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Abstract:---Reading text from image is very difficult that has received a significant amount of attention. The major key components of 

most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design 

better feature representations and models for both. In this paper, an efficient algorithm which can automatically detect, localize and 

extract horizontally aligned text in images (and digital videos) with complex backgrounds is presented. The proposed approach is 

based on the application of a color reduction technique, a method for edge detection, and the localization of text regions using 

projection profile analyses and geometrical properties. The output of the algorithm are text boxes with a simplified background, 

ready to be fed into an OCR engine for subsequent character recognition. Our proposal is robust with respect to different font sizes, 

font colors, languages and background complexities. The performance of the approach is demonstrated by presenting promising 

experimental results for a set of images taken from different types of video sequences. 
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I. INTRODUCTION 

 

Detecting text in natural images, as opposed to scans of 

printed pages, faxes and business cards, is an important step 

for a number of Computer Vision applications, such as 

computerized aid for visually impaired, automatic 

geocoding of businesses, and robotic navigation in urban 

environments. Retrieving texts in both indoor and outdoor 

environments provides contextual clues for a wide variety of 

vision tasks. Moreover, it has been shown that the 

performance of image retrieval algorithms depends critically 

on the performance of their text detection modules. For 

example, two book covers of similar design but with 

different text, prove to be virtually indistinguishable without 

detecting and OCRing the text. 

The recognition rate in these algorithms depends on the 

choice of features. Most of the existing algorithms involve 

extensive processing on the image before the features are 

extracted that results in increased computational time. 

In this paper, we propose a new text detection method 

which allows to detect, localize and extract texts from color 

images with complex backgrounds. The approach is targeted 

towards being robust with respect to different kinds of text 

appearances, including font size, color and language. To 

achieve this aim, the main focus of the proposed algorithm 

is centered on the recognition of the specific edge 

characteristics of characters. Based on the way how possible 

text areas are detected and localized, our method can be 

classified as a connectedcomponent based approach. It 

essentially works as follows: Color images are first 

converted to grayscale images. An edge image is generated 

using a contrast segmentation algorithm, which in turn uses 

the contrast of the character contour pixels to their 

neighboring pixels. This is followed by the analysis of the 

horizontal projection of the edge image in  order to localize 

the possible text areas. After applying several heuristics to 

enhance the resulting image created in the previous step, an 

output image is generated that shows the text appearing in 

the input image with a simplified background. The 

performance of our approach is illustrated by presenting 

experimental results for different sets of images. 

 

II. LEARNING CHARACTERS 

 

The Text recognition algorithm relies on a set of learned 

characters and their properties. It compares the characters in 

the scanned image file to the characters in this learned 

set.Generating the learned set is quite simple. It requires that 

an image file with the desired characters in the desired font 

be created, and a text file representing the characters in this 

image file. If a character such as pi, has a multicharacter 

translation, angled brackets should be placed around the 

translation.Once the learned set has been read in from the 

image file and its properties recognized, it can be written out 

to a "learn" file. This file stores the properties of the learned 

characters in abbreviated form, eliminating the need for 

retaining the images of the learned characters, and can be 

read in very quickly. 

The main goals are image acquisition, pre- processing, 

feature extraction and pattern generation. The main task of 
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image acquisition module is to obtain text image from a 

scanner or a pre-stored image file. It is called „image‟ 

because scanner inherently scans pixel of the text and not 

characters when patterns are scanned and digitized, the data 

may carry some unwanted noise. For example, a scanner 

with low resolution may produce touching line segments 

and smeared images. A pre-processor is used to smooth the 

digitized characters. Moreover, the system must be able to 

handle touching characters, proportional spacing, variable 

line spacing and change of font style in the scanned text, in 

addition to the problems of multi-fonts. 

 

 
  

III. LINE DETECTION 

 

To detect lines of text (which is later useful in 

determining the order of characters and possibly their layout 

on the page) we do a horizontal projection of the page. Our 

original plan was to detect line breaks using some kind of 

statistical analysis, but for now, adjacent lines in the image 

having a very small number of pixels constitute a line break. 

Noise can deceive this simple algorithm, but adjusting the 

NoiseTolerance global variable can usually allow the user to 

overcome this shortcoming. 

