

has been developed. For which, a detailed study on aspect oriented systems has been accomplished in terms of various attributes affecting

the quality of these software. In this paper, a framework of software quality prediction model has been designed using the adaptive

neuro-fuzzy inference engine (ANFIS) approach. Data of 200 software pieces have been collected in this study where 150 software data

is used to train the ANFIS model whereas 50 software data is used for testing purposes. The quality estimated by the proposed ANFIS

model is compared with the actual quality of these software data and quantitative analysis is performed in terms of error measures.

Finally, it was found that the proposed ANFIS model worked better in terms of MSE, MRE, MARE, MBRE, and MIBRE error measures.

Index Terms - ANFIS, Aspect Oriented (AO), Object Oriented Programming (OOP), Neuro-Fuzzy, Software Quality.

I. INTRODUCTION

The survival is not easy without software. Recent

developments in cheaper and affordable internet connectivity

and online purchasing result into an exponential increase in

the usage of computer software [1]. A number of software is

available in the market for online education. A customer

chooses particular software depending upon its quality which

can‟t be numerically calculated so the purchaser looks for

other customer reviews or expert‟s opinion and then selects a

particular platform. From machine-level languages to

procedural programming, OOP, Component-Based Systems

and Aspect Oriented System, software development has

come a long way. Even with the software approaches that are

used in an industry, there is a big gap between understanding

the system goals and putting them into practice. Many

scholars have concluded that the best way to design

manageable systems is to identify and isolate the system

concerns, based on a fundamental principle of software

engineering and thus the need for aspect oriented systems

arises. Also, the growing need for excellent-quality software

has necessitated the use of quality metrics to assess the

program as well which is missing in the current literature.

A. Why Aspect Oriented Systems?

A number of software development architectures are avail-

able in the market [3] for example module oriented,

component based and object oriented architectures.

Object-Oriented programming (OOP) architecture [2], [4], [5]

is the most widely used programming paradigm today. The

goal of OOP is to arrange an application‟s data and

accompanying procedures into logical entities and hence it

promotes the reuse of software. However, when a

sophisticated program comprises the following: cross-cutting

concerns (e.g. logging, synchronization, etc.) and scattering

of code, it might not possible to demonstrate a clear and fine

programming structure in OOP.

AO provides a solution to these long-standing design and

maintenance issues which have plagued software developers.

In 1997, Kiczales et al. [6] proposed AOP programming

paradigms with the goal of improving software quality

through improved modularization and separation of concerns

(SoC). Use of aspect languages is the primary focus of AO

systems which offers many advantages. AO is mostly

developed using AspectJ language (a java language extension)

along with AspectC and AspectC++ which are extensions of

C and C++ languages respectively [7]. AO leverages the

concept of Aspects and demonstrates a method to extract

cross-cutting concerns from various modules and arrange

them into a single repository which results into no

cross-cutting issues [11], [12]. Furthermore, Synchronization,

consistency checking, protocol management, and other

features are also offered by the AO systems.

B. Need of automatic quality assessment of aspect oriented

systems

The concerns regarding software design are highly

modularized to suit all of a system‟s non-functional

requirements. Next, if the integration is not done carefully in

software, any new addition to the current code may aggravate

the problem even more. Because the target application‟s

behavior will be altered, software quality factors may be

impacted. Upgrading, maintaining, and modification

capability of software can be simplified using the AO

paradigm. However, if the AO paradigm is used incorrectly,

the software may not achieve the intended degree of quality.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

13

In addition, because of many different process paradigms and

product standards, quality evaluation is necessary.

Moreover, adopting a robust methodology is crucial to

ensure higher quality software. Software quality test can be

divided into two categories: Manual test and Automatic test.

Manual test corresponds to the manual inspection by the

domain expert which is time consuming process and resource

oriented as well. There may be need to invest a large amount

of money on the manual test to hire a prominent expert.

Whereas, automatic quality test refers to the automatic

quality checking by just feeding some attributes of the

software in need and thus it save both time and money of a

customer and even of an organization.

However, a concrete mathematical model is impossible to

be derived for the software quality as there is no well-defined

phenomenon of the parameters affecting the software quality.

Although, various software quality models exist in literature

[13], [14], [15], the accuracy and application of these model

is not in consensus because of a complex structure of various

software developing platform stages. Instead, we may have a

data of different software already used by the customers.

