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Abstract: A right near ring (N, +,) is an algebraic system with two binary operations such that (i) (N,+) is a group - (not
necessarily abelian) with 0 as its identity element, (ii) (N,-) is a semigroup (we write xy for x -y for all x,y in N) and (iii) (x +
y)z = xz + yz for all x,y,z in N. We say that N is zero symmetric if n0 = 0 for all n in N. N is called an S - near ring or an S’ -
near ring according as x € Nx or x € xN for all x € N. A subgroup M of N is called an N-subgroup if NM < M and an invariant N-
subgroup if, in addition, MN < M. An element a in N is said to be distributive, if a(b + ¢) = ab + ac for all b and c in N; N is
called distributively generated (d.g.), if the additive group of N is generated by the multiplicative semigroup of distributive
elements of N.

A near ring N is defined to be right bipotent if aN = a®N for each a in N. In this paper, we have proved some more results on
right bipotent near rings by using the concepts of S’ - near ring ; subcommutativity ; regularity ; reduced property etc. It is proved
that every right bipotent near ring is an S’ - near ring and it is also S - near ring if it is also subcommutative. Every regular near
ring is central and reduced if it is right bipotent. Some special characterizations are obtained in such a way that, a reduced right
bipotent near ring is a near field if N = N, and it is a division ring if it is dgnr.
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I. INTRODUCTION

Near rings can be thought of as generalized rings: if in a
ring we ignore the commutativity of addition and one
distributive law, we get a near ring. Taussky [24] in 1936
and B.H.Neumann [13] in 1940 considered near rings in
which addition need not be commutative. Since then the
theory of near rings has been developed much. Later Frolich
[6], Beidleman [2], Oswald [14] and many other researchers
had done and have been doing extensive work on different
aspects of near rings. Gunter Pilz [5] "Near rings" is an
extensive collection of the work done in the area of near
rings.

A near ring N is defined to be left bipotent if Na = Na?
for each a in N. The definitions for S - Near ring and S -
Near ring are dealt in P(r,m) Near rings by R. Balakrishnan
and S. Suryanarayanan in [1].

Il. PRELIMINARIES

Definition 2.1 [9]

N is said to be subcommutative, if aN = Na for all
a€N.
Definition 2.2 [5]

An element n € N is called nilpotent if n* = 0 for some
positive integer k.

Definition 2.3 [8]

A near ring N is regular if for each a in N, there exists x
in N such that a = axa.
Definition 2.4

An element e in N is called idempotent if e2 = e.
Definition 2.5 [5]

An idempotent a in N is called a central if ax = xa for
all x in N.

Definition 2.6 [5]

Let (P, +) be a group with 0 and let N be a near ring. Let
u:N x P — P; (P,u) is called an N-group if for all p € P
and for all n,n; € N we have (n +n,)p = np +n,p and
(nn,)p = n(n,p). N* stands for N-groups.

Definition 2.7 [5]

A subgroup S of N¥ with NS c S is a N-subgroup of P.
Definition 2.8 [8]

An additive group A of N is called a left N-subgroup if
NA € A where NA = {ra/r € N,a € A}.

Definition 2.9 [8]

An additive group A of N is called a right N-subgroup if
AN € A where AN = {ar/r € N,a € A}.

Definition 2.10 [8]

For any subset A of a near ring N, Define VA =
{x e N/x™ € A, for some n}.
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Definition 2.11 [12]

An element 0 = x € N is called a right zero divisor if
30+a€Nsuchthatax =0
Definition 2.12 [12]

An element 0 # x € N is called a left zero divisor if
30 # a € N such that xa = 0.

Definition 2.13 [5]

If all non zero elements of N are left (right) cancelable,
we say that N fulfills the left (right) cancellation law.
Definition 2.14 [8]

N is called a near-field if it contains an identity and each
non zero element has a multiplicative inverse.

Notation 2.15 [5]

Let N; = {d € N|d is distributive}
Definition 2.16 [5]

If N =N, N issaid to be distributive.
Definition 2.17 [1]

N is called an S - near ring according as x € Nx for all
x €EN.

Definition 2.18 [1]

N is called an S’ - near ring according as x € xN for all
x €EN.

Definition 2.19 [25]

A near ring N is defined to be right bipotent if aN =
a®N foreachainN.

I11. MAIN RESULTS

Theorem 3.1

Every Right Bipotent near ring is an S’- near ring.

Proof:

Let N be right bipotent. This implies a?N = aN.
Therefore a € a®2N = aN. This implies a € aN. Hence N is
S'- near ring.

Corollary 3.2

Every S- near ring is S’ - near ring if it is subcommutative
with vice versa.

Proof:

Let N be S - near ring.

Then, x € Nx = xN for all x in N. This implies x € xN.
Hence N is S'- near ring.

Converse follows.

Result 3.3

Any right bipotent subcommutative near ring is an S -
near ring.
Theorem 3.4

Homomorphic images of right bipotent
are also such.

Proof:

Let f:N — N’ be a homomorphism of near rings N onto

S’ - near rings

N’, and let N be a right bipotent S’- near ring. If a € N”,
there exists b € N such that f(b) = a. By assumption, we
have bN = b2N. Then f(bN) = f(b)f(N) =aN’ and
f2N) = fF(B)f(N) = [f(DI*f(N) = a®N". Thus
bN' = b?N’. Now since b € bN, we have a = f(b) €
f(bN) = aN’.

