

Left Singularity and Left Regularity in near Idempotent Γ – Semi group

[1] M. Parvathi Banu, [2] D.Radha [1] II M.Sc. Mathematics, [2] Assistant Professor in Mathematics [1][2] A.P.C Mahalaxmi College for Women, Thoothukudi, India.

Abstract:- In this paper, left singularity and left regularity in a near-idempotent Γ – semigroup are defined. In a near-idempotent Γ – semigroup λ_a is left singular and it is also proved that every δ class in a near-idempotent Γ – semigroup is left (right) singular if and only if S is left (right) regular. ξ - class is defined and proved that it is a near null semigroup. Also ξ_a ξ_b \subset ξ for all a,b in S and ξ_{ab} = ξ_a in a left singular near-idempotent Γ – semigroup. Any near-idempotent Γ – semigroup is left regular if and only if ρ = ξ and right regular if λ = ξ . Also any near idempotent Γ – semigroup is near-commutative if δ = ξ . Any near-commutative Γ – semigroup is near commutative if only and only if it is both left and right regular.

Keywords:- Near- idempotent, Γ – semigroup, regular, singular semigroup, δ class , λ -class in near-idempotent Γ – semigroup, near-commutative Γ – semigroup.

1. INTRODUCTION

David Mclean[10] has obtained a decomposition of a band into more special bands. He has obtained a band as a semilattice union of rectangle bands. Motivated by this result, we have attempted to obtain a near idempotent Γ -semigroup as a union of more special near idempotent Γ -semigroups. We obtain each δ -class as a rectangular near-idempoent Γ - semigroup and each $\lambda(\rho)$ class as a left (right) singular near idempotent Γ -semigroups. We also show that a left(right) singular near idempotent Γ -semigroup is a semilattice union of left(right) singular near idempotent Γ -semigroups. We characterize left(right) regular Γ -semigroup in terms of the relations defined on it.

II. PRELIMINARY

DEFINITION II.1: Let S be a Γ- semigroup. Then S is said to be a near – idempotent Γ- semigroup if $x\gamma_1y^2\gamma_2z = x\gamma_1y\gamma_2z$ for all $x,y,z \in S$ and $\gamma_1,\gamma_2 \in \Gamma$

DEFINITION II.2: Let S be a Γ- semigroup. Then S is said to be left-regular near-idempotent Γ- semigroup if $x \gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x \gamma_1 y \gamma_2 z \gamma_3 w$ for all $x,y,z,w \in S$ and $\gamma_1,\gamma_2,\gamma_3,\gamma_4 \in \Gamma$

DEFINITION II.3: Let S be a Γ- semigroup. Then S is said to be left-singular near-idempotent Γ- semigroup if $x \gamma_1 y \gamma_2 z \gamma_3 w = x \gamma_1 y \gamma_2 w$ for all $x, y, z, w \in S$ and $\gamma_1, \gamma_2, \gamma_3, \in \Gamma$

DEFINITION II.4: A semigroup R is called a rectangular near idempotent Γ –semigroup if R is a near idempotent semigroup and it satisfy the identity

 $x \gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x \gamma_1 y \gamma_2 w$ for all $x,y,z,w \in S$ and $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \Gamma$

DEFINITION II.5: Let S be a near - idempotent Γ-semigroup and a and b, elements of S. We define the relation λ and ρ on S as follows:

a λ b if and only if $x \gamma_1 a \gamma_2 b \gamma_3 y = x \gamma_1' a \gamma_2' y$ and $x \gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1' b \gamma_2' y$ for all $x, y \in S$ and $\gamma_1, \gamma_2, \gamma_3, \gamma_1', \gamma_2' \in \Gamma$ a ρ b if and only if $x \gamma_1 a \gamma_2 b \gamma_3 y = x \gamma_1' b \gamma_2' y$ and $x \gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1' a \gamma_2' y$ for all $x, y \in S$ and $\gamma_1, \gamma_2, \gamma_3, \gamma_1', \gamma_2' \in \Gamma$

Both λ and ρ turn out to be an equivalence relation on S.

