
ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 4, Issue 10, September 2019

 All Rights Reserved © 2019 IJSEM 5

A Review on Image, Video Frames, Text Detection

and Character Recognition in Scene

[1]
 Anirudha Kolpyakwar,

[2]
Ritesh Deshmukh,

[3]
Kiran Chavhan,

[4]
Aashna Rukhsaar,

[5]
Rahul Raut

[1][2][3][4][5]
Assistant Professor, Department of Computer Engineering, Jagadambha College of Engineering and Technology,

Yavatmal, India

Abstract:---Reading text from image is very difficult that has received a significant amount of attention. The major key components of

most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design

better feature representations and models for both. In this paper, an efficient algorithm which can automatically detect, localize and

extract horizontally aligned text in images (and digital videos) with complex backgrounds is presented. The proposed approach is

based on the application of a color reduction technique, a method for edge detection, and the localization of text regions using

projection profile analyses and geometrical properties. The output of the algorithm are text boxes with a simplified background,

ready to be fed into an OCR engine for subsequent character recognition. Our proposal is robust with respect to different font sizes,

font colors, languages and background complexities. The performance of the approach is demonstrated by presenting promising

experimental results for a set of images taken from different types of video sequences.

Key words:---optical character recognition, subtitles, visually impaired people, Character recognition, feature extraction, pattern

matching, training..

I. INTRODUCTION

Detecting text in natural images, as opposed to scans of

printed pages, faxes and business cards, is an important step

for a number of Computer Vision applications, such as

computerized aid for visually impaired, automatic

geocoding of businesses, and robotic navigation in urban

environments. Retrieving texts in both indoor and outdoor

environments provides contextual clues for a wide variety of

vision tasks. Moreover, it has been shown that the

performance of image retrieval algorithms depends critically

on the performance of their text detection modules. For

example, two book covers of similar design but with

different text, prove to be virtually indistinguishable without

detecting and OCRing the text.

The recognition rate in these algorithms depends on the

choice of features. Most of the existing algorithms involve

extensive processing on the image before the features are

extracted that results in increased computational time.

In this paper, we propose a new text detection method

which allows to detect, localize and extract texts from color

images with complex backgrounds. The approach is targeted

towards being robust with respect to different kinds of text

appearances, including font size, color and language. To

achieve this aim, the main focus of the proposed algorithm

is centered on the recognition of the specific edge

characteristics of characters. Based on the way how possible

text areas are detected and localized, our method can be

classified as a connectedcomponent based approach. It

essentially works as follows: Color images are first

converted to grayscale images. An edge image is generated

using a contrast segmentation algorithm, which in turn uses

the contrast of the character contour pixels to their

neighboring pixels. This is followed by the analysis of the

horizontal projection of the edge image in order to localize

the possible text areas. After applying several heuristics to

enhance the resulting image created in the previous step, an

output image is generated that shows the text appearing in

the input image with a simplified background. The

performance of our approach is illustrated by presenting

experimental results for different sets of images.

II. LEARNING CHARACTERS

The Text recognition algorithm relies on a set of learned

characters and their properties. It compares the characters in

the scanned image file to the characters in this learned

set.Generating the learned set is quite simple. It requires that

an image file with the desired characters in the desired font

be created, and a text file representing the characters in this

image file. If a character such as pi, has a multicharacter

translation, angled brackets should be placed around the

translation.Once the learned set has been read in from the

image file and its properties recognized, it can be written out

to a "learn" file. This file stores the properties of the learned

characters in abbreviated form, eliminating the need for

retaining the images of the learned characters, and can be

read in very quickly.

The main goals are image acquisition, pre- processing,

feature extraction and pattern generation. The main task of

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 4, Issue 10, September 2019

All Rights Reserved © 2019 IJSEM 6

image acquisition module is to obtain text image from a

scanner or a pre-stored image file. It is called „image‟

because scanner inherently scans pixel of the text and not

characters when patterns are scanned and digitized, the data

may carry some unwanted noise. For example, a scanner

with low resolution may produce touching line segments

and smeared images. A pre-processor is used to smooth the

digitized characters. Moreover, the system must be able to

handle touching characters, proportional spacing, variable

line spacing and change of font style in the scanned text, in

addition to the problems of multi-fonts.

