International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019
 On Contra $g^{*} \alpha$-continuous functions

${ }^{[1]}$ Dr. A. Punitha Tharani, ${ }^{[2]}$ T. Delcia
${ }^{[1]}$ Associate Professor, ${ }^{[2]}$ Research Scholar
Department of Mathematics, St.Mary's College (Autonomous),Thoothukudi, Tamil Nadu, India

Abstract

In this paper,we introduce a new class of functions called contra $\mathbf{g}^{*} \boldsymbol{\alpha}$-continuous functions in topological spaces.some characterizations and several properties concerning contra $\mathrm{g}^{*} \boldsymbol{\alpha}$-continuous functions are obtained.

Keywords: -- contra $\mathrm{g}^{*} \alpha$-continuous,almost contra $\mathrm{g}^{*} \alpha$-continuous,contra $\mathrm{g}^{*} \alpha$-irresolute, $\mathrm{g}^{*} \alpha$-locally indiscrete

I. INTRODUCTION

In 1996, Dontchev presented a new notions of continuous functions called contra-continuity.This notion is stronger form of LC-continuity.The purpose of this paper is to introduce a new class of generalized continuous functions called contra $\mathrm{g}^{*} \alpha$ - continuous functions and almost contra $g^{*} \alpha$-continuous functions and investigate their relationship with other functions.

II. PRELIMINARIES

In this paper the spaces X and Y always mean topological spaces (X, τ) and (Y, σ) respectively.For a subset A of a space, $\mathrm{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$ represent closure of A and interior of A resopectively.

Definition 2.1: A Subset A of (X, τ) is called
(1) a preopen set [6] if $\mathrm{A} \subseteq$ int $\operatorname{cl}(\mathrm{A})$ and preclosed set if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}$
(2) a regular open set [13] if $\mathrm{A}=\mathrm{int} \operatorname{cl}(\mathrm{A})$ and regular closed set if $\mathrm{A}=\mathrm{cl}(\mathrm{int}(\mathrm{A}))$
(3) a α-open set [7] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))$ and α-closed if $\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$
Definition 2.2: A Subset A of (X, τ) is called
(1) generalized closed set(briefly g-closed) [5] if $\operatorname{cl}(\mathrm{A}) \subseteq$ U whenever $A \subseteq U$ and U is open in X.
(2) g^{*}-closed $[\mathbf{1 4}]$ if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
(3) regular generalized closed(briefly rg-closed) [8] if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is regular open in X.
(4) generalized preregular closed set(briefly gprclosed)[4] if $\mathrm{pcl}(\mathrm{A}) \subseteq \mathrm{U}$
(5) whenever $A \subseteq U$ and U is regular open in X.
(6) $g^{\#}$-closed [15] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\alpha \mathrm{g}$-open in X .
The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3[9]: A subset A of (X, τ) is called $g^{*} \alpha-$
closed if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g^{*}-open in X.The complement of $g^{*} \alpha$-closed set is $g^{*} \alpha$-open set.The family of $\mathrm{g}^{*} \alpha$-closed sets and $\mathrm{g}^{*} \alpha$-open sets are denoted by $\mathrm{G}^{*} \alpha-\mathrm{C}(\mathrm{X})$ and $\mathrm{G}^{*} \alpha-\mathrm{O}(\mathrm{X})$

Definition 2.4: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be
(1) $\mathrm{g}^{*} \alpha$-continuous [9] if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed in (X, τ) for every closed set V of (Y, σ).
(2) $g^{*} \alpha$-irresolute[9] if $f^{-1}(V)$ is $g^{*} \alpha$-closed in (X, τ) for every $\mathrm{g}^{*} \alpha$-closed set V of (Y, σ).
Definition 2.5: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called
(1) a contra continuous [1] if $f^{-1}(\mathrm{~V})$ is closed in (X, τ) for every open set V of (Y, σ).
(2) a contra g^{*}-continuous [11] if $f^{-1}(\mathrm{~V})$ is g^{*}-closed in (X, τ) for every open set V of (Y, σ).
(3) a contra $\mathrm{g}^{\#}$-continuous [15] if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{\#}$ - closed in (X, τ) for every open set V of (Y, σ)
Definition 2.6: A space X is called
(i) ${ }_{\alpha} T_{1 / 2}^{* *}$-space[9] if every $\mathrm{g}^{*} \alpha$-closed set in it is closed.
(ii) locally indiscrete[12] if every open subset of X is closed in X

III. CONTRA g* α-CONTINUOUS FUNCTION

In this section, we introduce the notions of contra $\mathrm{g}^{*} \alpha-$ continuous, contra $g^{*} \alpha$-irresolute and almost contra $g^{*} \alpha-$ continuous functions in topological spaces and study some of their properties.