Soft- computing techniques e.g. fuzzy logic [8], neural

network [9], neuro-fuzzy, genetic algorithm, support vector

machine etc. provide a way to learn a black box model by

employing the data collected. After learning the model, these

soft computing architectures can be used to automatic

software quality estimation where the only requirement is to

feed the necessary user inputs.

II. RELATED WORKS

There are various studies performed on the aspect oriented

systems to predict various characteristics of software. An

extensive literature review has been conducted on software

metrics prediction in order to develop the proposed model.

Authors in [16] studied an evolution of the aspect oriented

programming which is followed by the software reusability

analysis using fuzzy logic technique by taking four metrics of

a software namely SOC, size, coupling and cohesion.

In [17], scientists investigated a study on the software

quality assessment of the aspect oriented systems which

employs a feed- forward neural network. However, a detailed

analysis of software quality prediction is missing in this

research. In paper [18], authors discussed a maintainability

analysis of aspect-oriented system by considering the

changeability as a measure of maintainability where authors

measures the changeability at the code level in a particular

module and then impact of change is analysed. The study is

conducted on twenty modules of three software. Authors in

[19] presented software quality attributes as internal and

external matrices where internal matrices contains the

sub-characteristics like SOC, coupling, cohesion etc. which

directly influences the external attributes of the software

quality e.g. maintainability, reusability and understandability.

These three external attributes are modelled using fuzzy logic

approach using three internal parameters and a software

namely ‟AJhotdraw‟ has been taken as case study. However,

no conclusion about software quality influenced by these

internal and external attributes is made.

A four parameter based software quality prediction scheme

is developed in [20] by employing both neural network and

fuzzy logic techniques. However, it lacks a thorough

comparative analysis and a quantitative analysis among

presented approaches. The paper [21] discussed about

maintainability analysis for aspect oriented systems using

neuro-fuzzy approach with four input parameters namely

CDA, CAE, CFA, WOM and the results are compared with

the fuzzy logic technique. An overview of soft computing

approaches has been derived in [22] to estimate the software

reliability model which includes chaos theory, Bayesian

function, genetic algorithm and neural network. In [23],

researchers discussed about software reliability estimation

for aspect oriented software using fuzzy logic technique

along with genetic algorithm to tune various fuzzy logic

parameters. Authors employed four internal attributes e.g.

coupling, portability, interface complexity, understandability,

and customizability and estimate the software reliability

value.

The authors [24] provided a novel approach to solving the

problem of operational profile uncertainty by evaluating

dependability using Bayesian two-step inference. The

technique is reliant on the availability of information

regarding the entry space splitting. The author [25] provides a

model for improving software dependability based on the

new Gaussian distribution, which allows users to examine

software process faults and reduce the uncertainty produced

by human subjective elements in the software. Other soft

computing techniques are also presented in the literature as

shown in Table 1 which shows the analysis of various

software attributes. From the above analysis, it can be seen

that there are a few studies focus on the software quality

prediction directly.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

14

Table 1. Factor affecting software quality

Sr.

No.

Author

Factors

Kum

ar et

al.[14

]

Jagat

et al.

[32]

Singh

et al.

[33]

Punee

t et

al.

[19]

Junej

a et

al.

[34]

Panka

j

kuma

r [35]

Chauh

n et al.

[36]

Amin

et al.

[37]

Sharm

a et al.

[38]

Sangw

an et

al.

[29]

Singh

et al.

[16]

Srivastav

a et al.

[39]

Kassa

b et al.

[40]

Tota

l

1 SOC * * * * 4

2 Cohesion * * * * 4

3 Coupling * * * * * * 6

4 Size * * * * 4

5 Maintainability * * * * * * * * 8

6 Efficiency * * * 3

7 Usability * * * 3

8 Functionality * * * * 4

9 Modularity * * * * 4

10 Code-reducibili

ty
* * 2

11 Interface

Complexity
* * * * * 5

12 Reusability * * * * 4

13 Reliability * * * 3

14 Portability * * * * * 5

15 Suitability * * 2

16 Accuracy * * * * 4

17 Interoperability * * * * 4

18 Security * * 2

19 Time Behavior * * * 3

20 Resource

Behavior
* * * 3

21 Scalability * 1

22 Analyzability * * * * * 5

23 Changeability * * * * 4

24 Testability * * * * * 5

25 Stability * * * * * 5

26 Track ability * 1

27 Replace ability * * * 3

28 Adaptability * * * * 4

29 Install ability * * * 3

30 Understandabili

ty
* * * * * * * * 8

Based on the existing research, five most important factors

have been identified named coupling, maintainability,

interface complexity, portability and understandability. The

short description of these factors is given as:

 Coupling: Coupling means how closely the packages

(aspects) are connected with each-other. That means it

express the strength between aspects [14][38].

