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Abstract:- In this paper, left singularity and left regularity in a near-idempotent I — semigroup are defined. In a near-
idempotent I'- semigroup A, is left singular and it is also proved that every & class in a near-idempotent I' — semigroup
is left (right) singular if and only if S is left (right) regular. &- class is defined and proved that it is a near null
semigroup. Also &, &, < & for all a,b in S and &,,= &, in a left singular near-idempotent T — semigroup. Any near-
idempotent T' — semigroup is left regular if and only if p = § and right regular if A = &. Also any near idempotent T —
semigroup is near-commutative if § = & Any near-commutative I' — semigroup is near commutative if only and only if

it is both left and right regular.
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1. INTRODUCTION

David Mclean[10] has obtained a decomposition of a band
into more special bands. He has obtained a band as a
semilattice union of rectangle bands. Motivated by this
result, we have attempted to obtain a near idempotent I'-
semigroup as a union of more special near idempotent I'-
semigroups. We obtain each §-class as a rectangular near-
idempoent I'- semigroup and each A(p) class as a left (right)
singular near idempotent I"'-semigroups. We also show that
a left(right) singular near idempotent I'-semigroup is a
semilattice union of left(right) singular near idempotent I'-
semigroups. We characterize left(right) regular I'-semigroup
in terms of the relations defined on it.

Il. PRELIMINARY

DEFINITION 11.1: Let S be a I'- semigroup. Then S is
said to be a near — idempotent I'- semigroup if Xyiy?y.z =
Xy1yy».z forall x,y,ze Sand y;,y, €T

DEFINITION 11.2: Let S be a I'- semigroup. Then S is
said to be left-regular near-idempotent I'- semigroup if
X Y1YY2ZYsYYaW = X y1yy.zysw for all x,y,zwe€ S and y;
1 Y2,Y3, Vs Er

DEFINITION 11.3: Let S be a I'- semigroup. Then S is said
to be left-singular near-idempotent I'- semigroup if
X Y1YY2ZysW= X y1yy.w for all x,y,zwe Sand y;,y,,ys, €
r

DEFINITION 11.4: A semigroup R is called a rectangular
near idempotent I —semigroup if R is a near idempotent
semigroup and it satisfy the identity

X Y1yY2Zysyyaw= X yiyyow for all xy,zwe S and yi, v
V3 V4 €T

DEFINITION 11.5: Let S be a near - idempotent TI-
semigroup and a and b, elements of S. We define the
relation A and p on S as follows:

a A bifandonly if Xxyaybysy = xy ay,y and
Xyibyaaysy =xyi'bysyforallx,y € Sand y1,v2.,v3 v1,
y, €Ta p bifandonly if xyaybysy=xy,'by,yand
Xyibyaaysy = Xyi'ay,y for all x \ye S and yy, y2, v3 v1,
Y2 €T

Both A and p turn out to be an equivalence relation on S.

LEMMA 11.6: Let S be a near-idempotent I'- semigroup.
Then the relation A is an equivalence relation on S.

Proof: xy:a%y,z = xyiay,z forallx,y,a € Sand y;,y, €T,
by the definition of near-idempotent semigroup, so thata A
aforallainS. Hence, A is reflexive.

Let a A b. Then, xyjay,bysy = xyjayyy and
Xyibyaaysy = xyibyoy forall xy € Sand yi,y2,y3 €T
which also implies b A a. Hence, 4 is symmetric.

LetaAdbandb Ac. Then, forall x,y € S. We have,
Xy12y2bysy = Xyiayazy and Xyiby.aysy = Xyiby.y and
X y1by2C yay = X yaby2y and X y1C y2b ysy = Xy1 cy,y. Hence
Xy18Y2C y3y = Xy1 Y2 Cysy = Xy1 ayab ys Cyay = Xy1 ay»
bysCya Yy =Xyiaybysy=xyiayyforallxyeSs.