Definition 3.1: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called Contra $\mathrm{g}^{*} \alpha$-continuous if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed set in X for each open set V in Y.

Example 3.2: :Let $\mathrm{X}=\{1,2,3\}=\mathrm{Y}$ with $\tau=\{\emptyset, X,\{1\}\}$ and $\sigma=\{\emptyset, \mathrm{Y},\{2\}\}$.Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(1)=1, \mathrm{f}(2)=3$ and $f(3)=2$.clearly f is contra $g^{*} \alpha$-continuous function.

Example 3.3: :Let $\mathrm{X}=\{1,2,3,4\} \quad \mathrm{Y}$ with $\tau=\{\varnothing, X,\{1\},\{2\},\{1,2\},\{1,2,3\}\}$ and
$\sigma=\{\varnothing, \mathrm{Y},\{3\},\{1,3,4\}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(1)$ $=1, f(2)=2, f(3)=4$ and $f(4)=3$. clearly f is contra $g^{*} \alpha-$ continuous function.

Theorem 3.4:Every contra continuous function is conta

International Journal of Science, Engineering and Management (IJSEM)
 Vol 4, Issue 2, February 2019

$\mathrm{g}^{*} \alpha$-continuous.
Proof:It follows from the fact that every closed set is $\mathrm{g}^{*} \alpha$-closed.

The converse of the above theorem is not true as seen from the following example.

Example 3.5:Let $\mathrm{X}=\{1,2,3,4\}=\mathrm{Y}$ with $\tau=\{\emptyset, X,\{1\},\{2,3\},\{1,2,3\}\}$ and
$\sigma=\{\emptyset, \mathrm{Y},\{1,3,4\}\}$. Define $\mathrm{f}: \quad(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma) \quad$ by $\mathrm{f}(1)$ $=4, f(2)=3, \quad f(3)=2$ and $f(4)=1$.clearly f is contra $g^{*} \alpha-$ continuous but not contra continuous since $f^{-1}(\{1,3,4\})=\{1,2,4\}$ is $g^{*} \alpha$-closed but not closed in X .

Theorem 3.6:If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is contra $\mathrm{g}^{*} \alpha-$ continuous and X is ${ }_{\alpha} T_{1 / 2}^{* *}$-space, then f is contra continuous.

Proof:Let V be an open set in Y.Since f is conta $g^{*} \alpha-$ continuous, $f^{-1}(\mathrm{~V})$ is $g^{*} \alpha$-closed in X.Hence V is closed in X since X is ${ }_{\alpha} T_{1 / 2}^{* *}$-space. Thus f is contra continuous.

Corallary3.7:If X is ${ }_{\alpha} T_{1 / 2}^{* *}$-space then for a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ the following are equivalent.
(i)f is contra continuous
(ii) f is contra $g^{*} \alpha$-continuous

Proof:It is obvious.
Remark 3.8: The concept of $\mathrm{g}^{*} \alpha$-continuity and contra $\mathrm{g}^{*} \alpha$ - continuity are independent as shown in the following example.

Example 3.9:Let $\mathrm{X}=\{1,2,3,4\} \quad=\mathrm{Y}$ with $\tau=\{\emptyset, X,\{1\},\{1,4\},\{1,2,4\}\}$ and
$\sigma=\{\emptyset, \mathrm{Y},\{2\},\{3,4\},\{2,3,4\}\}$.Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $f(1)=1, f(2)=3, f(3)=4$ and $f(4)=2$.clearly f is contra $g^{*} \alpha-$ continuous but $f^{-1}(\{1,2\})=\{1,4\}$ is not $\mathrm{g}^{*} \alpha$-closed in X . Therefore f is not $\mathrm{g}^{*} \alpha$-continuous.