LEMMA II.6: Let S be a near-idempotent Γ- semigroup. Then the relation λ is an equivalence relation on S.

Proof: $x\gamma_1 a^2 \gamma_2 z = x\gamma_1 a\gamma_2 z$ for all $x,y,a \in S$ and $\gamma_1,\gamma_2 \in \Gamma$, by the definition of near-idempotent semigroup, so that a λ a for all a in S. Hence, λ is reflexive.

Let a λ b. Then, $x \gamma_1 a \gamma_2 b \gamma_3 y = x \gamma_1 a \gamma_2 y$ and $x \gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1 b \gamma_2 y$ for all $x, y \in S$ and $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$ which also implies $b \lambda$ a. Hence, λ is symmetric.

Let a λ b and b λ c. Then, for all x, y \in S. We have, x $\gamma_1 a \gamma_2 b \gamma_3 y = x \gamma_1 a \gamma_2 y$ and x $\gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1 b \gamma_2 y$ and x $\gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1 b \gamma_2 y$ and x $\gamma_1 c \gamma_2 b \gamma_3 y = x \gamma_1 c \gamma_2 y$. Hence x $\gamma_1 a \gamma_2 c \gamma_3 y = x \gamma_1 a \gamma_2 c \gamma_3 y = x \gamma_1 a \gamma_2 b \gamma_3 c \gamma_4 y = x \gamma_1$

Similarly, $x \gamma_1 c \gamma_2 a \gamma_3 y = x \gamma_1 c \gamma_2 b \gamma_3 a \gamma_4 y = x \gamma_1 c \gamma_2 b \gamma_3 a \gamma_4 y = x \gamma_1 c \gamma_2 b \gamma_3 y = x \gamma_1 c \gamma_2 y \text{ for all } x, y \in S.$

which implies a λ c. Hence λ is transitive. Thus λ is an equivalence relation on S.

Dually, we can prove that ρ is an equivalence relation on the near – idempotent Γ - semigroup on S.

LEMMA II.7: Let S be a near-idempotent Γ- semigroup. Let a λ b. Then, a γ_1 c = b γ_2 c for all c \in S.

Proof: Let a λ b where a, b \in S. we claim that for any c \in S, $a\gamma_1c = b\gamma_2c$

a λ b \Rightarrow x γ_{1} a γ_{2} b γ_{3} y = x γ_{1} a γ_{2} y and x γ_{1} b γ_{2} a γ_{3} y = x γ_{1} b γ_{2} y for all x, y \in S. Then for all x, y \in S we have x γ_{1} a γ_{2} c γ_{3} b γ_{4} c γ_{5} y = x γ_{1} a γ_{2} c γ_{3} b γ_{4} c γ_{5} y = x γ_{1} a γ_{2} b γ_{3} c γ_{4} b γ_{5} c γ_{6} y = x γ_{1} a γ_{2} (b γ_{3} c γ_{4}) 2 y = x γ_{1} a γ_{2} b γ_{3} c γ_{4} y (by the definition of S) = x γ_{1} a γ_{2} b γ_{3} c γ_{4} y = x γ_{1} a γ_{2} c γ_{3} y and x γ_{1} b γ_{2} c γ_{3} a γ_{4} c γ_{5} y = x γ_{1} b γ_{2} a γ_{3} c γ_{4} a γ_{5} c γ_{6} y = x γ_{1} b γ_{2} (a γ_{3} c γ_{4}) 2 y = x γ_{1} b γ_{2} a γ_{3} c γ_{4} y (by the definition of S)= x γ_{1} b γ_{2} a γ_{3} c γ_{4} y = x γ_{1} b γ_{2} c γ_{3} y leading to a γ_{1} c = b γ_{2} c for all c \in S. Hence λ is a right congruence on S.