Similarly, XyiCy.aysy = Xy1 cy.bys ays y = Xy
cy2 bysays Y= Xyi cya bys y=Xyicysy forall x,y €S.
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which implies aA c. Hence A is transitive. Thus A is an
equivalence relation on S.
Dually, we can prove that p is an equivalence relation on the
near — idempotent I'- semigroup on S.
LEMMA 11.7: Let S be a near-idempotent I'- semigroup. Let
aAb. Then,ay;c=by,cforallc €S.
Proof: Leta A b where a, b € S. we claim that for any ¢ €
S, ay;c=bysC
ad b= xy@aybysy=xyayzyand Xxyibyzaysy

= xyibyyy for all x,y € S. Then for all X, ye S we have
Xy1ayCys DyiCysy = Xyiayz Cys bysCys Y = Xyiay.bys
CYabysCvs Y= Xy1 ayz (0ysCya)’ y = Xy1ayabyscyay (by the
definition of S) = xyiay,bys Cys Y= Xyiay.Cysy and
Xy1 byaCys ayaCys Y = Xy1 bya CysaysCys Y = Xy1 byaays
CY4aYsC Vs Y = Xy1by2 (aysCya)’ Y = Xy1 by, ayacy. y(by the
definition of S)= xy; by.ayscysy = Xybyscysy leading
to ay,c = by,c for all c € S .Hence A is a right congruence
onS.
Dually, p is a left congruence on S.
RESULT 11.8: We now consider the composition of two
relations A and p as follows

Let S be a near-idempotent I'- semigroup. Then for any
a, b €S, we say that
alopbifthereexistsc € S, suchthata A candc pb

LEMMA 11.9: If S is a near-idempotent I'- semigroup, then
Aop=poldinS.

Proof: we first prove that 1 o p € p o A. Let al o pb.Then
there exists ¢ € Ssuchthata Ac and c p b.

a Ac = Xyiay:Cysy = Xyiayzy and Xyicy.aysy = Xyicyay
for all X,ye S ,y1, ¥2,v3, € I'. Choose d = a y1cy,b. Then for
all X,y€ S, xyiay2dysy = Xy1 ayz aysCysoys y= Xxy: 32V2
Cyabys Yy =Xy1 aya Cysbys Yy =Xy1 ayLysbys y=
Xy1dy,y and

Xy1dy,aysy = Xy1 ayz Cysbys aysy = Xy1 ay:bys aysy =
Xy18y2bys ayiCys Y = Xyiay:Cysy (since b p ¢, p is a left
congruence) = Xyiay,y.

But Xxyiay,Cysy = Xyiay.y. So that finally we get
Xyidy.aysy = Xyiay,y. Therefore a p d .Similarly,
xyidyabysy = XyiayoCysbysbysy =xyiaysC ysb’ysy =
Xy18Y2Cysbysy = Xyidy,y for all X, y in S. xy1by.dysy =
Xy1 bya aysCyabys y =Xyiby.ays cysbys Yy = Xyibyaays
bys y =Xy:1 Dbys aysb yay= Xy cybys ayibysy =
Xy1Cyobysy ('since A is a right congruence ay:b 4 cy-b).
But xyCy,bysy = Xyiby,y, so that we get xyiby.dysy =
Xyiby,y. Henced A c. Thusapd,d 1 bsothatap o A1 b.
This gives 1 o p € p o A . By similar argument, we can
prove that

pedCAlop.Thuswegetlop=po A

We now define the relation § on S as follows

DEFINITION 11.10: Let S be a near —idempotent I'-
semigroup. Let a, b € S. We define 6= 4 o p. In other
words, a § b if and only if there exists c € Ssuch thata A ¢
andcpb

We have already prove that A o p = p o 1. Hence we can
writteadophborapoAbinstead forad b.

LEMMA I11.11: Let S be a near-idempotent I'- semigroup. &
is an equivalence relation on S.
Proof: ForallainS,aAaandap a. Since A and p are
reflexive so that aA o p b which means a § a. Hence § is
reflexive.

a 6 b=>alopb=thereexistsu € Ssuch thata A
uand u p b = there existsu € Ssuch thatb puandu 1 a
since A and p are symmetric=>bpola=bda[since 1o
p =poA=4] Hence § is symmetric.

adé b,bd c=thereexistsu,v e Ssuchthataiu
andupb,bAvandvpcsinceupbandbAvwehaveup
o Avwehave udopv.Since Ao p = p o A Thus there
exists w € S such thatu A wand w p v.
aAuandu A wsothata 2 w;w p vandv p cso that
W pc. Thereforeadopc
i.e., a d c. Thus ¢ is transitive. Hence ¢ is an equivalence
relation on S.