 Maintainability: It is defined as the degree to which

software can be easily maintained or modified.

Modifications can have debugging, up-gradation etc

[32].

 Interface Complexity: It is defined as the degree to

which software interface i.e. user‟s interactions are

complex [35].

 Portability: It is defined as the ability of transferring

software from one environment to other. The

environment can be the combinations of hardware and

software platforms [37].

 Understandability: It is referred to the concept by

which software can be presented so that a software

engineer could be able to understand software code

[34].

Motivated by the above discussion, this paper infers a

study on the usage of aspect oriented systems and their

quality estimation at the software stage. As discussed

previously, researchers have developed a number of quality

models to assess the external software properties such as

reusability, maintainability, understandability, reliability,

testability, and efficiency individually. Although, these

metrics directly affect the software quality, an individual

assessment may not be enough to access the quality of

software in final or deliverable stage.

https://link.springer.com/article/10.1007/s10766-018-0618-2?shared-article-renderer#auth-Puneet_Jai-Kaur
https://link.springer.com/article/10.1007/s10766-018-0618-2?shared-article-renderer#auth-Puneet_Jai-Kaur

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

15

Hence, this study bridges the gap in the literature and an

attempt has been made to describe an effective relationship

directly between software quality and these external software

characteristics. To drive this relationship, a neuro-fuzzy

technique via an adaptive neuro-fuzzy inference engine has

been proposed which require input parameters that can affect

the software quality. A through study has been performed to

select these parameters of the neuro-fuzzy approach. After a

close review of various metrics that can affect the software

quality of an aspect oriented system, we came on conclusion

of selecting five input attributes. A neuro-fuzzy architecture

has been developed by employing a dataset of 150 software

where after training the architecture, the quality of 50

software is estimated using this architecture. Moreover, the

performance of the proposed model has been analysed

quantitatively in terms of performance indexes derived by

some error measures where we see that the quality predicted

by the neuro-fuzzy architecture closely matches with the

actual quality of these software and hence we get very low

values of error measures which show the effectiveness of the

proposed approach. A few studies are shown in table 2.

Table 2. Various studies of aspect oriented systems

Sr. No. Objective Method Comment

1 Software quality assessment

[26]

Neuro-fuzzy

Approach

An enhanced NN-based technique is given using the

Hybrid Cuckoo search optimization algorithm (HCS).

To improve accuracy and speed up the learning

process, the weights are learned using the HCS

algorithm. However, it lacks a thorough examination

of the framework‟s impact on software quality.

2 Prediction of software quality

[27]

Neuro-fuzzy

Approach

An adaptive neuro-fuzzy technique for a web-based

software quality prediction scheme is provided, with

six soft- ware metrics as input. In the AKTC

warehouse, a total of 682 data points were generated

for specific software. A back-propagation approach

yielded a testing error of 0.047 in terms of MSE for

171 data pairs.

3 Assessment of software

reusability [28]

Fuzzy logic A bug detecting automated system is constructed

based on fuzzy logic technique that can discriminate

between a bus and a customer request for software

enhancement. There may be a big number of

consumers for a given product, making manual error

detection difficult, and therefore this automated

solution can assist in auto-detecting the software fault.

4 Reusability prediction in

software [29]

Neuro-fuzzy

Approach

A thorough analysis of software internal attributes

affecting the software reliability and then reliability

prediction is accomplished using adaptive neuro-fuzzy

inference engine (ANFIS) model.

5 Maintainability analysis of

software [30]

ANFIS model Software Maintainability analysis is performed using

nine internal attributes of software. A framework of

maintainability is proposed on which a model can be

built to estimate the software maintainability.

6 Software defect prediction

[31]

Bayesian

technique

On various data sets, the model considers the

connection between software metrics and faults. The

number of developers and the quality of the source

code are two aspects to consider.