Example 3.10:Let $\mathrm{X}=\{1,2,3,4\}=\mathrm{Y}$ with $\tau=\{\emptyset, \mathrm{X},\{1,3,4\}\}$ and $\sigma=\{\emptyset, \mathrm{Y},\{1,4\}\}$.Define
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by identity mapping.clearly f is $\mathrm{g}^{*} \alpha-$ continuous but not contra $g^{*} \alpha$-continuous since $f^{-1}(\{1,4\})=\{1,4\}$ is not $\mathrm{g}^{*} \alpha$-closed in X . Therefore f is not $\mathrm{g}^{*} \alpha$-continuous.

Theorem 3.11: Every contra g-continuous is conta $g^{*} \alpha-$ continuous.

Proof:since every g-closed set is $g^{*} \alpha$-closed ,the proof follows.

The converse of the above theorem is not true as seen from the following example.

Example 3.12: Let $\mathrm{X}=\{1,2,3\}=\mathrm{Y}$ with $\tau=\{\varnothing, \mathrm{X},\{1\},\{1,2\}\}$ and $\sigma=\{\varnothing, \mathrm{Y},\{2\}\}$.Define
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(1)=3, \mathrm{f}(2)=2$ and $\mathrm{f}(3)=1$.clearly f is contra $\mathrm{g}^{*} \alpha$-continuous but not contra g -continuous.

Theorem 3.13:(i)Every contra g^{*}-continuous is contra $\mathrm{g}^{*} \alpha$-continuous.
(ii)Every contra $g^{*} \alpha$-continuous is contra rg-continuous.
(iii)Every contra $g^{*} \alpha$-continuous is contra gpr-continuous
(iv)Every contra $g^{\#}$-continuous is contra $g^{*} \alpha$-continuous.

Proof:(i) \& (iv) proof follows from the fact that every g^{*} closed and $\mathrm{g}^{\#}$ - closed is $\mathrm{g}^{*} \alpha$-closed.
(ii) \& (iii) since every $g * \alpha$-closed set is rg-closed and gprclosed, the proof follows.

Remark 3.14:The converse of the above theorem need not be true as seen from the following examples.

Example 3.15: Let $\mathrm{X}=\{1,2,3\}=\mathrm{Y}$ with $\tau=\{\emptyset, \mathrm{X},\{1\},\{1,2\},\{1,3\}\}$ and $\sigma=\{\varnothing, Y,\{2\}\}$.Define
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(1)=2, \mathrm{f}(2)=3$ and $\mathrm{f}(3)=1$. clearly f is contra rg-continuous and contra gpr-continuous but not contra $\mathrm{g}^{*} \alpha$-continuous.

Example 3.16: Let $X=\{1,2,3\}=Y$ with $\tau=\{\varnothing, X,\{1\}\}$ and $\sigma=\{\emptyset, \mathrm{Y},\{2,3\}\}$.Define
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(1)=2, \mathrm{f}(2)=1$ and $\mathrm{f}(3)=3$. Here f is contra $g^{*} \alpha$-continuous but not contra $g^{\#}$-continuous and contra g^{*}-continuous.

Remark 3.17:The composition of two contra $g^{*} \alpha-$ continuous functions need not be contra $\mathrm{g}^{*} \alpha$-continuous as seen from the following example.

Example 3.18: Let $\mathrm{X}=\{1,2,3,4\}=\mathrm{Y}$ with $\tau=\{\emptyset, X,\{3\},\{1,3,4\}\} \quad$ and $\sigma=\{\emptyset, \mathrm{Y},\{1\},\{2\},\{1,2\}\{2,3\},\{1,2,3\}\}$ and $\eta=\{\mathrm{z}$, $\emptyset,\{1,3,4\}$ Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and
$\mathrm{g}:(\mathrm{Y}, \tau) \rightarrow(\eta, \sigma)$ by identity mapping. Here f and g are contra $g^{*} \alpha$-continuous.But $g^{\circ} \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is not contra $\mathrm{g}^{*} \alpha$ continuous, since $\quad\left(\mathrm{g}^{\circ} f\right)^{-1}(\{1,3,4\}\}=f^{-1}\left(g^{-1}(\{1,3,4\})\right)=$ $f^{-1}(\{1,3,4\})=\{1,3,4\}$ which is not $\mathrm{g}^{*} \alpha$-closed in X .

