

International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019 On Contra g*α-continuous functions

^[1] Dr. A. Punitha Tharani, ^[2] T. Delcia

^[1] Associate Professor, ^[2] Research Scholar

Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India

Abstract: -- In this paper, we introduce a new class of functions called contra g^*a -continuous functions in topological spaces.some characterizations and several properties concerning contra g^*a -continuous functions are obtained.

Keywords: -- contra g*a-continuous, almost contra g*a-continuous, contra g*a-irresolute, g*a-locally indiscrete

I. INTRODUCTION

In 1996,Dontchev presented a new notions of continuous functions called contra-continuity. This notion is stronger form of LC-continuity. The purpose of this paper is to introduce a new class of generalized continuous functions called contra $g^*\alpha$ - continuous functions and almost contra $g^*\alpha$ -continuous functions and investigate their relationship with other functions.

II. PRELIMINARIES

In this paper the spaces X and Y always mean topological spaces (X,τ) and (Y,σ) respectively. For a subset A of a space, cl(A) and int(A) represent closure of A and interior of A resopectively.

Definition 2.1: A Subset A of (X,τ) is called

- (1) a preopen set [6] if A ⊆ int cl(A) and preclosed set if cl(int(A)) ⊆ A
- (2) a regular open set [13] if A=int cl(A) and regular closed set if A=cl(int(A))
- (3) a α-open set [7] if A⊆int(cl(int(A)) and α-closed if cl(int(cl(A))⊆A

Definition 2.2: A Subset A of (X,τ) is called

(1) generalized closed set(briefly g-closed) [5] if cl(A) ⊆ U whenever A⊆U and U is open in X.

- (2) g*-closed [14] if cl(A) ⊆ U whenever A⊆U and U is g-open in X.
- (3) regular generalized closed(briefly rg-closed) [8] if cl(A) ⊆ U whenever A⊆U and U is regular open in X.
- (4) generalized preregular closed set(briefly gprclosed)[4] if pcl(A)⊆U
- (5) whenever $A \subseteq U$ and U is regular open in X.
- (6) $g^{\#}$ -closed [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3[9]: A subset A of (X,τ) is called $g^*\alpha$ -

closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g*-open in X.The complement of g* α -closed set is g* α -open set.The family of g* α -closed sets and g* α -open sets are denoted by G* α -C(X) and G* α -O(X)

- **Definition 2.4:** A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be (1) g* α -continuous [9] if $f^{-1}(V)$ is g* α -closed in (X,τ) for every closed set V of (Y,σ) .
- (2) $g^*\alpha$ -irresolute[9] if $f^{-1}(V)$ is $g^*\alpha$ -closed in (X,τ) for every $g^*\alpha$ -closed set V of (Y,σ) .

Definition 2.5: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called

- (1) a contra continuous [1] if $f^{-1}(V)$ is closed in (X,τ) for every open set V of (Y,σ) .
- (2) a contra g*-continuous [11] if f⁻¹(V) is g*-closed in (X,τ) for every open set V of (Y,σ).
- (3) a contra g[#]-continuous [15] if f⁻¹(V) is g[#]- closed in (X,τ) for every open set V of (Y,σ)

Definition 2.6: A space X is called

- (i) $_{\alpha}T_{1/2}^{**}$ -space[9] if every g* α -closed set in it is closed.
- (ii) locally indiscrete[12] if every open subset of X is closed in X

III. CONTRA g* α -CONTINUOUS FUNCTION

In this section, we introduce the notions of contra $g^*\alpha$ continuous, contra $g^*\alpha$ -irresolute and almost contra $g^*\alpha$ continuous functions in topological spaces and study some of their properties.

Definition 3.1:A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called Contra g* α -continuous if $f^{-1}(V)$ is g* α -closed set in X for each open set V in Y.