Theorem 3.5

A regular near ring N is right bipotent if each idempotent
in N is central.

Proof:

N is regular, so far a in N, there exists x in N such that
a=axa. Let ax=e. Now, (ax)?= (ax)(ax) =
(axa)x = ax. Therefore ax is an idempotent. Now
a = axa = aax (since idempotents are central) = a?x.
Hence aN = a2N and N is right bipotent.

Theorem 3.6

Let N be an S’ - near ring, then N is regular iff for each
a(#0) in N, there exists an idempotent e such that
aN = eN.

Proof:

If N is a regular near ring, then for every a in N, there
exists x in N such that a = axa

Let ax = e. Now, (ax)? = (ax)(ax) = (axa)a = ax =
e. (i.e) e? = e. Therefore e is an idempotent and aN = eN.
(for aN = axaN < axN = eN < aN). Conversely, Let N
be an S’ - near ring satisfying the given condition. For any
d € N, there exists an idempotent b such that d € dN =
bN. This implies d = bu for some u in N. Also b € bN =
dN. This implies b = dy for some y in N. Now dyd =
dybu = bbu = b*u = bu = d. Therefore dyd = d. Hence
N is a regular near ring.

Theorem 3.7

A right bipotent near ring N is regular iff it isan S’ - near
ring.

Proof:

Let N be regular near ring. This implies for each a in N,
there exists x in N such that a = axa. Let ax = e. Now
(ax)? = (ax)(ax) = (axa)x = ax. Therefore ax is an
idempotent. Now a = axa = aax = a’x € a®?N = aN.
This implies a € aN. Therefore every regular near ring is an
S’ - near ring. Conversely, Let N be a right bipotent S’ -
near ring. Then for each a in N, a € aN = a?N and so
a? = a*z for some z in N. This implies a%a? = a*za?.
This gives (a? — a?za?)a? = 0 and (a? — a%?za?)a’za? =
0. (a® — a?za?)?
= (a? — a?za®)(a? — a?’za?) =

(a? — a?za?)a? — (a? — a’za?)a?za® = 0. Therefore
(a? — a?za?)? = 0. From this we get a? — a?za? = 0.
Hence a? = a%za?. Let a?z=-e. Now, (a?z)%=

All Rights Reserved © 2019 IJSEM 2



o

L T

%% IFERP

.
- drvelaming iimind

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (1JSEM)
Vol 4, Issue 3, March 2019

(a?2)(a?z) = (a%?za?)z = a®?z. Therefore a?z is an
idempotent and aN = a’N = a®za?N < a?zN =eN <
a’N = aN. Hence by Theorem 3.6, N is regular.

Theorem 3.8

A right bipotent near ring is an S’ - near ring iff it has no
non zero nilpotent elements.

Proof:

Let N be a right bipotent S’ - near ring. Let b € N be
nilpotent. For some positive n, b™ = 0. Then b € bN =
b?N =--=b™N and b = 0. Conversely, Let N be right
bipotent with no non zero nilpotent elements. If x € N, then
xN = x?N so x? = x%y for some y in N. This implies
x?2—x%y=0. This gives (x —xy)x=0. Also (x —
xy)xy = 0. Now, (x —xy)? =
(x —xy)(x —xy) = (x —xy)x — (x —x

y)xy = 0. Hence (x — xy)? = 0. This implies x — xy =
0. This gives x = xy. Therefore x € xN. Hence N isan S’ -
near ring.

Corollary 3.9

A right bipotent near ring is regular iff it is reduced.

Proof: Follows by Theorems 3.7 and 3.8
Theorem 3.10

An S’ - near ring is right bipotent iff A = /A for every
right N-subgroup A of N.

Proof:
Clearly A € vVA. Now let a € VA4, then a™ € A for some
n. Also we have aN = a?N = --- = a™N in a right bipotent

near ring. Since N isan S’ - near ring, a € aN = a™N. This
gives a = a™b for some b in N. Thus a € 4, (since a™ € A
and A is a right N-subgroup of N). Hence vA C A.
Conversely, we have to prove that if N is an S’ - near ring
with the condition A = v/A for every right N-subgroup A of
N then N is right bipotent. For a € N, a® € a*N and
a € Va?N = a?N. Then aN S a?N S aN and N is right
bipotent.

Theorem 3.11

Let N be a right bipotent near ring with no zero divisors.
If N has a non zero distributive element, then N is a near
field.

Proof:

N is regular. Let d be a non zero distributive element in
N, then there exists x in N such that d = dxd. Let dx = e.
Now, (dx)? = (dx)(dx) = (dxd)x = dx. Therefore dx is
an idempotent. If r is any element in N, then r(d — dxd) =
0. This implies r(d —ed) = 0. This gives r—re =0
(since d is a distributive element). From this, we r = re.
That is, e is a right identity in N. If a € N with a # 0 then
aN = a?N. Therefore, ae = a®?y for some y in N. This

implies a(e —ay) =0. This gives e—ay =0 (since
a # 0). From this, we get e = ay. That is, y is a right
inverse of a. Hence N is a near field.
Corollary 3.12
Let N be a right bipotent distributively generated (d.g.)
near ring with no zero divisors then N is a division ring.
Proof:
By Theorem 3.11, N is a near field and so (N, +) is abelian
(see(6)). Moreover, a d.g. near ring with (N, +) abelian is a
ring (13). Therefore, N is a division ring.
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