Theorem 3.19:If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is contra $\mathrm{g}^{*} \alpha$-continuous and $g: Y \rightarrow Z$ is continuous then $g^{\circ} f: X \rightarrow Z$ is contra $g^{*} \alpha-$ continuous.

Proof:Let V be open in Z. Since g is continuous $g^{-1}(\mathrm{~V})$ is open in Y.Then $f^{-1}\left(g^{-1}(\mathrm{~V})\right)$ is $g^{*} \alpha$-closed in X since f is contra $\mathrm{g}^{*} \alpha$-continuous. Thus $\left(\mathrm{g}^{\circ} \mathrm{f}\right)^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed in X.Hence $g^{\circ} \mathrm{f}$ is contra $\mathrm{g}^{*} \alpha$-continuous.

Corallary 3.20: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\mathrm{g}^{*} \alpha$-irresolute and $g: Y \rightarrow Z$ is contra continuous function then $g^{\circ} f: X \rightarrow Z$ is contra $\mathrm{g}^{*} \alpha$-continuous.

Proof:Using the fact that every contra continuous is contra $\mathrm{g}^{*} \alpha$-continuous.

Theorem 3.21: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be surjective, $\mathrm{g}^{*} \alpha$-irresolute and $\mathrm{g}^{*} \alpha$-open and is continuous and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be any function then $g^{\circ} f$ is contra $g^{*} \alpha$-continuous iff g is contra $\mathrm{g}^{*} \alpha$-continuous.

Proof:Suppose $g^{\circ} f$ is contra $g^{*} \alpha$-continuous.Let V be a closed set in Z.Then $\left(\mathrm{g}^{\circ} \mathrm{f}\right)^{-1}(\mathrm{~V})=f^{-1}\left(g^{-1}(\mathrm{~V})\right)$ is $\mathrm{g}^{*} \alpha$-open

International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 2, February 2019

in X.Since f is $g^{*} \alpha$-open and surjective, $g^{*} \alpha$-irresolute $\mathrm{f}\left(f^{-1}\left(g^{-1}(\mathrm{~V})\right)\right.$ is $\mathrm{g}^{*} \alpha$-open in Y.(ie) $g^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open in Y.Hence g is contra $g^{*} \alpha$-continuous.Conversely suppose that g is contra $g^{*} \alpha$-continuous.Let V be closed in Z.Then $g^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open in Y.Since f is $\mathrm{g}^{*} \alpha$-irresolute $f^{-1}\left(g^{-1}(\mathrm{~V})\right)$ is $\mathrm{g}^{*} \alpha$-open (ie) $\left(\mathrm{g}^{\circ} \mathrm{f}\right)^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open in X.Hence $g^{\circ} \mathrm{f}$ is contra $\mathrm{g}^{*} \alpha$-continuous.

Theorem 3.22:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a map. Then the following are equivalent.
(i)f is contra $g^{*} \alpha$-continuous
(ii)The inverse image of each closed set in Y is $g^{*} \alpha$-open in X .

Proof:(i) \Rightarrow (ii) and (ii) \Rightarrow (i) are obvious.
Definition 3.23:A space (X, τ) is called locally $\mathrm{g}^{*} \alpha-$ indiscrete if every $\mathrm{g}^{*} \alpha$-open set of X is closed in X .

Theorem 3.24: Let X be locally $g^{*} \alpha$-indiscrete.If $f: X \rightarrow Y$ is contra $g^{*} \alpha$-continuous then it is continuous.

Proof:Let $\mathrm{V} \in \mathrm{O}(\mathrm{Y})$.Then $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed in X. Since X is locally $g^{*} \alpha$-indiscrete space, $f^{-1}(\mathrm{~V})$ is open in X.Hence f is continuous.

Theorem 3.25:If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g}^{*} \alpha$-continuous and the space (X, τ) is $\mathrm{g}^{*} \alpha$-locally indiscrete then f is contra continuous.