Example 3.2: :Let $X = \{1,2,3\} = Y$ with $\tau = \{\emptyset, X, \{1\}\}$ and $\sigma = \{\emptyset, Y, \{2\}\}$.Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(1)=1, f(2)=3 and f(3)=2.clearly f is contra g* α -continuous function.

Example 3.3: :Let $X = \{1,2,3,4\} = Y$ with $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$ and

 $\sigma = \{\emptyset, Y, \{3\}, \{1,3,4\}\}$. Define f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(1) =1, f(2)=2, f(3)=4 and f(4)=3. clearly f is contra g* α -continuous function.

Theorem 3.4: Every contra continuous function is conta

International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019

g*α-continuous.

Proof: It follows from the fact that every closed set is $g^*\alpha$ -closed.

The converse of the above theorem is not true as seen from the following example.

Example 3.5:Let X = $\{1,2,3,4\}$ =Y with $\tau = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}\}$ and

 $\sigma = \{\emptyset, Y, \{1,3,4\}\}$. Define f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(1) =4,f(2)=3, f(3)=2and f(4)=1. clearly f is contra g* α continuous but not contra continuous since $f^{-1}(\{1,3,4\})=\{1,2,4\}$ is g* α -closed but not closed in X.

Theorem 3.6: If a function $f:X \rightarrow Y$ is contra $g^*\alpha$ continuous and X is ${}_{\alpha}T^{**}_{1/2}$ -space, then f is contra
continuous.

Proof:Let V be an open set in Y.Since f is conta $g^*\alpha$ continuous, $f^{-1}(V)$ is $g^*\alpha$ -closed in X.Hence V is closed in X since X is $_{\alpha}T_{1/2}^{**}$ -space.Thus f is contra continuous.

Corallary3.7:If X is ${}_{\alpha}T_{1/2}^{**}$ -space then for a function f:X \rightarrow Y the following are equivalent.

(i)f is contra continuous

(ii) f is contra $g^*\alpha$ -continuous

Proof:It is obvious.

Remark 3.8: The concept of $g^*\alpha$ -continuity and contra $g^*\alpha$ - continuity are independent as shown in the following example.

Example 3.9:Let $X = \{1,2,3,4\} = Y$ with $\tau = \{\emptyset, X, \{1\}, \{1,4\}, \{1,2,4\}\}$ and

 $\sigma = \{\emptyset, Y, \{2\}, \{3,4\}, \{2,3,4\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(1) = 1, f(2) = 3, f(3) = 4 and f(4) = 2. clearly f is contra $g^*\alpha$ -continuous but $f^{-1}(\{1,2\}) = \{1,4\}$ is not $g^*\alpha$ -closed in X. Therefore f is not $g^*\alpha$ -continuous.

Example 3.10:Let X = {1,2,3,4} = Y with $\tau = \{\emptyset, X, \{1,3,4\}\}$ and $\sigma = \{\emptyset, Y, \{1,4\}\}$. Define

f: $(X,\tau) \rightarrow (Y,\sigma)$ by identity mapping clearly f is $g^*\alpha$ -continuous but not contra $g^*\alpha$ -continuous since $f^{-1}(\{1,4\})=\{1,4\}$ is not $g^*\alpha$ -closed in X. Therefore f is not $g^*\alpha$ -continuous.

Theorem 3.11: Every contra g-continuous is conta $g^*\alpha$ -continuous.

Proof:since every g-closed set is $g^*\alpha$ -closed ,the proof follows.

The converse of the above theorem is not true as seen from the following example.

Example 3.12: Let $X = \{1,2,3\} = Y$ with $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$ and $\sigma = \{\emptyset, Y, \{2\}\}$. Define

f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(1) =3,f(2)=2 and f(3)=1.clearly f is contra g* α -continuous but not contra g-continuous.

Theorem 3.13:(i)Every contra g*-continuous is contra g* α -continuous.

(ii)Every contra $g^*\alpha$ -continuous is contra rg-continuous.

(iii)Every contra g*α-continuous is contra gpr-continuous

(iv)Every contra $g^{\#}$ -continuous is contra $g^{*\alpha}$ -continuous.