III. LINE DETECTION

To detect lines of text (which is later useful in

determining the order of characters and possibly their layout

on the page) we do a horizontal projection of the page. Our

original plan was to detect line breaks using some kind of

statistical analysis, but for now, adjacent lines in the image

having a very small number of pixels constitute a line break.

Noise can deceive this simple algorithm, but adjusting the

NoiseTolerance global variable can usually allow the user to

overcome this shortcoming.

Figure 2. Line detection using pixels

IV. COMPONENT EXTRACTION/PROJECTION

ABOVE AND BELOW

To extract the connected components from each line,

OCRchie, starting at the upper right corner of each line,

removes touching intervals of black pixels from the run-

length-encoded representation of the image until nothing

more connected can be found. The extraction routine then

looks upward and downward to see if there are possible

"extra parts", such as the dot on an 'i', hanging directly

above or below the component. It ignores components that

are only minimally above or below the extracted

component, as when the tail of a 'y' extends below the letter

preceding it. The projection does not occur if the region has

been marked as an equation in the user interface.

V. CHARACTER PROPERTY EXTRACTION AND

COMPARISON

After extracting the individual characters in a document

and determining their properties, we compare them to the

learned set. The comparison algorithm is simple: it sums the

squares of the differences between each property in the

extracted character and each property in the learned

character, returning a "Confidence". Initially, we compared

each extracted character to the entire linked list of learned

characters, but in the interest of speed, we modified this

slightly to classify characters in relation to the baseline of

their line of text. Letters like "g", "j" & "y", which extend

below the baseline are in one group, tall letters, such as "l"

and "T" are in another, short characters, like "a" and "c"

another, and floating characters, such as "'" and "^" are in

the last. Once classified, an extracted character is compared

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 4, Issue 10, September 2019

All Rights Reserved © 2019 IJSEM 7

to learned characters which are in the same group. If no

good match is found, the extracted character is then

compared to the other learned characters, regardless of

group.

The major problems comes in the detection or in the

extraction process the comparison of upper case and lower

case letters are easy with the help of ASCII text but it comes

to very difficult in special characters. The difference

between „I‟ and the „ I‟ is giving false. In these one is small

L and other is capital I. same thing happening in A and P.,

O. and Q. To resolve these things we divide the frames in to

micro partitions and after that merge small groups. It is only

possible with high clarity images.

VI. SPLITTING WIDE CHARACTERS AND

GROUPING LETTERS INTO TEXT

The most obvious cause of misrecognition in our original

program was linked characters. An "r" would just barely

touch an "i", and the character would be recognized as an

"n". To alleviate this problem, when encountering a low

confidence match on a wide character, OCRchie will split

the character at its most narrow point. If the confidence of

the left side of the split higher than before, the character is

assumed to be joined, and the split remains. Otherwise, the

split is rolled back.

This approach could possibly cause problems with

something like "mi"-- with a poorly scanned "m", the joined

character could be broken in the middle of the "m", find an

"n", and do something unpredictable with the remnants of

the "m" and the "i".

An important cue for text is that it appears in a linear

form. Text on a line is expected to have similarities,

including similar stroke width, letter width, height and

spaces between the letters and words. Including this

reasoning proves to be both straightforward and valuable.

For example, a lamp post next to a car wheel would not be

mistaken for the combination of letters “O” and “I” as the

post is much higher than the wheel. We consider each pair

of letter candidates for the possibility of belonging to the

same text line. Two letter candidates should have similar

stroke width. The distance between letters must not exceed

three times the width of the wider one. Additionally,

average colors of candidates for pairing are compared, as

letters in the same word are typically expected to be written

in the same color. All parameters were learned by

optimizing performance on the training set. At the next step

of the algorithm, the candidate pairs determined above are

clustered together into chains. Initially, each chain consists

of a single pair of letter candidates. Two chains can be

merged together if they share one end and have similar

direction. The process ends when no chains can be merged.