Dually, ρ is a left congruence on S.

RESULT II.8: We now consider the composition of two relations λ and ρ as follows

Let S be a near-idempotent Γ - semigroup. Then for any a, b \in S, we say that

a $\lambda \circ \rho$ b if there exists $c \in S$, such that a λ c and c ρ b

LEMMA II.9: If S is a near-idempotent Γ- semigroup, then $\lambda \circ \rho = \rho \circ \lambda$ in S.

Proof: we first prove that $\lambda \circ \rho \subset \rho \circ \lambda$. Let a $\lambda \circ \rho$ b. Then there exists $c \in S$ such that a λc and $c \rho$ b.

a $\lambda c \Rightarrow x\gamma_1a\gamma_2c\gamma_3y = x\gamma_1a\gamma_2y$ and $x\gamma_1c\gamma_2a\gamma_3y = x\gamma_1c\gamma_2y$ for all $x,y \in S$, γ_1 , γ_2 , γ_3 , $\in \Gamma$. Choose $d = a \gamma_1c\gamma_2b$. Then for all $x,y \in S$, $x\gamma_1a\gamma_2d\gamma_3y = x\gamma_1 a\gamma_2$ $a\gamma_3c\gamma_4b\gamma_5$ $y = x\gamma_1 a^2\gamma_2c\gamma_3b\gamma_4$ $y = x\gamma_1 a\gamma_2c\gamma_3b\gamma_4$ $y = x\gamma_1 a\gamma_2c\gamma_3b\gamma_4$ $y = x\gamma_1d\gamma_2y$ and

 $x\gamma_1 d\gamma_2 a\gamma_3 y = x\gamma_1 a\gamma_2 c\gamma_3 b\gamma_4 a\gamma_5 y = x\gamma_1 a\gamma_2 b\gamma_3 a\gamma_4 y = x\gamma_1 a\gamma_2 b\gamma_3 a\gamma_4 c\gamma_5 y = x\gamma_1 a\gamma_2 c\gamma_3 y$ (since $b \rho c$, ρ is a left congruence) = $x\gamma_1 a\gamma_2 y$.

 $\rho \circ \lambda \subset \lambda \circ \rho$. Thus we get $\lambda \circ \rho = \rho \circ \lambda$. We now define the relation δ on S as follows

DEFINITION II.10: Let S be a near –idempotent Γ-semigroup. Let a, b ∈ S. We define $\delta = \lambda \circ \rho$. In other words, a δ b if and only if there exists $c \in S$ such that a λc and $c \rho b$

We have already prove that $\lambda \circ \rho = \rho \circ \lambda$. Hence we can write a $\lambda \circ \rho$ b or a $\rho \circ \lambda$ b instead for a δ b.

LEMMA II.11: Let S be a near-idempotent Γ- semigroup. δ is an equivalence relation on S.

Proof: For all a in S, a λ a and a ρ a. Since λ and ρ are reflexive so that a $\lambda \circ \rho$ b which means a δ a. Hence δ is reflexive.

a δ b \Rightarrow a $\lambda \circ \rho$ b \Rightarrow there exists u \in S such that a λ u and u ρ b \Rightarrow there exists u \in S such that b ρ u and u λ a since λ and ρ are symmetric \Rightarrow b $\rho \circ \lambda$ a \Rightarrow b δ a [since $\lambda \circ \rho = \rho \circ \lambda = \delta$]. Hence δ is symmetric.

a δ b, b δ c \Rightarrow there exists u, $v \in S$ such that a λ u and u ρ b, b λ v and v ρ c since u ρ b and b λ v we have u $\rho \circ \lambda$ v we have u $\lambda \circ \rho$ v. Since $\lambda \circ \rho = \rho \circ \lambda$. Thus there exists $w \in S$ such that u λ w and w ρ v.

a λ u and u λ w so that a λ w ; w ρ v and v ρ c so that w ρ c. Therefore a $\lambda \circ \rho$ c

i.e., a δ c. Thus δ is transitive. Hence δ is an equivalence relation on S.

