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Abstract— A new techniques is presented in this paper to solve a class of fractional integral differential equations. By applying 

Riemann-Liouville’s Properties with Bernstein polynomials, operational matrices of integration are introduced with collocation 

Chebyshev methods to obtain accurate solutions of the equations. Illustrative examples have shown that in some cases the proposed 

techniques yield the exact solutions. 
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I. INTRODUCTION 

Bernstein matrices approach is the most important 

numerical methods to solve several applied mathematics 

problems. Recently, [1]-[3].  

In this work, we introduce a class of fractional integro 

differential equation. 

𝑦∝ = 𝑦(𝑥) + 𝜆1 ∫
𝑦𝛼(𝑡)

√𝑥 − 𝑡
𝑑𝑡 + 𝜆2 ∫ 𝐹(𝑥, 𝑡)𝑦𝛼(𝑡)𝑑𝑡

𝑥

0

𝑥

0

+ ℎ(𝑥)                                                         (1) 

The initial conditions are 

𝑦∝(𝛿) = 𝑦𝑖       𝑛 − 1 < 𝛼 ≤ 𝑛    𝑛 ∈ 𝑁,   

0 ≤  𝛿 ≤ 𝑅                                                                               (2) 

Where 𝐹(𝑥, 𝑡) and ℎ(𝑥) both functions are continuous on 

the interval [0, 𝑅], 𝑦𝛼(𝑥) is the is the fractional derivative of 

𝑦(𝑥), also 𝛿, 𝜆𝑖and 𝑦𝑖 are constants.  

In our paper, a new technique is presented to solve Eq. (1) 

by using the relations between the polynomials of Bernstein 

method 𝐵𝑛(𝑥) and their integration. 

II.  METHOD OF SOLUTIONS 

By using the definition of Bernstein polynomials in [4, 5], 

we can write the approximate solution of Eq. (1) as 

𝑦𝑛(𝑥) = 𝐵𝑛(𝑥)𝐶                                                                      (3) 

The approximate solution in (3) can be written as, see [5] 

y(x)  =  X(x)𝐷𝑇C                    (4) 

By using Riemann-Liouville fractional integral operator, 

we can write  𝐽α[X(x)] as 

𝐽α[X(x)] = [
Γ(1)

Γ(α+1)
 𝑥α    

Γ(2)

Γ(2+α)
𝑥α+1   · · ·

   
Γ(n+1)

Γ(n+1+α)
 𝑥n+α]                 (5) 

The relation (5) can be introduced as 

𝐽α[X(x)]  

=  [1   x    𝑥2 . . . x𝑛]

[
 
 
 
 

Γ(1)

Γ(α + 1)
 𝑥α ⋯ 0

⋮ ⋱ ⋮

0 ⋯
Γ(n + 1)

Γ(n + 1 + α)
 𝑥n+α

]
 
 
 
 

 

Then from (6) we have 

𝐽𝛼[X(x)] =  X(x)Ψ(x),                              

 (6) 

Where 

Ψ(x) =

[
 
 
 

Γ(1)

Γ(α+1)
 𝑥α ⋯ 0

⋮ ⋱ ⋮

0 ⋯
Γ(n+1)

Γ(n+1+α)
 𝑥n+α

]
 
 
 
             

 (7) 

And   

                    𝑋(𝑥) = [1   x    𝑥2 . . . x𝑛]                                     
(8) 

We can define the integration of Eq. (4) as 

𝐽 α [y(x)] =  𝐽 α  [X(x)𝐷𝑇C] =  [𝐽 α X(x)]𝐷𝑇C                     (9) 

By using relations in (7) and (9), the operational matrix of 

integration 𝐽 α can be written as 

           𝐽 α [y(x)] =  X(x)Ψ(x)𝐷𝑇C                                       
(10) 

For two parts 𝜆1 ∫
𝑦𝛼(𝑡)