Each produced chain of sufficient length (at least 3 letters in

our experiments) is considered to be a text line. Finally, text

lines are broken into separate words, using a heuristic that

computes a histogram of horizontal distances between

consecutive letters and estimates the distance threshold that

separates intra-word letter distances from inter-word letter

distances.

VII. CONCLUSION

In this work we show how to leverage on the idea of the

recovery of stroke width for text detection. We define the

notion of a stroke and derive an efficient algorithm to

compute it, producing a new image feature. Once recovered,

it provides a feature that has proven to be reliable and

flexible for text detection. Unlike previous features used for

text detection, we compared to the most recent available

tests, our reached first place and was about 15 times faster

than the speed reported there. The feature was dominant

enough to be used by itself, without the need for actual

character recognition step as used in some previous works.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 4, Issue 10, September 2019

All Rights Reserved © 2019 IJSEM 8

This allows us to apply the method to many languages and

fonts. There are several possible extensions for this work.

The grouping of letters can be improved by considering the

directions of the recovered strokes. This may allow the

detection of curved text lines as well.

REFERENCES

1. R. Salakhutdinov and G. E. Hinton, “Deep

Boltzmann Machines,” in 12th International

Conference on AI and Statistics, 2009.

2. M. Ranzato, A. Krizhevsky, and G. E. Hinton,

“Factored 3- way Restricted Boltzmann Machines for

Modeling Natural Images,” in 13th International

Conference on AI and Statistics, 2010.

3. Y. Bengio, P. Lamblin, D. Popovici, and H.

Larochelle, “Greedy layer-wise training of deep

networks,” in Neural Information Processing

Systems, 2006.

4. R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng,

“Selftaught learning: transfer learning from unlabeled

data,” in 24th International Conference on Machine

learning, 2007.

5. J. C. van Gemert, J. M. Geusebroek, C. J. Veenman,

and A. W. M. Smeulders, “Kernel codebooks for

scene categorization,” in European Conference on

Computer Vision, 2008.

6. L.-J. Li, H. Su, E. Xing, and L. Fei-Fei, “Object

bank: A high-level image representation for scene

classification and semantic feature sparsification,” in

Advances in Neural Information Processing Systems,

2010.

7. Y. Pan, X. Hou, and C. Liu, “A robust system to

detect and localize texts in natural scene images,” in

International Workshop on Document Analysis

Systems, 2008.

8. J. J. Weinman, E. Learned-Miller, and A. R. Hanson,

“A discriminative semi-markov model for robust

scene text recognition,” in Proc. IAPR International

Conference on Pattern Recognition, Dec. 2008.

9. X. Fan and G. Fan, “Graphical Models for Joint

Segmentation and Recognition of License Plate

Characters,” IEEE Signal Processing Letters, vol. 16,

no. 1, 2009.

10. J. J. Weinman, “Typographical features for scene text

recognition,” in Proc. IAPR International Conference

on Pattern Recognition, Aug. 2010, pp. 3987–3990.

11. A.K. Jain and B. Yu: Automatic Text Location in

Images and Video Frames. Pattern Recognition. Vol.

31, No. 12, (1998)2055-2076.

12. X.S. Hua, W.Y. Liu, H.J. Zhang: Automatic

Performance Evaluation for Video Text Detection.

In: Int. Conf. on Document Analysis and Recognition

(2001).

13. D. T. Chen, H. Bourlard, J-P. Thiran: Text

Identification in Complex Background Using SVM.

Int. Conf. on CVPR (2001).

14. Y. Zhong, H.J. Zhang, and A. K. Jain: Automatic

Caption Localization in Compressed Video. IEEE

Trans. on PAMI, Vol. 22, No. 4, (2000)385-392.

15. R. Lienhart and A. Wernicke: Localizing and

Segmenting Text in Images and Videos. IEEE Trans.

on CSVT, Vol.12, No.4 (2002).