III. DECOMPOSITION OF NEAR IDEMPOTENT Γ-SEMIGROUP

Theorem III.1: { $\delta_a / a \in S$ } is a semigroup under the operation $\delta_a * \delta_b = \delta_{ab}$ We now prove that every δ - class is a Γ - subsemigroup of S.

Theorem III.2: Let S be a near-idempotent Γ-semigroup and $a \in S$. Then δ_a is rectangular near-idempotent Γ-semigroup.

Proof: Let $x, y, z, w \in \delta_a$. $x \delta a, y \delta a, z \delta a, w \delta a$. By transitivity $y \delta z$. Hence for all $x, w \in S$. $x\gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x\gamma_1 y \gamma_2 w$ and $x\gamma_1 z \gamma_2 y \gamma_3 z \gamma_4 w = x\gamma_1 z \gamma_2 w$. This result is true when $x, w \in \delta_a$ also. Thus we have $x\gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x\gamma_1 y \gamma_2 w$ for all $x,y,z,w \in \delta_a$. Hence δ_a is rectangular near idempotent Γ -semigroup.

Theorem III.3: Let S be a near-idempotent Γ- semigroup. Then for $a \in S$, λ_a is left-singular near idempotent Γ-semigroup.

Proof: Let S be a near-idempotent Γ - semigroup. Consider the relation λ on S. For a, b \in S

a λ b if and only if $x \gamma_1 a \gamma_2 b \gamma_3 y = x \gamma_1 \ a \gamma_2 y$ and $x \gamma_1 b \gamma_2 a \gamma_3 y = x \gamma_1 \ b \gamma_2 y$ for all $x, y \in S$ and $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$. Consider an equivalence relation λ_a where $a \in S$. We claim that λ_a is a near left – singular near-idempotent Γ -semigroup. Let $u, v \in \lambda_a$. $a \lambda u$ and $a \lambda v$. For all $x, y \in S$ $x \gamma_1 a \gamma_2 u \gamma_3 y = x \gamma_1 a \gamma_2 y$, $x \gamma_1 u \gamma_2 a \gamma_3 y = x \gamma_1 u \gamma_2 y$ and $x \gamma_1 a \gamma_2 v \gamma_3 y = x \gamma_1 a \gamma_2 y$, $x \gamma_1 v \gamma_2 a \gamma_3 y = x \gamma_1 a \gamma_2 y$. For all $x, y \in S$. $x \gamma_1 \ u \gamma_2 v \gamma_3 \ a \gamma_4 \ y = x \gamma_1 u \gamma_2 v \gamma_3 y$ and $x \gamma_1 a \gamma_2 v \gamma_3 \ a \gamma_4 \ y = x \gamma_1 u \gamma_2 v \gamma_3 y$ and $x \gamma_1 a \gamma_2 v \gamma_3 \ a \gamma_4 \ y = x \gamma_1 a \gamma_2 v \gamma_3 y = x \gamma_1 a \gamma_2 v \gamma_3 y$. Here, $u \gamma v \lambda a$. Hence $u \gamma v \in \lambda_a$.

 λ_a is a subsemigroup of S. Also $x\gamma_1u\gamma_2v\gamma_3=x\gamma_1\ u\gamma_2a\gamma_3\ v\gamma_4y=x\gamma_1u\gamma_2\ a\gamma_3v\gamma_4\ y=x\gamma_1u\gamma_2\ a\gamma_3\ y=x\gamma_1u\gamma_2y$ and $x\gamma_1v\gamma_2u\gamma_3\ y=x\gamma_1\ v\gamma_2a\gamma_3\ u\gamma_4y=x\gamma_1v\gamma_2\ a\gamma_3u\gamma_4\ y=x\gamma_1v\gamma_2a\gamma_3y=x\gamma_1\ v\gamma_2y$ for all x, y in S. Hence it is also true for all x, y $\in \lambda_a$. Thus for

x , u, v, y $\in \lambda_a$, $x\gamma_1 u\gamma_2 v\gamma_3 y = x\gamma_1 u\gamma_2 y$. Hence λ_a is a left – singular near-idempotent Γ - semigroup.