III. VARIOUS SOFTWARE CHARACTERISTICS

The software characteristics can be divided into two

categories namely internal and external characteristics where

internal characteristics refer to the sub-characteristics that

can influence directly a particular external

characteristic/attribute. These external characteristics

directly impact the software quality and can be considered as

most influencing parameters to build a software quality

model. Various Internal Characteristics are cohesion,

coupling, size, SOC, etc. External characteristics include:

portability, maintainability and understandability. Main

attribute is software quality.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

16

Fig. 1. ANFIS Model in MATLAB with five input and one

output

IV. CASE STUDY

A case study has been conducted on 200 software data

whose characteristics are collected by existing research and

experiences. These characteristics are ‟coupling‟, „interface

complexity‟, „understandability‟, „maintainability‟,

„portability‟ and „quality of software‟. Out of 200 software

data, we trained the ANFIS model as discussed in the

previous section with 150 dataset of software. After training

the ANFIS, we obtained optimal parameters of ANFIS model

which can be used to predict the quality of the remaining 50

software data.

Fig. 2: Membership function of each input parameter

A. Simulation results

First, we built an ANFIS architecture in MATLAB using

five inputs namely „coupling‟, „interface complexity‟,

„understandability‟, „maintainability‟, „portability‟ and one

„output‟ as shown in Fig. 1 using Mamdani fuzzy model and

feed-forward neural network. Each of the input parameter is

divided into three fuzzy regions namely ‟low‟, ‟medium‟

and ‟large‟ as shown in Fig. 2 whereas output i.e. software

quality is divided into five regions to include more flexibility

while estimating the quality. These five regions are ‟very

low‟, ‟low‟, ‟medium‟, ‟large‟ and ‟very large‟.

Next, we train ANFIS model using 150 data pairs using

grid partition algorithm in MATLAB toolbox. We estimated

the quality of these 150 data pairs to demonstrate the

prediction accuracy of the ANFIS model which shows how

well the ANFIS model is trained. The training results are

shown in Fig. 3 which shows that ANFIS model has been

trained well as predicted quality and actual quality almost

re-overlapped to each other.

Fig. 3. Training results of presented approach

The testing results are shown in Fig. 5 which indicates

good prediction accuracy of software quality by the proposed

ANFIS model.

Fig. 4. Regression plot

Next, regression plot and surface plots are also shown in

Fig. 4 and 6 respectively.

Fig. 5. Testing results of proposed model

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

17

Fig. 6. Surface plot

Rule base for an input pair is shown in Fig. 7 which shows

fired rules for the input data pair.

Fig. 7. Rule base for an input data pair

B. Quantitative analysis

Five performance indexes are employed to test the

prediction accuracy of the proposed ANFIS model. These

performance indexes are: MSE, MRE, MARE, MBRE, and

MIBRE.

Table 3. Quantitative analysis of prediction accuracy of

ANFIS in terms of performance measures

Sr. No.
Performance

Parameter
Training Testing

1 MSE 0.0002 0.0014

2 MARE 0.0082 0.0155

3 MRE -0.0010 -0.0114

4 MBRE 0.0086 0.0155

5 MIBRE 0.0078 0.0132

Table 3 shows the obtained results of these performance

indexes which show lower values of these measures. Lower

values of these measures indicate a good prediction accuracy

of the model. Hence, it is concluded that the proposed ANFIS

model can correctly predicts the quality of unknown software

based on just five attributes.

Fig. 8. Performance measures values in the training phase

Fig. 9. Performance measures values in the testing phase

V. CONCLUSION

Aspect oriented (AO) systems employs Aspect language

which is an extension of conventional programming language

of object oriented (OO) system, hence, AO system inherits

the properties of OO systems and attributes like SoC that

indirectly affect the software quality. This paper proposes an

ANFIS model to predict the software quality of the Aspect

Oriented Systems based on five inputs named coupling,

maintainability, interface complexity, portability, and

understandability. A total of 200 software data pairs have

been collected where 150 data pairs are used for ANFIS

training. After ANFIS training, optimal weights parameters

are obtained which are used to predict the quality of the

remaining 50 software. Furthermore, a quantitative analysis

of the predicted quality by the proposed ANFIS has been

performed by employing the error measures where the error

denotes the differences between the predicted software

quality and actual software quality. Finally, lower values of

error measures are obtained which shows the potential of the

proposed approach. This approach may be implemented in

real-time scenario that can save money and time of the

respective customers.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

18

REFERENCES

[1] P. Kumar, S. K. Singh, and S. D. Choudhary, “Reliability

Prediction Analysis of Aspect-Oriented Application using

Soft Computing Techniques,” Materials Today: Proceedings,

vol. 45, pp. 2660-2665, 2021.