I11. DECOMPOSITION OF NEAR IDEMPOTENT TI-
SEMIGROUP

Theorem II1.1 : { 6, /a€S } is a semigroup under the
operation &,* 6, = 64 We now prove that every §- class is
a I'- subsemigroup of S.

Theorem 111.2: Let S be a near-idempotent I'-semigroup
and a€ S.Then §, is rectangular near-idempotent T-
semigroup.

Proof: Letx,y,z,wed,.xdaydazda,wda By
transitivity y & z. Hence for all X, w € S. Xy1Y y2zy3yysw =
Xy1Y Y2W and Xy1Z yoYyszZysW = Xy1Z yoW. This result is true
when X, w € §, also. Thus we have XyiYy y,zysyysw =
xy1y y.w for all x,y,zw € &, .Hence &, is rectangular near
idempotent I'-semigroup.

Theorem 111.3: Let S be a near-idempotent I'- semigroup.
Then for ae S, A, is left-singular near idempotent T'-
semigroup.

Proof: Let S be a near-idempotent I'- semigroup. Consider
the relation A on S. Fora,b € S
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a A bifandonly if Xxyaybysy = xy; ayyy and
Xyibyaaysy =Xyibyzyforallx,y€Sand yi,y2,y3 €T
.Consider an equivalence relation 4, where a € S.We claim
that A, is a near left — singular near-idempotent T-
semigroup. Letu,ve Ad,.atluandadv.Forallx,y €S
XyidyUysy = Xydyzy , Xyiuyaaysy = Xyuyzy and
Xy1ayoV Y3y = X yiayay , XyiVy.aysy = X yiayy. For all x ,
Y €S.Xy1 uyVys ayay= XyiUyz. Vysays Y= X yiUyovysy
and Xyiay,; UyaVys Y=XyidyoUysVys Y = Xyiayvysy =
X yiay,y. Here,uyv Aa. Henceuy v e 4,.

s 1S a subsemigroup of S. Also Xy uy,vys = Xy; uy,ays
VYsy = Xyiuyz2 ayaVys Y = Xyiuyz ays Y = Xyauypy and
XyivyoUys Y= Xy1 Vyaays  Uysy = Xyivya aysuys y =
Xy1vy.aysy = Xy, Vy,y for all X, y in S. Hence it is also true
forall x,y € 4,. Thus for

X, U, V, Y E Ay, Xy1 UyaVyay = Xyuy,y. Hence 4, is a left —
singular near-idempotent I'- semigroup.

Theorem 111.4: Let R be a rectangular near-idempotent I'-
semigroup. Then fora,b e R, A, 1, € 4,

Proof: Let u € 4, and v € Ay .Then X y Uy aysy = X yiUy,y
and X yiayaUysy = Xyidyay . XyaVy2bysy = Xyivyay and
Xy1by2V yay = X yibyay.

Xyiuyavys bys y = Xyiuyz Vysbys y = Xyjuyovysy and
Xyibyz  Uysvysy = Xyibyavys  Uyavys Yy = Xyibys
VysUyaVysy = Xy1 byavys y = Xyibyay [since u, v € R and
hence Xy vy uysvy.sy = Xy1vyoy ]. Thus, uyv € Ay i.e, A, Ay
c A, foralla,binR

Note I11.5: If we define an operation ¢ on { 1,/ a € R } such
that A, o A, = A if and only if A, 1, € A, then from the above
discussions of this theorem it is clear that A, ¢ 1, = A, . Thus
R is right-singular band of left — singular near-idempotent I'-
semigroup.

Now we move on to verify that left (right) regular near-
idempotent T'- semigroup is a semilattice of left (right)
singular near-idempotent I'- semigroup.

Theorem I11.6: S is a left (right) regular near-idempotent T'-
semigroup if and only if every §-class in S is a near left
(right) singular near-idempotent I'- semigroup.