Theorem III.4: Let R be a rectangular near-idempotent Γ-semigroup. Then for a, b \in R, λ_a λ_b \subset λ_b

Proof: Let $u \in \lambda_a$ and $v \in \lambda_b$. Then $x \gamma_1 u \gamma_2 a \gamma_3 y = x \gamma_1 u \gamma_2 y$ and $x \gamma_1 a \gamma_2 u \gamma_3 y = x \gamma_1 a \gamma_2 y$, $x \gamma_1 v \gamma_2 b \gamma_3 y = x \gamma_1 v \gamma_2 y$ and $x \gamma_1 b \gamma_2 v \gamma_3 y = x \gamma_1 b \gamma_2 y$.

Note III.5: If we define an operation \diamond on $\{\lambda_a \mid a \in R\}$ such that $\lambda_a \diamond \lambda_b = \lambda_c$ if and only if $\lambda_a \lambda_b \subset \lambda_c$ then from the above discussions of this theorem it is clear that $\lambda_a \diamond \lambda_b = \lambda_b$. Thus R is right-singular band of left – singular near-idempotent Γ -semigroup.

Now we move on to verify that left (right) regular near-idempotent Γ - semigroup is a semilattice of left (right) singular near-idempotent Γ - semigroup.

Theorem III.6: S is a left (right) regular near-idempotent Γ -semigroup if and only if every δ -class in S is a near left (right) singular near-idempotent Γ - semigroup.

Proof: Let S be a left (right)regular near-idempotent Γ-semigroup. Then $x \gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x \gamma_1 y \gamma_2 z \gamma_3 w$ for all x, y, z, w ∈ S and γ_1 , γ_2 , γ_3 , γ_4 ∈ Γ -----(1). Let a ∈ S. δ_a is a rectangular near-idempotent Γ-semigroup of S. Hence, $x \gamma_1 y \gamma_2 z \gamma_3 y \gamma_4 w = x \gamma_1 y \gamma_2 w$ for all x, y, w, z in δ_a ------(2)

(1) and (2) gives $x\gamma_1y\gamma_2z\gamma_3w = x\gamma_1y\gamma_2w$ for all x,y, z, w in δ_a . Hence δ_a degenerates into a near left singular near-idempotent Γ -semigroup.

Conversely, let $a, b \in S$. $a\gamma_1b \delta b\gamma_2a$, ab, ba are in the same δ -class. They are in a near- idempotent Γ -semigroup. For all $x, y \in S$. $x\gamma_1 a\gamma_2b\gamma_3 b\gamma_4a \gamma_5 y = x\gamma_1a\gamma_2b\gamma_3y \Rightarrow x\gamma_1 a\gamma_2b^2\gamma_3a\gamma_4y = x\gamma_1a\gamma_2b\gamma_3y \Rightarrow x\gamma_1 a\gamma_2b\gamma_3$ a $\gamma_4y = x\gamma_1a\gamma_2b\gamma_3y$.

Therefore S is a left –regular near idempotent Γ -semigroup.

IV. LEFT SINGULARITY AND LEFT REGULARITY IN NEAR IDEMPOTENT Γ - SEMIGROUP

DEFINITION IV.1: Let S be a near-idempotent Γ-semigroup. Let a, b ∈ S.We say that a ξ b if and only if a λ b and a ρ b. In other words, $\xi = \lambda \cap \rho$.

LEMMA IV.2: Let S be a near-idempotent Γ-semigroup. Let a, b ∈ S. Then a ξ b if and only if $x\gamma_1a\gamma_2y = x\gamma_1b\gamma_2y$ for all x, y ∈ S.

