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Abstract: - One of the greatest challenges faced by the cancer researchers is that the disease varies so much from individual to 

individual. Even the same type of cancer – blood, brain, kidney, pancreas, and so on – can be different subtly. This concludes that a 

therapy working excellent in one patient may have absolutely no effect in another. Cancer Research worldwide has set up several 

centers and started collecting 9,000 tumor cells’ samples from a wide range of cancer patients and created a DNA database of 

cancerous cells. Researchers extract DNA from these tumors and scan them for a series of key genes involved in tumor 

development and compares & cross-checked against a range of cancer treatments, cancerous genes, to create a map of which 

treatments in particular works best for cancers associated with which particular genes. This is based on the concept of 

pharmacogenomics & pharmacoinformatics: certain genes predispose individual to respond to certain molecules in certain ways. 

Doctors can already test a cancer patient for a single known gene, knowing how tumors with that gene respond to a particular 

molecule. However currently they don’t have a way of testing with a broad panel or set of genes. And to compensate the problem, 

they don’t have a way of quicker and more accurate way of sharing information in-between research labs in the same city, across 

the country or internationally. With the proposed cancer DNA database, a doctor might analyze a patient’s cancerous tumor 

sample and prescribe a detailed tailored treatment plan within a very short period of time. Bioinformatics research is increasing 

steadily at an exponential rate. DNA sequences are available to researchers with just an Internet connection – along with free 

bioinformatics tools to explore any sequence data, predict the presence of genes/mutated genes, and compare features shared 

between various organisms. 
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I. INTRODUCTION 

  The greatest challenges faced by the cancer 

researchers is that the disease varies so much from individual 

to individual that even the same type of cancer – blood, brain, 

kidney, pancreas, and so on – can be different subtly [1]. This 

concludes that a therapy working excellent in one patient may 

have absolutely no effect in another [2]. Cancer Research 

worldwide has set up several centers and started collecting 

9,000 tumor cells‘ samples from a wide range of cancer 

patients and created a DNA database of cancerous cells [3]. 

Researchers extract DNA from these tumors and scan them 

for a series of key genes involved in tumor development and 

compares & cross-checked against a range of cancer 

treatments, cancerous genes, to create a map of which 

treatments in particular works best for cancers associated with 

which particular genes [4]. This is based on the concept of 

pharmacogenomics & pharmacoinformatics: certain genes 

predispose individual  to  respond  to  certain  molecules  

in certain ways [1]. Doctors can already test a cancer patient  

for  a  single  known  gene,  knowing  how tumors  with  that  

gene  respond  to  a  particular molecule. However currently 

they don‘t have a way of testing with a broad panel or set of 

genes [2, 3]. And to compensate the problem, they don‘t 

have a way of quicker and more accurate way of sharing 

information in-between research labs in the same city, 

across the country or internationally [1, 4]. Why   

Bioinformatics    -   Enter   the healer - bioinformatics. 

With the proposed cancer DNA database, a doctor might 

analyze a patient‘s cancerous tumor sample and prescribe a 

detailed tailored treatment plan within a very short period of 

time [ 2, 3, 4]. As Professor Matthew Seymour, director of 

the National Cancer Research Network (NCRN) in the UK, 

recently stated, ―We have to get clever about how to target 

drugs. Medications for cancer have to be personalized 

because no two cancers are identical.‖ So global researchers 

brought in a big gun – the bioinformatics.  

 

  Bioinformatics research is increasing steadily at an 

exponential rate. DNA sequences are available to researchers 

with just an Internet connection – along with free 

bioinformatics tools to explore any sequence data, predict the 

presence of genes/mutated genes, and compare features 

shared between various organisms [5, 6]. Cancer - Cancer is 
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one of the commonest causes of patient death in the clinic 

and a complex disease occurring in multiple organs per 

system, multiple systems per organ, or both, in the body. The 

poor detects,  therapies  and  prognosis  of  the  disease could  

be  mainly  due  to  the  variation  of rigorousness, extents, 

locations, sensitivity and confrontation against medications, 

cell differentiation  and  origin,  and  understanding  of 

pathogenesis. With increasing evidence that the interface and 

network between genes and proteins play an important role 

in exploration of cancer molecular mechanisms, it is essential 

and important to introduce a new perception of Systems 

Clinical Medicine into cancer research, to integrate systems 

biology, clinical science, omics-based technology, 

bioinformatics and computational science to improve 

diagnosis, therapies and prognosis of diseases [1, 7]. 