[2] F. Alaswad, and E. Poovammal, “Software Quality Prediction

using Machine Learning,” Materials Today: Proceedings, vol.

62, no. 7, pp. 4714-4720, 2022.

[3] Y. R. Kirschner, “Model-Driven Reverse Engineering of

Technology-Induced Architecture for Quality Prediction,”

European Conference on Software Architecture, 2021.

[4] W. B. Rebecca, B. Wilkerson, and L. Wiener, “Designing

object-oriented software,” 1990.

[5] P. Wegner, “Concepts and paradigms of object-oriented

programming,” ACM Sigplan Oops Messenger, vol. 1, no.1,

pp. 7-87, 1990.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J. M. Loingtier, J. Irwin, “Aspect-oriented programming,

European Conference on Object-Oriented Programming, pp.

220-242, 1997.

[7] R. Kumar, Dilip and M. Rai, A Comparative Study of AOP

Approaches: AspectJ, Spring AOP, JBoss AOP,” World

Congress on Engineering and Computer Science, pp. 22-24,

2019.

[8] D. Silva, and W. Clarence, “Intelligent Control: Fuzzy Logic

Applications,” CRC Press, 2018.

[9] M. Vanmali, M. Last, and A. Kandel. ”Using a Neural

Network in The Software Testing Process,” International

Journal of Intelligent Systems, vol. 17, no.1, pp. 45-62, 2002.

[10] Y. Kamei, A. Monden, and K. Matsumoto, “Empirical

Evaluation of SVM-Based Software Reliability Model,”

ACM-IEEE Int‟l Symposium on Empirical Software

Engineering, vol. 2, 2006.

[11] M. I. Ghareb, and G. Allen, “Quality Metrics measurement for

Hybrid Systems (Aspect),” Technium, vol. 3, no. 3, pp.

820-99, 2021.

[12] S. Clarke, and E. Baniassad, “Aspect-Oriented Analysis and

Design,” Addison-Wesley Professional, 2005.

[13] P. Kumar, “Aspect-Oriented Software Quality Model: The

AOSQ Model,” Advanced Computing: An International

Journal, vol. 3, no. 2, pp. 105-118, 2012.

[14] A. Kumar, P. S. Grover, and R. Kumar, “A Quantitative

Evaluation of Aspect-Oriented Software Quality Model”,

ACM SIGSOFT, vol. 34, no.5, 2009.

[15] Suman, and M. Wadhwa, “A comparative Study of Software

Quality Models,” International Journal of Computer Science

and Information Technologies, vol. 5, no. 4, pp. 5634-5638,

2014.

[16] P. K. Singh, O. P. Sangwan, A. P. Singh, and A. Pratap, “A

Framework for Assessing The Software Reusability using

Fuzzy Logic Approach for Aspect Oriented Software,”

International Journal of Information Technology and

Computer Science, vol. 7, no. 2, pp. 12-20, 2015.

[17] P. Kumar, S. Dixit, and S. K. Singh, “Performance of

Aspect-Oriented Software Quality Modelling using Artificial

Neural Network Technique” International Journal of

Computer Application, vol. 182, no. 36 pp. 6-10, 2019.

[18] A. Kumar, R. Kumar, and P. S. Grover, “An Evaluation of

Maintainability of Aspect-Oriented systems: A Practical

Approach,” International Journal of Computer Science and

Security, vol. 1, no. 2 pp. 1-9, 2007.

[19] P. J. Kaur, and S. Kaushal. ”A Fuzzy Approach for Estimating

Quality of Aspect Oriented Systems,” International Journal of

Parallel Programming, vol. 48, no. 5, pp. 850-869, 2020.

[20] A. K. Gupta, R. Masood, “Analysis of Object Oriented

System Quality Model using Soft Computing Techniques,”

International Journal for Research & Development in

Technology, vol. 7, no. 5, pp. 587-597, 2017.