Proof: let a ξ b. Then a λ b and a ρ b. Hence for all x, y \in S. $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1b\gamma_2y$; $x\gamma_1b\gamma_2a\gamma_3y = x\gamma_1b\gamma_2y$ and $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1b\gamma_2y$; $x\gamma_1b\gamma_2a\gamma_3y = x\gamma_1a\gamma_2y$. From the above equation it is clear that, $x\gamma_1a\gamma_2y = x\gamma_1b\gamma_2y$ for all x,y in S. Conversely, suppose that $x\gamma_1a\gamma_2y = x\gamma_1b\gamma_2y$ for all x,y \in S. For all x,y \in S. $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1b\gamma_2b\gamma_3y = x\gamma_1b^2\gamma_2y = x\gamma_1b\gamma_2y$ and $x\gamma_1b\gamma_2a\gamma_3y = x\gamma_1a\gamma_2a\gamma_3y = x\gamma_1b\gamma_2b\gamma_3y = x\gamma$

LEMMA IV.3: Let S be a near-idempotent Γ-semigroup. Let $a \in S$, then every ξ - class is a near null semigroup.

Proof: Define ξ on S. Let $a \in S$. Let $u, v \in \xi_a$. $x\gamma_1u\gamma_2y = x\gamma_1a\gamma_2y = x\gamma_1v\gamma_2y$ for all $x, y \in S$. For all $x, y \in S$. $x\gamma_1u\gamma_2v\gamma_3y = x\gamma_1$ $u\gamma_2$. $v\gamma_3y = x\gamma_1a\gamma_2v\gamma_3y = x\gamma_1a\gamma_2$. $v\gamma_3y = x\gamma_1a\gamma_2v\gamma_3y = x\gamma_1a\gamma_2y$. Then $u\gamma v \in \xi_a$ so that ξ_a is subsemigroup of S. Also $x\gamma_1u\gamma_2y = x\gamma_1v\gamma_2y$ for all $x, y \in S$. Hence $x\gamma_1u\gamma_2y = x\gamma_1v\gamma_2y$ for all $x, y \in \xi_a$ also. In other words if $x, y, z, w \in \xi_a$. $x\gamma_1y\gamma_2w = x\gamma_1z\gamma_2w$. Hence ξ_a is a near null semigroup. Also, if $u \in \xi_a$ and $v \in \xi_a$. For all x, y in x, y in x i

LEMMA IV.4: Let S be a near-idempotent Γ-semigroup and a, b ∈ S. Then $\xi_a \xi_b \subset \xi_{ab}$.

LEMMA IV.5: Let $\Xi=\{\ \xi_a\ /\ a\in S\ \}$. Define \circ on Ξ such that $\xi_a\ ^\circ\xi_b=\xi_c$ if and only if $\xi_a\ \xi_b\ \subset\ \xi_c$. Then Ξ is a semigroup under \circ .

Proof: By the last lemma $\xi_a \xi_b \subset \xi_{ab}$. Hence $\xi_a \circ \xi_b = \xi_{ab}$. Hence Ξ is a semigroup under \circ .

LEMMA IV.5: Let L be a left singular near-idempotent Γ-semigroup a, b in L. Then $\xi_{ab} = \xi_a$.

Proof: Let x, y, a, b \in L. Then $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1a\gamma_2y$ for all x, y \in L. Hence $\xi_{ab} = \xi_a$. Thus $\xi_a \circ \xi_b = \xi_{ab} = \xi_a$ for all a, b \in

L. Hence a left singular near-idempotent Γ -semigroup is a left singular union of near null semigroups.

LEMMA IV.6: A right singular near-idempotent Γ-semigroup is a right singular union of near null semigroups. **LEMMA IV.7:** A near-idempotent Γ-semigroup S is a left regular near-idempotent Γ-semigroup if and only if $\lambda = \delta$ on S

LEMMA IV.8: A near-idempotent Γ-semigroup S is a left regular near-idempotent Γ-semigroup if and only if $\rho = \xi$ on S.