 

  Types of Cancer - There are more than 100 types 

of cancer. Types of cancer are usually named for the organ or 

tissue where the cancer form, but they also may be described 

by the type of cell that formed them [8]. 

 

TABLE 1: Different types of cancer [8] 
A Acute granulocytic leukemia 

 Acute lymphocytic leukemia 

 Acute myelogenous leukemia 

 Adenocarcinoma 

 Adenosarcoma 

 Adrenal cancer 

 Adrenocortical carcinoma 

 Anal cancer 

 Anaplastic astrocytoma 

 Angiosarcoma 

 Appendix cancer 

 Astrocytoma 

 Acute granulocytic leukemia 

 Acute  lymphocytic  leukemia 

(ALL) 

 Acute myelogenous leukemia 

(AML) 

 Adenocarcinoma 

 Adenosarcoma 

 Adrenal cancer 

 Adrenocortical carcinoma 

 Anal cancer 

 Anaplastic astrocytoma 

 Angiosarcoma 

 Appendix cancer 

 Astrocytoma 

  
B Basal cell carcinoma 

 B-Cell lymphoma 

 Bile duct cancer 

 Bladder cancer 

 Bone cancer 

 Bone marrow cancer 

 Bowel cancer 

 Brain cancer 

 Brain stem glioma 

 Brain tumor 

 Breast cancer 

 Basal cell carcinoma 

 

 B-Cell lymphoma 

 Bile duct cancer 

 Bladder cancer 

 Bone cancer 

 Bone marrow cancer 

 Bowel cancer 

 Brain cancer 

 Brain stem glioma 

 Brain tumor 

 Breast cancer 

  
C Carcinoid tumors 

 Cervical cancer 

 Cholangiocarcinoma 

 Chondrosarcoma 

 Chronic lymphocytic 

leukemia (CLL) 

 Chronic myelogenous 

leukemia (CML) 

 Colon cancer 

 Colorectal cancer 

 Craniopharyngioma 

 Cutaneous lymphoma 

 Cutaneous melanoma 

  
D Diffuse astrocytoma 

 Ductal carcinoma in situ 

(DCIS) 
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E Endometrial cancer 

 Ependymoma 

 Epithelioid sarcoma 

 Esophageal cancer 

 Ewing sarcoma 

 Extrahepatic bile duct cancer 

 Eye cancer 

  
F Fallopian tube cancer 

 Fibrosarcoma 

  
G Gallbladder cancer 

 Gastric cancer 

 Gastrointestinal cancer 

 Gastrointestinal carcinoid 

cancer 

 Gastrointestinal stromal 

tumors (GIST) 

 General 

 Germ cell tumor 

 Glioblastoma multiform 

(GBM) 

 Glioma 

  
H Hairy cell leukemia 

 Head and neck cancer 

 Hemangioendothelioma 

 Hodgkin lymphoma 

 Hodgkin's disease 

 Hodgkin's lymphoma 

 Hypopharyngeal cancer 

  
I Infiltrating  ductal  carcinoma 

(IDC) 

 Infiltrating lobular carcinoma 

(ILC) 

 Inflammatory   breast   cancer 

(IBC) 

 Intestinal Cancer 

 Intrahepatic bile duct cancer 

 Invasive  /  infiltrating  breast 

cancer 

 Islet cell cancer 

  
J Jaw cancer 

  
K Kaposi sarcoma 

 Kidney cancer 

  
 

L Laryngeal cancer 

 Leiomyosarcoma 

 Leptomeningeal metastases 

 Leukemia 

 Lip cancer 

 Liposarcoma 

 Liver cancer 

 Lobular carcinoma in situ 

 Low-grade astrocytoma 

 Lung cancer 

 Lymph node cancer 

 Lymphoma 

  
M Male breast cancer 

 Medullary carcinoma 

 Medulloblastoma 

 Melanoma 

 Meningioma 

 Merkel cell carcinoma 

 Mesenchymal 

chondrosarcoma 

 Mesenchymous 

 Mesothelioma 

 Metastatic breast cancer 

 Metastatic melanoma 

 Metastatic squamous neck 

cancer 

 Mixed gliomas 

 Mouth cancer 

 Mucinous carcinoma 

 Mucosal melanoma 

 Multiple myeloma 

 Mycosis Fungoides 

 Myelodysplastic Syndrome 

  
N Nasal cavity cancer 

 Nasopharyngeal cancer 

 Neck cancer 

 Neuroblastoma 
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 Neuroendocrine tumors 

