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I. INTRODUCTION 

In 1996,Dontchev presented a new notions of continuous 

functions called contra-continuity.This notion is stronger 

form of LC-continuity.The purpose of this paper is to 

introduce a new class of generalized continuous functions 

called contra g*α- continuous functions and almost contra 

g*α-continuous functions and investigate their relationship 

with other functions. 

II. PRELIMINARIES 

In this paper the spaces X and Y always mean topological 

spaces (X, ) and (Y,σ) respectively.For a subset A of a 

space,cl(A) and int(A)represent closure of A and interior of 

A resopectively. 

Definition 2.1:A Subset A of (X, ) is called  

(1) a preopen set [6] if A   int cl(A) and preclosed set if 

cl(int(A))   A 

(2) a regular open set [13] if A=int cl(A) and regular 

closed set if  A=cl(int(A)) 

(3) a α-open set [7] if A int(cl(int(A)) and α-closed if 

cl(int(cl(A)) A 

Definition 2.2: A Subset A of (X, ) is called 

(1) generalized closed set(briefly g-closed) [5] if cl(A)   

U whenever A U and U is open  in X. 

(2) g*-closed [14] if cl(A)   U whenever A U and U is 

g-open in X. 

(3) regular generalized closed(briefly rg-closed) [8] if 

cl(A)   U  whenever A U and U is regular open in 

X. 

(4) generalized preregular closed set(briefly gpr-

closed)[4] if pcl(A) U   

(5) whenever A U and U is regular open in X. 

(6) g#
-closed [15] if cl(A)   U whenever A U and U is 

αg-open in X. 

    The complements of the above mentioned closed sets 

are their respective open sets. 

Definition 2.3[9]: A subset A of (X, ) is called g*α-

closed if αcl(A) U whenever A U and U is g*-open in 

X.The complement of g*α-closed set is g*α-open set.The 

family of g*α-closed sets and g*α-open sets are denoted by 

G*α-C(X) and G*α-O(X) 

Definition 2.4: A function f: (X, )→(Y,σ) is said to be 

(1) g*α-continuous [9] if    (V) is g*α-closed in (X, ) 

for every closed set V of (Y,σ). 

(2) g*α-irresolute[9] if    (V) is g*α-closed in (X, ) for 

every g*α-closed set V of (Y,σ). 

Definition 2.5: A function f: (X, )→(Y,σ) is called 

(1) a contra continuous [1] if    (V) is closed in (X, ) 

for every open set V of (Y,σ). 

(2) a contra g*-continuous [11] if    (V) is g*-closed in 

(X, ) for every open set V of (Y,σ). 

(3) a contra g
#
-continuous [15] if    (V) is g

#
- closed in 

(X, ) for every open set V of (Y,σ) 

Definition 2.6:A space X is called  

(i)  α     
  -space[9] if every g*α-closed set in it is closed. 

(ii) locally indiscrete[12] if every open subset of X is 

closed in X 

III. CONTRA g*α-CONTINUOUS FUNCTION 

In this section, we introduce the notions of contra g*α-

continuous, contra g*α-irresolute and almost contra g*α-

continuous functions in topological spaces and study some 

of their properties. 

Definition 3.1:A function f: (X, ) (Y, ) is called Contra 

g*α-continuous if    (V) is g*α-closed set in X for each 

open set V in Y. 

Example 3.2: :Let X = {1,2,3} =Y with  ={  X,{1}} and 

  = {  Y,{2}}.Define f: (X, ) (Y, ) by f(1)=1,f(2)=3 and 

f(3)=2.clearly f is contra g*α-continuous function. 

Example 3.3: :Let X = {1,2,3,4} =Y with 

 ={  X,{1},{2},{1,2},{1,2,3}} and 

   = {  Y,{3},{1,3,4}}.Define f: (X, ) (Y, ) by f(1) 

=1,f(2)=2, f(3)=4 and f(4)=3.clearly f is contra g*α-

continuous function. 

Theorem 3.4:Every contra continuous function is conta 
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g*α-continuous. 

Proof:It follows from the fact that every closed set is 

g*α-closed. 

The converse of the above theorem is not true as seen 

from the following example. 

Example 3.5:Let X = {1,2,3,4} =Y with 

 ={  X,{1},{2,3},{1,2,3}} and 

   ={  Y,{1,3,4}}.Define f: (X, ) (Y, ) by f(1) 

=4,f(2)=3, f(3)=2and f(4)=1.clearly f is contra g*α-

continuous but not contra continuous since 

   ({1,3,4})={1,2,4}is g*α-closed but not closed in X. 