Proof: In a left regular near-idempotent Γ-semigroup $\xi = \lambda$ $\cap \rho = \delta \cap \rho$ [by last lemma] = ρ since $\rho \subset \delta$. Let S be a near-idempotent Γ-semigroup in which $\rho = \xi$. $x\gamma_1 u\gamma_2v\gamma_3u\gamma_4.u\gamma_5v\gamma_6 y = x\gamma_1 u\gamma_2v\gamma_3 u^2\gamma_4v\gamma_5y = x\gamma_1u\gamma_2v\gamma_3u\gamma_4v\gamma_5y = x\gamma_1(u\gamma_2v\gamma_3)^2y$ for all x, y, u, $v \in S = x\gamma_1u\gamma_2v\gamma_3y$.

 $x\gamma_1$ $u\gamma_2v\gamma_3.u\gamma_4u\gamma_5u\gamma_6$ $y = x\gamma_1(u\gamma_2v\gamma_3)^2u\gamma_4y = x\gamma_1$ $u\gamma_2$ $v\gamma_3u\gamma_4y$. Thus $u\gamma_1v$ ρ $u\gamma_2v\gamma_3u$. Since $\rho = \xi$, $x\gamma_1$ $u\gamma_2v\gamma_3u\gamma_4$ $y = x\gamma_1u\gamma_2v\gamma_3y$ for all $u, v \in S$. Hence S is left regular near-idempotent Γ-semigroup.

Lemma IV.9: λ is a congruence relation in a left regular near-idempotent Γ-semigroup S.

Proof: Let S be a left regular near-idempotent Γ-semigroup. Let a λ b. Then $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1a\gamma_2y$; $x\gamma_1b\gamma_2a\gamma_3y = x\gamma_1b\gamma_2y$; Let $c \in S$. $x\gamma_1c\gamma_2a\gamma_3c\gamma_4b\gamma_5y = x\gamma_1c\gamma_2a\gamma_3c\gamma_4$. $b\gamma_5y = x\gamma_1c\gamma_2a\gamma_3b\gamma_4y = x\gamma_1c\gamma_2a\gamma_3y$.

 $x\gamma_1c\gamma_2b\gamma_3c\gamma_4a\gamma_5y = x\gamma_1c\gamma_2b\gamma_3a\gamma_4y = x\gamma_1c\gamma_2b\gamma_3y$. Thus we get that a λ b \Rightarrow c γ_1a λ c γ_2b . Therefore λ is a left congruence. We know that λ is a right congruence in a near-idempotent Γ -semigroup. Thus λ is a congruence relation on S.

Lemma IV.10: In a near-idempotent Γ-semigroup S, $\delta = \xi$ implies that S is a near-commutative near idempotent Γ-semigroup.

Proof: Let a, b ∈ S. In any near– idempotent Γ-semigroup $a\gamma_1b$ λ $b\gamma_2a$. But $\delta = \xi$. Hence $a\gamma_1b$ ξ $b\gamma_2a$. Thus $x\gamma_1a\gamma_2b\gamma_3y = x\gamma_1b\gamma_2a\gamma_3y$ for all x, y in S. Hence S is near-commutative.

Theorem IV.11: A near-idempotent Γ-semigroup S is a near-commutative if and only if $\delta = \xi$ on S.

Theorem IV.12: A near-idempotent Γ -semigroup S is near-commutative if and only if it is both a left regular and a right regular near-idempotent Γ -semigroup.

Proof: Suppose that near-idempotent Γ-semigroup S is a near-commutative near-idempotent Γ-semigroup. Then $x\gamma_1y\gamma_2z\gamma_3w = x\gamma_1z\gamma_2y\gamma_3w$ for all x, y, z, w in S.