 

 
Figure 2. Line detection using pixels 

IV. COMPONENT EXTRACTION/PROJECTION 

ABOVE AND BELOW 

  

 
To extract the connected components from each line, 

OCRchie, starting at the upper right corner of each line, 

removes touching intervals of black pixels from the run-

length-encoded representation of the image until nothing 

more connected can be found. The extraction routine then 

looks upward and downward to see if there are possible 

"extra parts", such as the dot on an 'i', hanging directly 

above or below the component. It ignores components that 

are only minimally above or below the extracted 

component, as when the tail of a 'y' extends below the letter 

preceding it. The projection does not occur if the region has 

been marked as an equation in the user interface. 

 
 

V. CHARACTER PROPERTY EXTRACTION AND 

COMPARISON 

 

After extracting the individual characters in a document 

and determining their properties, we compare them to the 

learned set. The comparison algorithm is simple: it sums the 

squares of the differences between each property in the 

extracted character and each property in the learned 

character, returning a "Confidence". Initially, we compared 

each extracted character to the entire linked list of learned 

characters, but in the interest of speed, we modified this 

slightly to classify characters in relation to the baseline of 

their line of text. Letters like "g", "j" & "y", which extend 

below the baseline are in one group, tall letters, such as "l" 

and "T" are in another, short characters, like "a" and "c" 

another, and floating characters, such as "'" and "^" are in 

the last. Once classified, an extracted character is compared 
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to learned characters which are in the same group. If no 

good match is found, the extracted character is then 

compared to the other learned characters, regardless of 

group. 

The major problems comes in the detection or in the 

extraction process the comparison of upper case and lower 

case letters are easy with the help of ASCII text but it comes 

to very difficult in special characters. The difference 

between „I‟ and the „ I‟ is giving false. In these one is small 

L and other is capital I. same thing happening in A and P., 

O. and Q. To resolve these things we divide the frames in to 

micro partitions and after that merge small groups. It is only 

possible with high clarity images. 

 

VI. SPLITTING WIDE CHARACTERS AND 

GROUPING LETTERS INTO TEXT 

 

The most obvious cause of misrecognition in our original 

program was linked characters. An "r" would just barely 

touch an "i", and the character would be recognized as an 

"n". To alleviate this problem, when encountering a low 

confidence match on a wide character, OCRchie will split 

the character at its most narrow point. If the confidence of 

the left side of the split higher than before, the character is 

assumed to be joined, and the split remains. Otherwise, the 

split is rolled back. 

This approach could possibly cause problems with 

something like "mi"-- with a poorly scanned "m", the joined 

character could be broken in the middle of the "m", find an 

"n", and do something unpredictable with the remnants of 

the "m" and the "i". 

An important cue for text is that it appears in a linear 

form. Text on a line is expected to have similarities, 

including similar stroke width, letter width, height and 

spaces between the letters and words. Including this 

reasoning proves to be both straightforward and valuable. 

For example, a lamp post next to a car wheel would not be 

mistaken for the combination of letters “O” and “I” as the 

post is much higher than the wheel. We consider each pair 

of letter candidates for the possibility of belonging to the 

same text line. Two letter candidates should have similar 

stroke width. The distance between letters must not exceed 

three times the width of the wider one. Additionally, 

average colors of candidates for pairing are compared, as 

letters in the same word are typically expected to be written 

in the same color. All parameters were learned by 

optimizing performance on the training set. At the next step 

of the algorithm, the candidate pairs determined above are 

clustered together into chains. Initially, each chain consists 

of a single pair of letter candidates. Two chains can be 

merged together if they share one end and have similar 

direction. The process ends when no chains can be merged. 

Each produced chain of sufficient length (at least 3 letters in 

our experiments) is considered to be a text line. Finally, text 

lines are broken into separate words, using a heuristic that 

computes a histogram of horizontal distances between 

consecutive letters and estimates the distance threshold that 

separates intra-word letter distances from inter-word letter 

distances. 

 
 

 
 

VII. CONCLUSION 

 

In this work we show how to leverage on the  idea of the 

recovery of stroke width for text detection. We define the 

notion of a stroke and derive an efficient algorithm to 

compute it, producing a new image feature. Once recovered, 

it provides a feature that has proven to be reliable and 

flexible for text detection. Unlike previous features used for 

text detection, we compared to the most recent available 

tests, our reached first place and was about 15 times faster 

than the speed reported there. The feature was dominant 

enough to be used by itself, without the need for actual 

character recognition step as used in some previous works. 
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This allows us to apply the method to many languages and 

fonts. There are several possible extensions for this work. 

The grouping of letters can be improved by considering the 

directions of the recovered strokes. This may allow the 

detection of curved text lines as well. 
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