√𝑥−𝑡
𝑑𝑡  𝑎𝑛𝑑  𝜆2 ∫ 𝐹(𝑥, 𝑡)𝑦𝛼(𝑡)𝑑𝑡

𝑥

0

𝑥

0
 

please see [4]-[ 6]. By applying the operational matrix of 

integration 𝐽 α into (1) we find the relation 

𝐽 α [𝑦∝(𝑥)] = 𝐽 α [𝑦(𝑥)]

+ 𝐽 α [ 𝜆1 ∫
𝑦𝛼(𝑡)

√𝑥 − 𝑡
𝑑𝑡

𝑥

0

]

+ 𝐽 α [𝜆2 ∫ 𝐹(𝑥, 𝑡)𝑦 (𝑡)𝑑𝑡
𝑥

0

]  
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                                         +𝐽 α [ℎ(𝑥)]                              (11) 

Now substitute (10) into (11), we have 

X(x)𝐷𝑇C −  X(x)Ψ(x)𝐷𝑇C − 𝜆1F𝑥𝐷
𝑇C − 𝜆2S𝑥𝐷

𝑇C 
=  y(0) +  H(x),                                     (12)  

By using the collocation points {xi : 0 ≤ i ≤ n} ( the roots of 

Chebyshev polynomials, see [2]) in Eq. (12) where 

V =  −X(x)Ψ(x)𝐷𝑇  +  X(x)𝐷𝑇  −  𝜆1K𝑥𝐷
𝑇  

− 𝜆2S𝑥𝐷
𝑇 .                                       (13)   

So, the main matrix Eq. (12) corresponding to Eq. (1) can 

be formed as augmented matrix 

VC =  Z                                                                      (14) 

By using the Gauss elimination method and remove all 

zero rows in matrix (18), we obtain a square matrix then the 

unknown matrix C is obtained as 

                C =  V−1Z                                              (15) 

III. NUMERICAL RESULT AND DISCUSSION  

Example 1. 

Let’s consider the fractional integro-DEs [7] 

𝐷0.15y(x) =  
1

4
∫

𝑦 (𝑡)

√𝑥 − 𝑡
𝑑𝑡 +

1

7
∫ 𝑒𝑥+𝑡𝑦𝛼(𝑡)𝑑𝑡

𝑥

0

𝑥

0

+ 𝑔(𝑥) 

The initial condition is  y(0) = 0 and 

g(x) =
Γ(3)

Γ(2.85)
𝑥1.85 −

Γ(2)

Γ(1.85)
 𝑥0.85 −

√πΓ(3)

4Γ (
7
2
)

𝑥
5
2  

+  
√πΓ(2)

2Γ (
5
2
)

𝑥
3
2  −  

𝑒𝑥+1 − 3𝑒𝑥

7
 

The exact solution is 

y(x)  =  x(1 −  x). 

By applying the techniques (I) in Section 2, with 

collocation points. For n=2 the approximate solution is 

0.999999998𝑥2  −  0.999999998 𝑥  

From figure 1 and Table 1, we can see the precise of results 

which obtained by Bernstein method. We compare the 

founded results with [7], can see our results are more 

accurate. 

Table : 1 

𝑥  LWM [7] LWCM 

[7] 

Our 

method 

N=2 

Exact 

0 0 0 0 0 

2

8
 

−0.1869 -0.1861 -0.1875 -0.1875 

4

8
 

−0.2498 - 0.2497 -0.2500 -0.2500 

6

8
 

−0.1869 -0.1862 -0.1875 -0.1875 

7

8
 

−0.1084 -0.1081 -0.1093 -0.1084 

Table 1: Comparison between approximate solutions and 

exact solution, with n = 2 and n = 3 for Example 1. 

 

 
Figure 1: Comparison between approximate solutions and 

exact solution for Example 1, with 𝑛 = 2. 

IV. CONCLUSIONS 

In this paper, new techniques based on operational 

matrices are presented to find results of integral differential 

equations of fractional order. The integral equations were 

converted to a linear system of equations. Collocation 

methods and Gauss elimination method are used to help us 

for finding the results more precisely. 
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