[21] M. Hossein, and S. Zahedian, “Aspect-Oriented Software

Maintainability Assessment Using Adaptive Neuro Fuzzy

Inference System (ANFIS),” Journal of Mathematics and

Computer Science, vol. 12, no. 3, pp. 243-252, 2014.

[22] P. Dhavakumar, S. Shankar, P. M. Vikram “Soft Computing

Techniques for Enhancing Software Reliability,” International

Journal of Latest Trends in Engineering and Technology

Special Issue, pp. 133-140, 2018.

[23] https://dias.ac.in/wp-content/uploads/2020/03/08-15software

quality-prediction-in.pdf

[24] R. Pietrantuono, P. Popov, and S. Russo, “Reliability

Assessment of Service-based Software under Operational

Profile Uncertainty,” Reliability Engineering & System

Safety, vol. 204, 2020.

[25] H. Ziqing, and X. Liu, “Research on Software Reliability

Growth Model Based on Gaussian New Distribution,”

Procedia Computer Science, vol. 166 pp. 73-77, 2020.

[26] K. Sheoran, P. Tomar, and R. Mishra, “Software Quality

Prediction Model with The Aid of Advanced Neural Network

with HCS,” Procedia Computer Science, vol. 92, pp. 418-424,

2016.

[27] P. Sharma, “Software Quality Prediction using Hybrid

Approach”, International Journal of Computer Applications,

vol. 180, no. 4, 2017.

[28] I. Chawla, S. K. Singh, “An Automated Approach for Bug

Categorization using Fuzzy Logic, India Software

Engineering Conference, pp. 90-99, 2015.

[29] Deepika, O. P. Sangwan, “Neuro-Fuzzy Based Approach to

Software Reusability Estimation,” vol. 9, pp. 151-159, 2016.

[30] R. Jose, “A Theoretical Framework for the Maintainability

Model of Aspect Oriented Systems,” Procedia Computer

Science, vol. 62 pp. 505-512, 2015.

[31] A. Okutan, O. T. Yıldız, “Software Defect Prediction using

Bayesian Networks,” Empirical Software Engineering, vol.

19, no. 1 pp. 154-181, 2014.

[32] J. S. Challa, A. Paul, Y. Dada, V. Nerella, and P. R.

Srivastava, “Integrated Software Quality Evaluation: A Fuzzy

Multi-Criteria Approach”, Journal of Information Processing

Systems, vol.7, no. 3, 2011.

[33] P. K. Singh, O. P. Sangwan, A. P. Singh, and A. Pratap, “A

Quantitative Evaluation of Reusability for Aspect Oriented

Software using Multi-criteria Decision Making Approach,”

World Applied Sciences Journal, vol. 30, no. 12, pp.

1966-1976, 2014.

[34] N. Juneja, K. Upreti, “Software Quality Prediction in

Aspect-Oriented Software by using Genetic Fuzzy System”,

DIAS (Delhi Institute of Advance Studies) Technology, vol.

12, no. 2, 2016.

[35] P. Kumar, “Aspect-Oriented Software Quality Model the

AOSQ Model”, Advanced Computing: An International

Journal, vol.3, no.2, pp. 105-118, 2012.

[36] U. Chauhan, S. Sagar, “Analysis of Aspect Oriented Software

Quality (AOSQ) Model,” International Journal of Advanced

Research in Computer Science & Technology, vol. 3, no. 2,

2015.

[37] F. Amin, A. K. Mahmood, and A. Oxley, “Relative

Importance of Factors Constituting Componen Reusability,”

Academic Journals Inc. pp. 118–131, 2012.

[38] S. Goel, and A. Sharma, “Neuro Fuzzy based Approach to

Predict Component‟s Reusability,” International Journal of

Computer Applications, vol. 5, pp. 33–38, 2014.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 9, Issue 8, August 2022

19

[39] P. K. Singh, O. P. Sangwan, and A. Srivastava, “An Essence

of Software Maintenance Prediction using the Fuzzy Model

for Aspect Oriented Software,” Asian Research Publishing

Network, vol. 9, no. 9, 2014.

[40] M. Kassab, O. Ormandjieva, and C. Constantinides,

“Providing Quality Measurement for Aspect-Oriented

Software Development,” Asia-Pacific Software Engineering

Conference, IEEE, 2005.