(NETs) 

 Non-Hodgkin lymphoma 

(NHL) 

 Non-Hodgkin's lymphoma 

 Non-small cell lung cancer 

  
O Oat cell cancer 

 Ocular cancer 

 Ocular melanoma 

 Oligodendroglioma 

 Oral cancer 

 Oral cavity cancer 

 Oropharyngeal cancer 

 Osteogenic sarcoma 

 Osteosarcoma 

 Ovarian cancer 

 

 Ovarian epithelial cancer 

 Ovarian germ cell tumor 

 Ovarian   primary   peritoneal 

carcinoma 

 Ovarian   sex   cord   stromal 

tumor 

  
P Paget's disease 

 Pancreatic cancer 

 Papillary carcinoma 

 Paranasal sinus cancer 

 Parathyroid cancer 

 Pelvic cancer 

 Penile cancer 

 Peripheral nerve cancer 

 Peritoneal cancer 

 Pharyngeal cancer 

 Pheochromocytoma 

 Pilocytic astrocytoma 

 Pineal region tumor 

 Pineoblastoma 

 Pituitary gland cancer 

 Primary central nervous 

system (CNS) lymphoma 

 Prostate cancer 

  
R Rectal cancer 

 Renal cell carcinoma 

 Renal pelvis cancer 

 Rhabdomyosarcoma 

  
S Salivary gland cancer 

 Sarcoma 

 Sarcoma, bone 

 Sarcoma, soft tissue 

 Sarcoma, uterine 

 Sinus cancer 

 Skin cancer 

 Small cell lung cancer 

(SCLC) 

 Small intestine cancer 

 Soft tissue sarcoma 

 Spinal cancer 

 Spinal column cancer 

 Spinal cord cancer 

 Spinal tumor 

 Squamous cell carcinoma 

 Stomach cancer 

 Synovial sarcoma 

  
T T-cell lymphoma 

 Testicular cancer 

 Throat cancer 

 Thymoma / thymic carcinoma 

 Thyroid cancer 

 Tongue cancer 

 

 Tonsil cancer 

 Transitional cell cancer 

 Transitional cell cancer 

 Transitional cell cancer 

 Triple-negative breast cancer 

 Tubal cancer 

 Tubular carcinoma 

  
U Undiagnosed Cancer 

 Ureteral cancer 

 Ureteral cancer 

 Urethral cancer 

 Uterine adenocarcinoma 

 Uterine cancer 

 Uterine sarcoma 
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V Vaginal cancer 

 Vulvar cancer 

 
II            CANCER  BIOINFORMATICS  – 

 

 Cancer bioinformatics is a important and vital part 

of the systems clinical medicine in cancer and the core tool 

and approach to carry out the investigations of cancer in 

systems clinical medicine and for the development of 

bioinformatics methods, network biomarkers and precision 

medicine to explore the potential of clinical applications and 

improve the outcomes of patients with cancer [1, 7]. 

 

 Expectations of methodologies - Cancer 

bioinformatics is one of many ways to focus bioinformatics 

methods in cancer, according to the specificity of disease 

metabolisms, signaling, communication, and proliferations 

[7]. Clinical bioinformatics,  an  emerging  science  

combining clinical informatics, bioinformatics, medical 

informatics,   information   technology,   mathematics, and 

omics science together can be considered to be one of 

critical elements addressing clinical relevant challenges in 

early diagnosis, efficient therapies, and predictive   

prognosis   of  patients  with  cancer  [7]. There  is  a  

necessity  to  build  up  cancer bioinformatics-specific 

methodologies or introduce new and advanced 

bioinformatics tools to answer the specific  question  of 

cancer  [9].  Like, the  Semantic Web  technology  was  used  

to  recognize  high throughput clinical data and develop 

quantitative semantic models retrieved from Corvus, a data 

warehouse which provides a uniform interface to various 

forms of Omics data, based on systematic biological 

knowledge and by application of SPARQL endpoint [11]. 