Proof:(i) & (iv) proof follows from the fact that every g^* -closed and $g^{\#}$ - closed is $g^*\alpha$ -closed.

(ii) & (iii) since every $g^*\alpha$ -closed set is rg-closed and gpr-closed, the proof follows.

Remark 3.14:The converse of the above theorem need not be true as seen from the following examples.

Example 3.15: Let $X = \{1,2,3\} = Y$ with $\tau = \{\emptyset, X, \{1\}, \{1,2\}, \{1,3\}\}$ and $\sigma = \{\emptyset, Y, \{2\}\}$. Define

f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(1) =2,f(2)=3 and f(3)=1.clearly f is contra rg-continuous and contra gpr-continuous but not contra g* α -continuous.

Example 3.16: Let $X = \{1,2,3\} = Y$ with $\tau = \{\emptyset, X, \{1\}\}$ and $\sigma = \{\emptyset, Y, \{2,3\}\}$. Define

f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(1) =2,f(2)=1and f(3)=3.Here f is contra g* α -continuous but not contra g[#]-continuous and contra g*-continuous.

Remark 3.17:The composition of two contra $g^*\alpha$ -continuous functions need not be contra $g^*\alpha$ -continuous as seen from the following example.

Example 3.18: Let $X = \{1,2,3,4\} = Y$ with $\tau = \{\emptyset, X, \{3\}, \{1,3,4\}\}$ and $\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$ and $\eta = \{z, \emptyset, \{1,3,4\}$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and

g: $(Y,\tau) \rightarrow (\eta,\sigma)$ by identity mapping. Here f and g are contra g* α -continuous. But $g^{\circ}f: X \rightarrow Z$ is not contra g* α -continuous, since $(g^{\circ}f)^{-1}(\{1,3,4\})=f^{-1}(g^{-1}(\{1,3,4\}))=f^{-1}(\{1,3,4\})=\{1,3,4\}$ which is not g* α -closed in X.

Theorem 3.19:If f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra g* α -continuous and g: $Y \rightarrow Z$ is continuous then g°f: $X \rightarrow Z$ is contra g* α -continuous.

Proof:Let V be open in Z.Since g is continuous $g^{-1}(V)$ is open in Y.Then $f^{-1}(g^{-1}(V))$ is $g^*\alpha$ -closed in X since f is contra $g^*\alpha$ -continuous. Thus $(g^{\circ}f)^{-1}(V)$ is $g^*\alpha$ -closed in X.Hence $g^{\circ}f$ is contra $g^*\alpha$ -continuous.

Corallary 3.20: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is $g^*\alpha$ -irresolute and g: $Y \rightarrow Z$ is contra continuous function then $g^\circ f: X \rightarrow Z$ is contra $g^*\alpha$ -continuous.

Proof:Using the fact that every contra continuous is contra $g^*\alpha$ -continuous.

Theorem 3.21: Let f: $X \rightarrow Y$ be surjective, $g^*\alpha$ -irresolute and $g^*\alpha$ -open and is continuous and $g: Y \rightarrow Z$ be any function then $g^\circ f$ is contra $g^*\alpha$ -continuous iff g is contra $g^*\alpha$ -continuous.

Proof:Suppose g°f is contra g* α -continuous.Let V be a closed set in Z.Then (g° f)⁻¹(V) = $f^{-1}(g^{-1}(V))$ is g* α -open

International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019

in X.Since f is $g^*\alpha$ -open and surjective, $g^*\alpha$ -irresolute $f(f^{-1}(g^{-1}(V))$ is $g^*\alpha$ -open in Y.(ie) $g^{-1}(V)$ is $g^*\alpha$ -open in Y.Hence g is contra $g^*\alpha$ -continuous.Conversely suppose that g is contra $g^*\alpha$ -continuous.Let V be closed in Z.Then $g^{-1}(V)$ is $g^*\alpha$ -open in Y.Since f is $g^*\alpha$ -irresolute $f^{-1}(g^{-1}(V))$ is $g^*\alpha$ -open (ie) $(g^\circ f)^{-1}(V)$ is $g^*\alpha$ -open in X.Hence g° f is contra $g^*\alpha$ -continuous.