Proof:Let $V \in O(Y)$.Since f is $g^{*} \alpha$-continuous, $f^{-1}(V)$ is $\mathrm{g}^{*} \alpha$-open in X.Since X is locally $\mathrm{g}^{*} \alpha$ - indiscrete, $f^{-1}(\mathrm{~V})$ is closed in X.Hence f is contra continuous.

Definition 3.25: A function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called almost $\mathrm{g}^{*} \alpha$-continuous if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open set in X for every regular open set V of Y .

Definition 3.26: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called almost Contra $\mathrm{g}^{*} \alpha$-continuous if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed set in X for every regular open set V of Y.

Theorem 3.26:Every contra $g^{*} \alpha$-continuous function is almost contra $g^{*} \alpha$-continuous.

Proof:Since every regular open set is open the proof follows.

Theorem 3.27:Every regular set connected function is almost contra $g^{*} \alpha$-continuous but not conversely.

Proof:Proof is straight forward.
Example 3.28: $\mathrm{X}=\mathrm{Y}=\{1,2,3,4\} \quad$ with
$\tau=\{\emptyset, \mathrm{X},\{1\},\{1,2\},\{1,4\},\{1,2,3\},\{4\},\{1,2,4\}\}$ and
$\sigma=\{\emptyset, \mathrm{Y},\{3\},\{4\},\{3,4\},\{2,4\},\{1,3,4\},\{2,3,4\}\}$. Let f be an identity map.The inverse image of regular open set $\{2,4\}$ is not clopen in X.But the inverse image of regular open set in Y is $g^{*} \alpha$-closed in X.Hence f is almost contra $g^{*} \alpha$ continuous but not regular set connected.

Theorem 3.27:Let $\mathrm{f}: ~ \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions. Then the following properties hold.
a)If f is almost contra $\mathrm{g}^{*} \alpha$-continuous and g is regular set
connected,then $g \circ f: X \rightarrow Z$ is almost contra $g^{*} \alpha$-continuous and almost $\mathrm{g}^{*} \alpha$-continuous.
b)If f is almost contra $\mathrm{g}^{*} \alpha$-continuous and g is perfectly continuous gof: $X \rightarrow Z$ is $g^{*} \alpha$-continuous and contra $g^{*} \alpha-$ continuous.

Proof:(a) Let $V \in R O(Z)$.Since g is regular set connected, $g^{-1}(\mathrm{~V})$ is clopen in Y.since f is almost contra $\mathrm{g}^{*} \alpha$-continuous, $f^{-1}\left(g^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open and $g^{*} \alpha$-closed in X.Therefore $g^{\circ} f$ is almost contra $g^{*} \alpha$ continuous and almost $\mathrm{g}^{*} \alpha$-continuous.
(b)Let v be open in Z.Since g is perfectly continuous, $g^{-1}(\mathrm{~V})$ is clopen in Y.since f is almost contra $\mathrm{g}^{*} \alpha$-continuous, $f^{-1}\left(g^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-open and $g^{*} \alpha$-closed in X. Therefore $g^{\circ} f$ is $g^{*} \alpha$-continuous and contra $\mathrm{g}^{*} \alpha$-continuous.

Definition 3.25: A function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called Contra $\mathrm{g}^{*} \alpha$-irresolute if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed set in X for every $\mathrm{g}^{*} \alpha$ - open set V in Y .

Definition 3.26:A function f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called perfectly Contra $\mathrm{g}^{*} \alpha$-irresolute if $f^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \alpha$-closed and $\mathrm{g}^{*} \alpha$-open in X for every $\mathrm{g}^{*} \alpha$ - open set V in Y .

Theorem 3.27:If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is perfectly contra $\mathrm{g}^{*} \alpha-$ irresolute iff f is contra $\mathrm{g}^{*} \alpha$-irresolute and $\mathrm{g}^{*} \alpha$-irresolute.

Proof:It directly follows from the definitions.
Remark 3.28:The following example shows that the concepts of $\mathrm{g}^{*} \alpha$-irresolute and contra $\mathrm{g}^{*} \alpha$-irresolute are indepdent of each other.