Semantic models, having genomic, transcriptomic and 

epigenomic data from melanoma samples with Gene 

Ontology data and regulatory networks  constructed  from  

transcription  factor binding information, were applied for 

the interaction between  a cell  molecular  state  and  its  

response  to anti-cancer therapy [12, 13, 14]. Multivariate 

assays, a process to illustrate inaccuracy introduced in the 

assay results from the built-in error in sample preparation 

and measurement of the contributing factors, were used to 

help and guide clinicians understanding the application to 

PAM50 centroid- based genomic predictors for breast cancer 

management plans and providing the uncertainty information 

in a usable way. It may be a non-relative query or a prospect 

expectation how experts in cancer bioinformatics   can  help  

clinicians  to  set  up  the potential picture of gene or protein 

interactions and mechanisms correlated with tumor-

associated shapes, densities,  or locations  [15, 16].  A recent 

article by von  der  Heyde   and   Beissbarth   in  the  in  

BMC Medicine discusses the current insights into methods 

of cetuximab resistance in head and neck cancers resulting 

from original analysis of the EGFR pathway [17]. 

 

III          NEW STRATEGIES OF BIOMARKERS 

 

 Cancer bioinformatics is expected to participate in a 

more significant role in the recognition and validation of 

biomarkers, specific to clinical phenotypes related to early 

diagnoses, measurements to scrutinize the progress of the 

disease and the response to therapy, and predictors for the 

development of patient‘s life value [18]. Of gene-, protein-, 

peptide-, chemical- or physic-based variables in cancer, 

biomarkers were examined from a single one to many 

markers, from the expression to functional indication, and 

from the network to dynamic network. Network biomarkers 

as a new type of biomarkers with protein-protein interactions 

were examined with the amalgamation of knowledge on 

protein annotations, interaction, and signaling pathway [19]. 

Alterations of network biomarkers   can   be   monitored   

and   evaluated   at different  stages  and  time  points  during  

the development of diseases, named dynamic network 

biomarkers, as one of the new strategies. Vibrant network 

biomarkers were presumed to be associated with  clinical  

informatics,  including  patient complaints, history, 

therapies, clinical symptoms and signs,  physician‘s  

examinations,  biochemical analyses, imaging profiles, 

pathologies and other measurements.     Systems     clinical     

medicine     is recommended as one of latest approaches for 

the development of cancer biomarkers [20]. Systems clinical 

medicine is created as the assimilation of systems  biology,  

clinical  phenotypes,  high- throughout technologies, 

bioinformatics and computational  science  to  improve  

diagnosis, therapies and prognosis of diseases [7, 21]. 

Cancer biomarkers should have the natures of networks, 

dynamics, interfaces, and specificities to disease diagnosis, 

therapy and prognosis. Understanding the interaction 

between clinical informatics and bioinformatics is the first 

and critical step to discover and develop the new diagnostics 

and therapies for diseases [7, 22]. Such approach has been 

described in other   disorders   like   acute   rejection   after   

renal transplantation or lung diseases. In short, human 

samples from clinical studies under lucid and strict criterion  

of  participating  recruitments  are  collected and collected 
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with an entire profile of clinical informatics   translated   

from   clinical   descriptions. Gene and/or protein profiles of 

defined samples are analyzed and vibrant set-ups and 

interfaces between genes and/or proteins can be figured out 

by bioinformatics  and  systems  biology.  Selected disease-

specific  associations  and  dynamic arrangements of genes 

and/or proteins in patients are correlated with each of clinical 

phenotypes by the computational  mode,  to  validate  and  

optimize disorder-special biomarkers [23]. However, a 

number of challenges in the application of systems clinical 

medicine are encountered and need to be overcome; e.g. the 

optimal system to decode the information of clinical 

descriptions to clinical informatics, bioinformatics  analysis  

oriented  with  disease severity, extent, location, sensitivity 

to therapies, and progress, or computational mode to 

integrate all elements from clinical and high-throughout data 

for accuracy conclusions  [7]s.  It is also a challenge  to find 

out the deviation and significance between molecular 

networks, between networks of molecules and clinical 

phenotypes, and between gene and/or protein  interfaces,  in  

addition  to  the  expression  of genes  and  proteins.  It  is  

seen  that  incorporating protein set-up and molecular 

interaction data recovers the ability to interpret the specific 

gene signature in breast cancer patients because R weighted 

Recursive Feature Elimination and average pathway 

expression were found to be most effective at generating 

interpretable signatures [24]. 