Proof: Let S be a left (right)regular near-idempotent TI'-
semigroup. Then X y1Yy zysyysw= X y1yy.zysw for all x, y,
Z,WESand ]/1,)/2,]/3,]/4€F -------- (1)Leta ES.(Saisa.
rectangular near-idempotent T'-semigroup of S. Hence,
X V1YY 2Zyayyaw= X y1yy.w forall x, y, w, zin §; -----------
)

(1) and (2) gives xy1yy2zysw = xy1yy.w for all x,y, z, w in
8, .- Hence 6, degenerates into a near left singular near-
idempotent I'-semigroup .

Conversely, let a, beS. ay.b & by,a, ab, ba are in the same
6-class. They are in a near- idempotent I'-semigroup. For all
X, YES. Xyi aybys  bysa ys Yy = Xyiaybysy =
Xy1 ayb’yaaysy = Xyiaybysy= Xy aybys a yay =
Xy1ay 20y ay.

Therefore S is a left —regular near idempotent I'-semigroup.

IV. LEFT SINGULARITY AND LEFT REGULARITY
IN NEAR IDEMPOTENT I'- SEMIGROUP

DEFINITION IV.1: Let S be a near-idempotent T-
semigroup. Leta, b € SWesay thata ¢ bifandonlyifaib
and a p b. In other words, £ =41 n p.

LEMMA 1V.2: Let S be a near-idempotent I'-semigroup.
Leta, b € S. Thena ¢ b if and only if xyiay,y = xyby.,y for
allx,y € S.

Proof: leta& b. ThenaAbanda p b. Hence forall x,y €
S. Xyiay.bysy = Xyiayzy ; Xyibyaaysy = Xyibyzy and
Xy12yabysy = Xyabyay ; Xyiby.aysy = xyiay.y. From the
above equation it is clear that, xyiay,y = xyiby,y for all x,y
in S. Conversely, suppose that xyiay,y = xy1by,y for all x,y
€ S. For all X,y € S. Xy1ay bysy = Xy:by,byay = xyib’y,y =
Xy1by2y and xyibyaaysy = Xyiay.aysy = XY132V2Y = Xyiayay
so that a p b. Also for all x, y € S. Xy ay,byzy = Xyiay.aysy
= Xy @’yzy = Xyidysy and Xyibysaysy = xyibysbysy =
xy1b%y,y = xy1by,y. Sothat,a A b.Thusa (A np)i.eaé b.
LEMMA 1V.3: Let S be a near-idempotent I'-semigroup.
Leta € S, then every &- class is a near null semigroup.
Proof: Define é on S. Leta € S. Let u, v € &, . Xy uyoy =
Xyiay2y = Xyvyoy for all x , ye S. For all x, y € S.
Xy1UyaVysy = Xyi Uya. VY3y = XyiayaVysy = Xyiadyo.Vysy =
Xy1dy2 . @ysy = Xy1 @%y2y = Xy1dyay. Then uyv € &, so that
&,is subsemigroup of S. Also Xy uy,y = Xy vy»y for all x, y
€ S. Hence xyiuy,y = Xy1vyyy for all x, y € &, also. In
other words if X, y, z, W € &,. Xy1yy,W = Xy1zy-w. Hence
&, is a near null semigroup. Also, ifu € &, andv € &,. For
all x, y in S, XyiUyzy = Xyiayzy and Xyivyzy = Xyiby.y.
Xy1UyaVysy = Xyi1dyaVysy = Xyidyzbysy . So that uyv € &ap.
Hence §a$p © &an.

LEMMA 1V.4: Let S be a near-idempotent I'-semigroup and
a,beS. Then &, &, c &y,

LEMMA IV.5: LetZ={¢&,/a €S }. Define = on
that &, = & = & ifand only if &, & < & . Then
semigroup under @ .

Proof: By the last lemma é, &, c &, . Hence &,° &, =&y .
Hence Z is a semigroup under = .

LEMMA IV.5: Let L be a left singular near-idempotent T'-
semigroup a, b in L. Then &, = &,.

Proof: Let X, y, a, b € L. Then xy,ay,bysy = xy.ay,y for all
X,YEL. . Hence &y =¢&,.Thus &2 &, =& =&, foralla, b €

such
is a

g [
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L. Hence a left singular near-idempotent I'-semigroup is a
left singular union of near null semigroups.