Example 3.29:Let $\mathrm{X}=\mathrm{Y}=\{1,2,3\} \quad$ with $\tau=\{\emptyset, \mathrm{X},\{1\},\{2\},\{1,2\}\} \quad$ and $\quad \sigma=\{\emptyset, Y,\{1,2\}\}$.Define $f: X \rightarrow Y$ by $f(1)=2, f(2)=1$ and $f(3)=3$. Clearly f is $g^{*} \alpha-$ irresolute but not contra $\mathrm{g}^{*} \alpha$-irresolute since $f^{-1}(\{1\})$ $=\{2\}$ is not $\mathrm{g}^{*} \alpha$-closed in X .

Example 3.30:Let $\mathrm{X}=\mathrm{Y}=\{1,2,3\}$ with $\tau=\{\varnothing, \mathrm{X},\{1\},\{1,2\}\}$ and $\sigma=\{\emptyset, Y,\{2,3\}\}$.Define $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(1)=1, \mathrm{f}(2)=3$ and $f(3)=2$. Clearly f is contra $g^{*} \alpha$-irresolute but not $g^{*} \alpha-$ irresolute since $f^{-1}(\{1,3\})=\{1,2\}$ is not $\mathrm{g}^{*} \alpha$-closed in X .

Remark 3.31:Every contra $\mathrm{g}^{*} \alpha$-irresolute function is contra $\mathrm{g}^{*} \alpha$-continuous .But the converse need not be true as seen from the following example.

Example 3.32:Let $\quad \mathrm{X}=\mathrm{Y}=\{1,2,3,4\} \quad$ with
$\tau=\{\emptyset, X,\{1\},\{1,2\},\{1,4\},\{1,2,3\},\{4\},\{1,2,4\}\} \quad$ and $\sigma=\{\emptyset, \mathrm{Y},\{3\},\{1,3,4\}\}$.Define $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by an identity mapping.Clearly f is contra $\mathrm{g}^{*} \alpha$-continuous but not contra $\mathrm{g}^{*} \alpha$-irresolute.

Theorem 3.33:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be a function. Then
(i)if g is $g^{*} \alpha$-irresolute and f is contra $g^{*} \alpha$-irresolute then $g^{\circ} f$ is contra $g^{*} \alpha$-irresolute.
(ii)if f is $\mathrm{g}^{*} \alpha$-irresolute and g is contra $\mathrm{g}^{*} \alpha$-irresolute then

International Journal of Science, Engineering and Management (IJSEM)
 Vol 4, Issue 2, February 2019

$g^{\circ} f$ is contra $g^{*} \alpha$-irresolute.
$\operatorname{Proof}(\mathbf{i}) L e t U$ be $g^{*} \alpha$-open in Z. Since g is $g^{*} \alpha$-irresolute , $g^{-1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$-open in Y.Thus $f^{-1}\left(g^{-1}(\mathrm{U})\right)$ is $\mathrm{g}^{*} \alpha$-closed in X since f is contra $g^{*} \alpha$-irresolute. $(\mathrm{ie})\left(\mathrm{g}^{\circ} \mathrm{f}\right)^{-1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$ closed in X.This implies that $\mathrm{g}^{\circ} \mathrm{f}$ is contra $\mathrm{g}^{*} \alpha$-irresolute.
(ii) Let U be $g^{*} \alpha$-open in Z.Since g is contra $g^{*} \alpha-$ irresolute, $g^{-1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$-closed in Y.Thus
$\mathrm{f}\left(g^{-1}(\mathrm{U})\right)$ is $\mathrm{g}^{*} \alpha$-closed in X since f is $\mathrm{g}^{*} \alpha$-irresolute $($ ie $)\left(g^{\circ} f\right)^{-1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$-closed in X.This implies that $\mathrm{g}^{\circ} \mathrm{f}$ is contra $g^{*} \alpha$-irresolute.

Theorem 3.34:If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is contra $\mathrm{g}^{*} \alpha$-irresolute and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is $\mathrm{g}^{*} \alpha$-continuous then $\mathrm{g}^{\circ} \mathrm{f}$ is contra $\mathrm{g}^{*} \alpha$ continuous.