 $x\gamma_1y\gamma_2z\gamma_3y\gamma_4w = x\gamma_1 \quad y\gamma_2z\gamma_3. \quad y\gamma_4 \quad w = x\gamma_1 \quad y^2\gamma_2 \quad z\gamma_3w = x\gamma_1 \quad y\gamma_2z\gamma_3w$. Therefore S is a left regular near – idempotent Γ-semigroup. $x\gamma_1y\gamma_2z\gamma_3y\gamma_4w = x\gamma_1y\gamma_2. \quad z\gamma_3y\gamma_4w = x\gamma_1z\gamma_2y^2$ $\gamma_3w = x\gamma_1z\gamma_2y\gamma_3w$

Therefore S is a right regular near-idempotent Γ -semigroup. Therefore S is both a left regular and a right regular near-idempotent Γ -semigroup.

Conversely, Let S be both a left regular and a right regular near-idempotent Γ -semigroup. $x\gamma_1y\gamma_2z\gamma_3$ $y\gamma_4w=x\gamma_1y\gamma_2z\gamma_3w$ by near left regularity $x\gamma_1y\gamma_2z\gamma_3y\gamma_4w=x\gamma_1z\gamma_2y\gamma_3w$ by near right regularity. Therefore $x\gamma_1y\gamma_2z\gamma_3w=x\gamma_1z\gamma_2y\gamma_3w$. So that S is near-commutative.

Conclusion: In this paper, the class δ_a is proved as a rectangular near-idempotent Γ -semigroup and the class λ_a is proved as a left singular near-idempotent Γ -semigroup and for any a, b in a rectangular near-idempotent Γ -semigroup, $\lambda_a \lambda_b$ is contained in λ_b . Also, R is a right singular band of left singular near-idempotent Γ -semigroup. Also a relation ξ is defined and is proved that $\xi = \lambda \cap \rho$ along with the property that $\xi_a \xi_b \subseteq \xi_{ab}$ for any a, b in S. Also, if S is left-singular then $\xi_a \xi_b = \xi_a$.

REFERENCES

- 1. Clifford, A.H. and Preston, G.B., "The Algebraic Theory of Semigroups", Vol. I, Providence, 1961
- 2. A. H. Clifford, *Bands of semigroups*, Proc. Amer. Math. Soc. 5 (1954), 499-504
- 3. Jayalakshmi, A., " Some Studies in Algebraic Semigroups and Associated Structures", Doctoral Thesis, Bangalore University, 1981.
- 4. T.N. Kavitha, A.Jayalakshmi, *On near idempotent semigroups*, Vol 5, No 5, International Journal of Mathematical Archive May 2014.
- 5.T.N. Kavitha, A. Jayalakshmi, *Rectangular near-idempotent semigroup*, -selected for presentation and publication at the international conference on mathematical science- 2014 and will be published in mathematical science international research journal, Vol 3, issue 2.
- 6. T.N. Kavitha, A. Jayalakshmi, *Some Special Types Of Near idempotent Semigroup* selected for presentation and publication at the IMRF international conference 2014, Thailand and will be published in
- 7. Kimura, N., *The Structure of Idempotent Semigroups* (I), Pacific J. of Math.(1958)
- 8. Naoki Kimura, *Note on idempotent semigroups*. II, Proc. Japan. Acad. 34 (1958), 110-112.

- 9. Naoki Kimura, *On semigroups*, Dissertation, Tulane University (1957), 1-133.
- 10. Mc Lean, D., *Idempotent Semigroup*, Am. Math. Mon. 61 (1954)
- 11. Yamada. M, on the greatest semilattice decomposition of a semigroup, Kodai math. Sem. Rep.7 (1955) (59-62 Mathematical Science International Research Journal- Vol 3, special issue.
- 12 . Jayalakshmi, A., and. Atre. Ananth K. " *On Generalization of the concept of Inflation of semigroups*" Academic Journal of Sciences", CD. ROM. ISSN 2165 6282:: 2(2): 527-532(2013).

COMMERCIAL ENGINEERS ... MERELOGINE