LEMMA IV.6: A right singular near-idempotent T-
semigroup is a right singular union of near null semigroups.
LEMMA IV.7: A near-idempotent T'-semigroup S is a left
regular near-idempotent I'-semigroup if and only if 1 =6 on
S.

LEMMA 1V.8: A near-idempotent T'-semigroup S is a left
regular near-idempotent I'-semigroup if and only if p = &€ on
S.

Proof: In a left regular near-idempotent I'-semigroup & = 4
Np =46 Np [by last lemma] = p since p € §. Let Sbea
near-idempotent I-semigroup in which p = & xy;
UyaVyaUysUysVye Y = Xy1  UyaVys  Uyavysy =
Xy Uy VysUyavysy = xya(Uyavys)’y forall x, y, u, v €S =
Xy 1Uy2Vvysy.

Xy1 UyVysUyalystys Y = Xyi(UyVys)uysy = Xyi Uy,
Vysuysy. Thus uyv p uy,vysu. Since p = &, Xy
Uy,VysUys Y = XyiUy,vyay for all u, v € S. Hence S is left
regular near-idempotent I'-semigroup.

Lemma IV.9: A is a congruence relation in a left regular
near-idempotent I'-semigroup S.

Proof: Let S be a left regular near-idempotent TI-
semigroup. Let a A b. Then xyjay.bysy = Xyiay.y ;
Xyiby.aysy = Xyibysy ; Let ¢ € S. XyiCy.aysCysbysy =
XY 1CY 28V 3C¥ 4. bysy = Xy1Cy2ay 30y sy = Xy1Cy2ay3y.

Xy 1CY 2Dy sCysaysy = XyiCyabysaysy = XyiCybysy. Thus we
get that a A b= cyi;a A1 cy,b. Therefore A is a left
congruence. We know that A is a right congruence in a near-
idempotent I'-semigroup. Thus A is a congruence relation on
S.

Lemma 1V.10: In a near-idempotent I'-semigroup S, § = &
implies that S is a near-commutative near idempotent T-
semigroup.

Proof: Let a, b € S. In any near— idempotent I'-semigroup
aysb A bysa. But § = & Hence aysb & bysa. Thus
Xy1ay,bysy = xyiby,aysy for all x, y in S. Hence S is near-
commutative.

Theorem 1V.11: A near-idempotent I'-semigroup S is a
near-commutative if and only if § =& on S.

Theorem 1V.12: A near-idempotent T'-semigroup S is near-
commutative if and only if it is both a left regular and a right
regular near-idempotent I'-semigroup.

Proof: Suppose that near-idempotent I'-semigroup S is a
near-commutative near-idempotent T-semigroup. Then
XY1YY2ZysW = Xy1zyoyysw forall X, y, z, win S.
XY1YY2ZVaYVaW = XY1 YYaZys. YYa W= Xy1 Y¥2 ZysW =
Xy1YY2ZysW . Therefore S is a left regular near — idempotent
F-Semigl’oup. XY 1YV 2ZY3YVsW = XY 1YYV 2. ZY3YY4 W = Xy12y2y2
V3W = XY1ZY2y YsW

Therefore S is a right regular near-idempotent I'-semigroup.
Therefore S is both a left regular and a right regular near-
idempotent I'-semigroup.

Conversely, Let S be both a left regular and a right regular
near-idempotent  I-semigroup.  Xy1Yy»Zys Yy4aw =
Xy1Yy2Zysw by near left regularity Xy yy,zysyysw =
Xy1Zy,YyswW by near right regularity. Therefore xy,yy,zysw
= Xy1Zy2yysW. So that S is near-commutative.

Conclusion: In this paper, the class &, is proved as a
rectangular near-idempotent I'-semigroup and the class 4, is
proved as a left singular near-idempotent I'-semigroup and
for any a, b in a rectangular near-idempotent I'-semigroup,
Aa Ay is contained in A,. Also, R is a right singular band of
left singular near-idempotent I'-semigroup. Also a relation &
is defined and is proved that & = 4 N p along with the
property that £,&, € &,, forany a, b in S. Also, if S is left-
singular then &6, =¢&,.
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