Theorem 3.22:Let $f:X \rightarrow Y$ be a map. Then the following are equivalent.

(i) \hat{f} is contra $g^*\alpha$ -continuous

(ii)The inverse image of each closed set in Y is $g^*\alpha$ -open in X.

Proof:(i) \Rightarrow (ii) and (ii) \Rightarrow (i) are obvious.

Definition 3.23: A space (X,τ) is called locally $g^*\alpha$ -indiscrete if every $g^*\alpha$ -open set of X is closed in X.

Theorem 3.24:Let X be locally $g^*\alpha$ -indiscrete.If $f:X \rightarrow Y$ is contra $g^*\alpha$ -continuous then it is continuous.

Proof:Let $V \in O(Y)$. Then $f^{-1}(V)$ is $g^*\alpha$ -closed in X. Since X is locally $g^*\alpha$ -indiscrete space, $f^{-1}(V)$ is open in X. Hence f is continuous.

Theorem 3.25: If a function $f:X \rightarrow Y$ is $g^*\alpha$ -continuous and the space (X,τ) is $g^*\alpha$ -locally indiscrete then f is contra continuous.

Proof:Let $V \in O(Y)$.Since f is $g^*\alpha$ -continuous, $f^{-1}(V)$ is $g^*\alpha$ -open in X.Since X is locally $g^*\alpha$ - indiscrete, $f^{-1}(V)$ is closed in X.Hence f is contra continuous.

Definition 3.25: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called almost $g^*\alpha$ -continuous if $f^{-1}(V)$ is $g^*\alpha$ -open set in X for every regular open set V of Y.

Definition 3.26: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called almost Contra g*a-continuous if $f^{-1}(V)$ is g*a-closed set in X for every regular open set V of Y.

Theorem 3.26: Every contra $g^*\alpha$ -continuous function is almost contra $g^*\alpha$ -continuous.

Proof:Since every regular open set is open the proof follows.

Theorem 3.27: Every regular set connected function is almost contra $g^*\alpha$ -continuous but not conversely.

Proof: Proof is straight forward.

Example 3.28:X=Y={1,2,3,4} with $\tau = \{\emptyset, X, \{1\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{4\}, \{1,2,4\}\}$ and

 $\sigma = \{\emptyset, Y, \{3\}, \{4\}, \{3,4\}, \{2,4\}, \{1,3,4\}, \{2,3,4\}\}$.Let f be an identity map.The inverse image of regular open set $\{2,4\}$ is not clopen in X.But the inverse image of regular open set in Y is $g^*\alpha$ -closed in X.Hence f is almost contra $g^*\alpha$ -continuous but not regular set connected.

Theorem 3.27:Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions. Then the following properties hold.

a)If f is almost contra $g^*\alpha$ -continuous and g is regular set

connected, then $g \circ f: X \to Z$ is almost contra $g^*\alpha$ -continuous and almost $g^*\alpha$ -continuous.

b)If f is almost contra $g^*\alpha$ -continuous and g is perfectly continuous $g^{\circ}f:X \rightarrow Z$ is $g^*\alpha$ -continuous and contra $g^*\alpha$ -continuous.

Proof:(a) Let $V \in RO(Z)$.Since g is regular set connected, $g^{-1}(V)$ is clopen in Y.since f is almost contra $g^*\alpha$ -continuous, $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is $g^*\alpha$ -open and $g^*\alpha$ -closed in X.Therefore $g \circ f$ is almost contra $g^*\alpha$ -continuous and almost $g^*\alpha$ -continuous.