Theorem 3.6:If a function f:X→Y is contra g*α-

continuous and X is α     
  -space, then f is contra 

continuous. 

Proof:Let V be an open set in Y.Since f is conta g*α-

continuous,    (V) is g*α -closed in X.Hence V is closed in 

X since X is α     
  -space.Thus f is contra continuous. 

Corallary3.7:If X is α     
  -space then for a function 

f:X→Y the following are equivalent. 

(i)f is contra continuous 

(ii) f is contra g*α-continuous 

Proof:It is obvious. 

Remark 3.8:The concept of g*α-continuity and contra 

g*α- continuity are independent as shown in the following 

example. 

Example 3.9:Let X = {1,2,3,4} =Y with 

 ={  X,{1},{1,4},{1,2,4}} and 

   ={  Y,{2},{3,4},{2,3,4}}.Define f: (X, ) (Y, ) by 

f(1) =1,f(2)=3, f(3)=4 and f(4)=2.clearly f is contra g*α-

continuous but    ({1,2})={1,4} is not g*α-closed in X. 

Therefore f is not g*α-continuous. 

Example 3.10:Let X = {1,2,3,4} =Y with 

 ={  X,{1,3,4}} and   ={  Y,{1,4}}.Define  

f: (X, ) (Y, ) by identity mapping.clearly f is g*α-

continuous but not  contra g*α-continuous since 

   ({1,4})={1,4} is not g*α-closed in X. Therefore f is not 

g*α-continuous. 

Theorem 3.11:Every contra g-continuous is conta g*α-

continuous. 

Proof:since every g-closed set is g*α-closed ,the proof 

follows. 

The converse of the above theorem is not true as seen 

from the following example. 

Example 3.12: Let X = {1,2,3} =Y with 

 ={  X,{1},{1,2}} and   = {  Y,{2}}.Define  

f: (X, ) (Y, ) by f(1) =3,f(2)=2 and f(3)=1.clearly f is 

contra g*α-continuous but not contra g-continuous. 

Theorem 3.13:(i)Every contra g*-continuous is contra 

g*α-continuous. 

(ii)Every contra g*α-continuous is contra rg-continuous. 

(iii)Every contra g*α-continuous is contra                               

gpr-continuous 

(iv)Every contra g
#
-continuous is contra g*α-continuous. 

Proof:(i) & (iv) proof follows from the fact that every g*-

closed and g
#
- closed is g*α-closed. 

(ii) & (iii) since every g*α-closed set is rg-closed and gpr- 

closed,the proof  follows. 

Remark 3.14:The converse of the above theorem need 

not be true as seen from the following examples. 

Example 3.15: Let X = {1,2,3} =Y with 

 ={  X,{1},{1,2},{1,3}} and   = {  Y,{2}}.Define  

f: (X, ) (Y, ) by f(1) =2,f(2)=3 and f(3)=1.clearly f is 

contra rg-continuous and contra gpr-continuous but not 

contra g*α-continuous. 

Example 3.16: Let X = {1,2,3} =Y with  ={  X,{1}} 

and   = {  Y,{2,3}}.Define  

f: (X, ) (Y, ) by f(1) =2,f(2)=1and f(3)=3.Here f is 

contra g*α-continuous but not contra g
#
-continuous and 

contra g*-continuous. 

Remark 3.17:The composition of two contra g*α-

continuous functions need not be contra g*α-continuous as 

seen from the following example. 

Example 3.18: Let X = {1,2,3,4} =Y with 

 ={  X,{3},{1,3,4}} and 

 ={  Y,{1},{2},{1,2}{2,3},{1,2,3}} and   = {z, 

 ,{1,3,4}Let  f: (X, ) (Y, )  and  

g: (Y, ) (  , ) by identity mapping.Here f and g are 

contra g*α-continuous.But   f:X→Z is not contra g*α-

continuous,since (g   -1
({1,3,4}}=   (   ({1,3,4}))= 

   ({1,3,4})={1,3,4} which is not g*α-closed in X. 

Theorem 3.19:If f: (X, ) (Y, ) is contra g*α-continuous 

and g:Y→Z is continuous then g f:X→Z is contra g*α-

continuous. 

Proof:Let V be open in Z.Since g is continuous    (V) is 

open in Y.Then    (   (V)) is g*α-closed in X since f is 

contra g*α-continuous. Thus (g  f)-1
(V) is g*α-closed in 

X.Hence g  f is contra g*α-continuous. 