Proof:Let U be an open set in Z. Since g is $g^{*} \alpha-$ continuous, $g^{-1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$-open in Y.Thus $f^{-1}\left(g^{-1}(\mathrm{U})\right)$ is $g^{*} \alpha$-closed in X Since f is contra $\mathrm{g}^{*} \alpha$-irresolute.(ie) $\left(\mathrm{g}^{\circ} \mathrm{f}\right)^{-}$ ${ }^{1}(\mathrm{U})$ is $\mathrm{g}^{*} \alpha$-closed in X.This implies that $\mathrm{g}^{\circ} \mathrm{f}$ is contra $\mathrm{g}^{*} \alpha$ continuous.

Remark 3.35:Every perfectly contra $\mathrm{g}^{*} \alpha$-irresolute function is contra $g^{*} \alpha$-irresolute and $g^{*} \alpha$-irresolute.

The following two examples show that a contra $g^{*} \alpha$ irresolute function may not be perfectly contra $g^{*} \alpha-$ irresolute and a $g^{*} \alpha$-irresolute function may not be perfectly contra $g^{*} \alpha$-irresolute.

Example 3.36:Let $\mathrm{X}=\mathrm{Y}=\{1,2,3\}$ with $\tau=\{\varnothing, \mathrm{Y},\{1\}\}$ and $\sigma=\{\emptyset, X,\{2\},\{2,3\}\}$.Define $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by an identity mapping.Clearly f is contra $\mathrm{g}^{*} \alpha$-irresolute but not perfectly contra $\mathrm{g}^{*} \alpha$-irresolute.

Example 3.37:Let $\quad \mathrm{X}=\mathrm{Y}=\{1,2,3,4\} \quad$ with $\tau=\{\emptyset, X,\{3\},\{1,2\},\{1,2,3\}\} \quad$ and $\sigma=\{\emptyset, \mathrm{Y},\{1\},\{2,3\},\{1,2,3\}\}$. Define $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by an identity mapping. Clearly f is $\mathrm{g}^{*} \alpha$-irresolute but not perfectly contra $\mathrm{g}^{*} \alpha$-irresolute.

Theorem 3.38: A function is perfectly contra $g^{*} \alpha-$ irresolute iff f is contra $g^{*} \alpha$-irresolute and $g^{*} \alpha$-irresolute.
Proof:It follows from the definitions

REFERENCES

1. Dontchev.J, "Contra-continuous functions and strongly S-closedspaces",Internat.J.Math.Sci.19(1996),303-310.
2. E.Ekici, almost contra pre-continuous functions,Bull. Malaysian Math.Sci.Soc.,27:53:65, 2004.
3. E.Ekici, On contra $\pi \mathrm{g}$-continuous functions, chaos, Solitons and Fractals, 35(2008), 71-81.
4. Gnanambal. Y, "On generalized preregular closed sets in topological spaces", Indian J. Pure App.Math.28,1997, 351360.
5. Levine. N., "Generalized closed sets in topology", Rend. Circ. Mat. Palermo 19, 1970, 89-96.
6. Mashhour. A.S., Abd. El-Monsef. M.E. and El.Deeb S.N., "On pre continuous mappings and weak pre-continuous mappings",Proc Math, Phys. Soc. Egypt 53(1982), 47-53.
7. Njastad O. On some classes of nearly open sets, Pacific J Math., 15(1965),961-970.
8. Palaniappan. N. and Rao. K.C, "Regular generalized closed sets",Kyungpook Math. J. 33.1993, 211-219.
9. Punitha tharani,Delcia, " $g * \alpha$-closed sets in topological spaces", International Journal of Mathematical Archive -8(10), 2017, 71-80.
10. Sekar.S and Jeyakumar.P, On Generalized gp*-closed map in Topological spaces, Applied Mathematical sciences, vol. 8-2014
11. Steen L.A and Jr.J.A.Seebach, Counter examples in topology.A.Holt.Newyork, Rienhart and Winston, 1970.
12. Stone. M, "Application of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc. 41, 1937, 374-481.
13. Veerakumar M.K.R.S., Between closed sets and g-closed sets. Mem. Fac. Sci. Koch Univ.Ser.A.Math, 1721 (2000), 1-19.
14. Veerakumar M.K.R.S., g\#-closed sets. Mem. Fac. Sci. Kochi J.Math., 24(2003),1-13.