(b)Let v be open in Z.Since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y.since f is almost contra $g^*\alpha$ -continuous, $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is $g^*\alpha$ -open and $g^*\alpha$ -closed in X. Therefore $g \circ f$ is $g^*\alpha$ -continuous and contra $g^*\alpha$ -continuous.

Definition 3.25:A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called Contra g* α -irresolute if $f^{-1}(V)$ is g* α -closed set in X for every g* α - open set V in Y.

Definition 3.26:A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called perfectly Contra g* α -irresolute if $f^{-1}(V)$ is g* α -closed and g* α -open in X for every g* α - open set V in Y.

Theorem 3.27: If f: $X \rightarrow Y$ is perfectly contra $g^*\alpha$ -irresolute iff f is contra $g^*\alpha$ -irresolute and $g^*\alpha$ -irresolute.

Proof:It directly follows from the definitions.

Remark 3.28:The following example shows that the concepts of $g^*\alpha$ -irresolute and contra $g^*\alpha$ -irresolute are indepdent of each other.

Example 3.29:Let $X=Y=\{1,2,3\}$ with $\tau=\{\emptyset,X,\{1\},\{2\},\{1,2\}\}$ and $\sigma=\{\emptyset,Y,\{1,2\}\}$.Define f:X \rightarrow Yby f(1)=2,f(2)=1 and f(3)=3.Clearly f is g* α -irresolute but not contra g* α -irresolute since $f^{-1}(\{1\}) = \{2\}$ is not g* α -closed in X.

Example 3.30:Let X=Y={1,2,3} with $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$ and $\sigma = \{\emptyset, Y, \{2,3\}\}$. Define f:X \rightarrow Y by f(1)=1,f(2)=3 and f(3)=2. Clearly f is contra g* α -irresolute but not g* α -irresolute since $f^{-1}(\{1,3\})=\{1,2\}$ is not g* α -closed in X.

Remark 3.31: Every contra $g^*\alpha$ -irresolute function is contra $g^*\alpha$ -continuous .But the converse need not be true as seen from the following example.

Example 3.32:Let $X=Y=\{1,2,3,4\}$ with $\tau=\{\emptyset, X, \{1\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{4\}, \{1,2,4\}\}$ and $\sigma=\{\emptyset, Y, \{3\}, \{1,3,4\}\}$. Define f: $X \rightarrow Y$ by an identity mapping. Clearly f is contra g* α -continuous but not contra g* α -irresolute.

Theorem 3.33:Let $f:X \rightarrow Y$ and $g:Y \rightarrow Z$ be a function.Then

(i) if g is $g^*\alpha$ -irresolute and f is contra $g^*\alpha$ -irresolute then $g^\circ f$ is contra $g^*\alpha$ -irresolute.

(ii)if f is $g^*\alpha$ -irresolute and g is contra $g^*\alpha$ -irresolute then

International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019

g°f is contra g* α -irresolute.

Proof(i)Let U be $g^*\alpha$ -open in Z.Since g is $g^*\alpha$ -irresolute, $g^{-1}(U)$ is $g^*\alpha$ -open in Y.Thus $f^{-1}(g^{-1}(U))$ is $g^*\alpha$ -closed in X since f is contra $g^*\alpha$ -irresolute.(ie) $(g^\circ f)^{-1}(U)$ is $g^*\alpha$ -closed in X.This implies that $g^\circ f$ is contra $g^*\alpha$ -irresolute.

(ii) Let U be $g^*\alpha$ -open in Z.Since g is contra $g^*\alpha$ -irresolute, $g^{-1}(U)$ is $g^*\alpha$ -closed in Y.Thus

f $(g^{-1}(U))$ is g* α -closed in X since f is g* α -irresolute (ie)(g°f)⁻¹(U) is g* α -closed in X.This implies that g°f is contra g* α -irresolute.

Theorem 3.34: If $f:X \rightarrow Y$ is contra $g^*\alpha$ -irresolute and $g:Y \rightarrow Z$ is $g^*\alpha$ -continuous then $g^\circ f$ is contra $g^*\alpha$ -continuous.