Corallary 3.20: If f: (X, ) (Y, ) is g*α-irresolute and 

g:Y→Z is contra continuous function then g f:X→Z is 

contra g*α-continuous. 

Proof:Using the fact that every contra continuous is 

contra g*α-continuous. 

Theorem 3.21: Let f: X Y be surjective,g*α-irresolute 

and g*α-open and  is continuous and g:Y→Z be any 

function then g  f is contra g*α-continuous iff g is contra 

g*α-continuous. 

Proof:Suppose g f is contra g*α-continuous.Let V be a 

closed set in Z.Then (g  f)-1
(V) =    (   (V)) is g*α-open 
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in X.Since f is g*α-open and surjective,g*α-irresolute 

f(   (   (V)) is g*α-open in Y.(ie)    (V) is g*α-open in 

Y.Hence g is contra g*α-continuous.Conversely suppose 

that g is contra g*α-continuous.Let V be closed in Z.Then 

   (V) is g*α-open in Y.Since f is g*α-irresolute 

   (   (V)) is g*α-open (ie) (g  f)-1
(V) is g*α-open in 

X.Hence g  f is contra g*α-continuous. 

Theorem 3.22:Let f:X→Y be a map.Then the following 

are equivalent. 

(i)f is contra g*α-continuous 

(ii)The inverse image of each closed set in Y is g*α-open 

in X. 

Proof:(i) (ii) and (ii) (i) are obvious. 

Definition 3.23:A space (X,τ) is called locally g*α-

indiscrete if every g*α-open set of X is closed in X. 

Theorem 3.24:Let X be locally g*α-indiscrete.If f:X→Y 

is contra g*α-continuous then it is continuous. 

Proof:Let V  O(Y).Then    (V) is g*α-closed in 

X.Since X is locally g*α-indiscrete space,   (V) is open in 

X.Hence f is continuous. 

Theorem 3.25:If a function f:X→Y is g*α-continuous 

and the space (X,τ) is g*α-locally indiscrete then f is contra 

continuous. 

Proof:Let V  O(Y).Since f is g*α-continuous,        is 

g*α-open in X.Since X is locally g*α- indiscrete,    (V) is 

closed in X.Hence f is contra continuous. 

Definition 3.25:A function f: (X, ) (Y, ) is called 

almost g*α-continuous if    (V) is g*α-open set in X for 

every regular open set V of Y. 

Definition 3.26: A function f: (X, ) (Y, ) is called 

almost Contra g*α-continuous if    (V) is g*α-closed set in 

X for every regular open set V of Y. 

Theorem 3.26:Every contra g*α-continuous function is 

almost contra g*α-continuous. 

Proof:Since every regular open set is open the proof 

follows. 

Theorem 3.27:Every regular set connected function is 

almost contra g*α-continuous but not conversely. 

Proof:Proof is straight forward. 

Example 3.28:X=Y={1,2,3,4} with 

 ={  X,{1},{1,2},{1,4},{1,2,3},{4},{1,2,4}}and 

 ={  Y,{3},{4},{3,4},{2,4},{1,3,4},{2,3,4}}.Let f be an 

identity map.The inverse image of  regular open set {2,4} is 

not clopen in X.But the inverse image of regular open set in 

Y is g*α-closed in X.Hence f is almost contra g*α-

continuous but not regular set connected. 

Theorem 3.27:Let f: X Y and g:Y→Z be two 

functions.Then the following properties hold. 

a)If f is almost contra g*α-continuous and g is regular set 

connected,then g◦f:X→Z is almost contra g*α-continuous 

and almost g*α-continuous. 

b)If f is almost contra g*α-continuous and g is perfectly 

continuous g◦f:X→Z is g*α-continuous and contra g*α-

continuous. 

Proof:(a) Let V RO(Z).Since g is regular set 

connected,   (V) is clopen in Y.since f is almost contra 

g*α-continuous,   (   (V))=(g◦f)
-1

(V) is g*α-open and 

g*α-closed in X.Therefore g◦f is almost contra g*α-

continuous and almost g*α-continuous. 

(b)Let v be open in Z.Since g is perfectly 

continuous,    (V) is clopen in Y.since f is almost contra 

g*α-continuous,    (   (V))=(g◦f)
-1

(V) is g*α-open and 

g*α-closed in X. Therefore g◦f is g*α-continuous and contra 

g*α-continuous. 