Proof:Let U be an open set in Z.Since g is $g^*\alpha$ continuous, $g^{-1}(U)$ is $g^*\alpha$ -open in Y.Thus $f^{-1}(g^{-1}(U))$ is $g^*\alpha$ -closed in X Since f is contra $g^*\alpha$ -irresolute.(ie)($g^\circ f$)⁻¹(U) is $g^*\alpha$ -closed in X.This implies that $g^\circ f$ is contra $g^*\alpha$ continuous.

Remark 3.35: Every perfectly contra $g^*\alpha$ -irresolute function is contra $g^*\alpha$ -irresolute and $g^*\alpha$ -irresolute.

The following two examples show that a contra $g^*\alpha$ -irresolute function may not be perfectly contra $g^*\alpha$ -irresolute and a $g^*\alpha$ -irresolute function may not be perfectly contra $g^*\alpha$ -irresolute.

Example 3.36:Let $X=Y=\{1,2,3\}$ with $\tau=\{\emptyset,Y,\{1\}\}$ and $\sigma=\{\emptyset,X,\{2\},\{2,3\}\}$. Define f: $X \rightarrow Y$ by an identity mapping. Clearly f is contra g* α -irresolute but not perfectly contra g* α -irresolute.

Example 3.37:Let $X=Y=\{1,2,3,4\}$ with $\tau=\{\emptyset,X,\{3\},\{1,2\},\{1,2,3\}\}$ and $\sigma=\{\emptyset,Y,\{1\},\{2,3\},\{1,2,3\}\}$. Define f:X \rightarrow Y by an identity mapping. Clearly f is g* α -irresolute but not perfectly contra g* α -irresolute.

Theorem 3.38:A function is perfectly contra $g^*\alpha$ -irresolute iff f is contra $g^*\alpha$ -irresolute and $g^*\alpha$ -irresolute. **Proof:** It follows from the definitions

REFERENCES

- 1. Dontchev.J, "Contra-continuous functions and strongly Sclosedspaces",Internat.J.Math.Sci.19(1996),303-310.
- 2. E.Ekici, almost contra pre-continuous functions,Bull. Malaysian Math.Sci.Soc.,27:53:65, 2004.
- 3. E.Ekici, On contra π g-continuous functions, chaos, Solitons and Fractals, 35(2008), 71-81.
- Gnanambal. Y, "On generalized preregular closed sets in topological spaces", Indian J. Pure App.Math.28,1997, 351-360.
- Levine. N., "Generalized closed sets in topology", Rend. Circ. Mat. Palermo 19, 1970, 89-96.
- Mashhour. A.S., Abd. El-Monsef. M.E. and El.Deeb S.N., "On pre continuous mappings and weak pre-continuous mappings", Proc Math, Phys. Soc. Egypt 53(1982), 47-53.

- Njastad O. On some classes of nearly open sets, Pacific J Math., 15(1965),961-970.
- Palaniappan. N. and Rao. K.C, "Regular generalized closed sets", Kyungpook Math. J. 33.1993,211-219.
- Punitha tharani,Delcia, "g*α-closed sets in topological spaces",International Journal of Mathematical Archive -8(10), 2017, 71-80.
- 10. Sekar.S and Jeyakumar.P, On Generalized gp*-closed map in Topological spaces, Applied Mathematical sciences,vol. 8-2014
- 11. Steen L.A and Jr.J.A.Seebach, Counter examples in topology.A.Holt.Newyork, Rienhart and Winston, 1970.
- 12. Stone. M, "Application of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc. 41, 1937, 374-481.
- Veerakumar M.K.R.S., Between closed sets and g-closed sets. Mem. Fac. Sci. Koch Univ.Ser.A.Math, 1721 (2000), 1-19.
- 14. Veerakumar M.K.R.S., g#-closed sets. Mem. Fac. Sci. Kochi J.Math., 24(2003),1-13.

rs...derelopins research