Definition 3.25:A function f: (X, ) (Y, ) is called 

Contra g*α-irresolute if    (V) is g*α-closed set in X for 

every g*α- open set V in Y. 

Definition 3.26:A function f: (X, ) (Y, ) is called 

perfectly Contra g*α-irresolute if    (V) is g*α-closed and 

g*α-open in X for every g*α- open set V in Y. 

Theorem 3.27:If f: X Y is perfectly contra g*α-

irresolute iff  f is contra g*α-irresolute and g*α-irresolute. 

Proof:It directly follows from the definitions. 

Remark 3.28:The following example shows that the 

concepts of g*α-irresolute and contra g*α-irresolute are 

indepdent of each other. 

Example 3.29:Let X=Y={1,2,3} with 

 ={  X,{1},{2},{1,2}} and σ={  Y,{1,2}}.Define 

f:X→Yby f(1)=2,f(2)=1 and f(3)=3.Clearly f is g*α-

irresolute but not contra g*α-irresolute since    ({1}) 

={2}is not g*α-closed in X. 

Example 3.30:Let X=Y={1,2,3} with  ={  X,{1},{1,2}} 

and σ={  Y,{2,3}}.Define f:X→Y by f(1)=1,f(2)=3 and 

f(3)=2.Clearly f is contra g*α-irresolute but not g*α-

irresolute since    ({1,3})={1,2}is not g*α-closed in X. 

Remark 3.31:Every contra g*α-irresolute function is  

contra g*α-continuous .But the converse need not be true as 

seen from the following example.  

Example 3.32:Let X=Y={1,2,3,4} with 

 ={  X,{1},{1,2},{1,4},{1,2,3},{4},{1,2,4}} and 

σ={  Y,{3},{1,3,4}}.Define f:X→Y by an identity 

mapping.Clearly f is contra g*α-continuous but not contra 

g*α-irresolute. 

Theorem 3.33:Let f:X→Y and g:Y→Z be a 

function.Then  

(i)if g is g*α-irresolute and f is contra g*α-irresolute then 

g f is contra g*α-irresolute. 

(ii)if f is g*α-irresolute and g is contra g*α-irresolute then 
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g f is contra g*α-irresolute. 

Proof(i)Let U be g*α-open in Z.Since g is g*α-irresolute , 

   (U) is g*α-open in Y.Thus    (   (U)) is g*α-closed in 

X  since f is contra g*α-irresolute.(ie)(g f)-1
(U) is g*α-

closed in X.This implies that g f is contra g*α-irresolute. 

(ii) Let U be g*α-open in Z.Since g is contra g*α-

irresolute ,    (U) is g*α-closed in Y.Thus  

f (   (U)) is g*α-closed in X since f is g*α-irresolute 

(ie)(g f)-1
(U) is g*α-closed in X.This implies that g f is 

contra g*α-irresolute. 

Theorem 3.34:If f:X→Y is contra g*α-irresolute and 

g:Y→Z is g*α-continuous then g f is contra g*α-

continuous. 

Proof:Let U be an open set in Z.Since g is g*α-

continuous,   (U) is g*α-open in Y.Thus    (   (U)) is 

g*α-closed in X Since f is contra g*α-irresolute.(ie)(g f)-

1
(U) is g*α-closed in X.This implies that g f is contra g*α-

continuous. 

Remark  3.35:Every perfectly contra g*α-irresolute 

function is contra g*α-irresolute and g*α-irresolute. 

The following two examples show that a contra g*α-

irresolute function may not be perfectly contra g*α-

irresolute  and a g*α-irresolute function  may not be 

perfectly contra g*α-irresolute. 

Example 3.36:Let X=Y={1,2,3} with  ={  Y,{1}} and 

σ={  X,{2},{2,3}}.Define f:X→Y by an identity 

mapping.Clearly f is contra g*α-irresolute but not perfectly 

contra g*α-irresolute. 

Example 3.37:Let X=Y={1,2,3,4} with 

 ={  X,{3},{1,2},{1,2,3}} and 

σ={  Y,{1},{2,3},{1,2,3}}.Define f:X→Y by an identity 

mapping.Clearly f is g*α-irresolute but not perfectly contra 

g*α-irresolute. 

Theorem 3.38:A function is perfectly contra g*α-

irresolute iff f is contra g*α-irresolute and g*α-irresolute. 

Proof:It follows from the definitions 
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