IV   THE ―OMICS‖ IN CANCER BIOINFORMATICS  – 

Compared to past years, currently there are numerous 

open source projects active in the life science arena, each   

offering   freely   available   source   code   that promises to 

address a specific problem or problem domain of biological 

sciences in a reusable way [25]. Bioinformatics.org   alone  

hosts  over  275  projects, which address a bioinformatics 

need by definition. In addition, Sourceforge hosts around 

750 projects categorized  as  ‗Bioinformatics‘   including  

projects such as Generic Model Organism Database 

(GMOD), Microarray  Gene Expression  Data society 

(MGED) and Life Sciences Identifiers (LSID). There are 

many projects hosted by the developers‘ home institutions or 

by other open source-allocated umbrella organizations such 

as the Open Bioinformatics Foundation. The latter actually 

hosts some of the toolkits most widely used in the life 

sciences, such as BioPerl   and   Biojava.   Scenario   of   

each   project offering ‗stuff‘ the effectiveness or outcome of 

which is often not immediately clear, is much reminiscent of 

a market [25]. 

Cancer is one of the most complex types of all human 

disorders. Its complexity lies in: 

(1) its rapidly evolving population  of cells 

that flow away from their usual functional states at the 

molecular, epigenetic and genomic levels, 

(2) its enlargement and spreading out to encroach and 

substitute normal tissue cells; and 

(3) its abilities to defend against both endogenous and 

exogenous measures for preventing or slowing down its 

growth [26]. 

 

 Major  challenging  issues  that  clinical  

oncologists deal with are considerable heterogeneity and 

different genetic & generic backgrounds even within the 

same type of cancer, but also that most effective medicines 

tend to lose their efficaciousness within a year, or so. Thus 

the natural question comes is: what can be the reasons  for 

their  losing  efficacy?  Intuitively  this  is due to a cancer‘s 

capability to evolve speedily, particularly in terms of 

generating drug-resistant sub- populations, which is 

facilitated by its abilities to proliferate and to accumulate 

genomic mutations rapidly [26]. Of the many reasons that 

our knowledge is so light has been the lack of molecular-

level data, fully analysed  and mining of which can 

potentially can reveal the full complexity of an evolving 

cancer. While large quantities of omic data (in database) 

such as gen omic , epigen omic, transcript omic , metabol 

omic   and   prote   omic   data   have   currently   been 

generated by computational biologists for a variety of cancer 

types, only a few cancer studies have been designed to take 

full advantage of all the information derivable from the 

available omic data [27, 28]. Integrative analyses of 

numerous data types proves to be a boon to gain a full and 

systems- level understanding  about  a  cancer‘s  

evolutionary dynamics, including the elucidation of its true 

drivers as well as key facilitators at different developmental 

stages of a cancer. We hypothesize that only when all of the 

key information hidden in omic data is fully derived  and  

utilized,  we  can  expect  a  meaningful breakthrough in our 

understanding of cancer & its diagnosis [27, 28]. 

 

 The Human Genome Project has been sequenced 

and the three billion base pairs (bps) of nucleotides 

comprising a complete human cancer genome are 

represented in a digital form, directly readable by humans 

and computers, allowing cancer researchers and  clinicians  

to  view  and  analyze  the  detailed genetic makeup of a 

healthy human and a cancer patient [29, 30]. Complementing 
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and extending the invaluable   genome   sequence   data  are  

the  major change  the  Human  Genome  Project  has  

brought about and the genetic science is now equipped with 

two  powerful  tools:  rapid  genome-sequence generation 

and computation-based information discovery  from  the  

genomic  sequences.  With  the open accessibility of digitally 

represented human genomes in hand, scientists have 

computationally identified the vast majority of the ~20,000 

protein encoding genes in our genome, along with large 

numbers of single-nucleotide polymorphisms (SNPs) and  

other  types  of  genetic  variations  across individuals and 

different ethnic groups as well as various disease groups and 

targeted sequencing of specific genomic regions deemed to 

be relevant to certain diseases has led to the identification of 

numerous  genetic markers  for various diseases  [29, 30]. In 

addition to the Human Genome Project, a number  of  

closely  related  genome  sequencing projects have been 

carried to provide a more comprehensive dataset for the 

human genome(s): 

(1) the Human Genome Diversity Project to document 

genomic differences across different ethnic groups [31]; 

(2) the Human Variome Project to establish relationships 

between human genomic variations and diseases [32]; 

(3) the International HapMap Project to develop a haplotype 

map of the human genome [33]; 

(4) the 1000 Genome Project to establish a detailed catalog 

of all human genetic variations [34]; and 

(5) the Personal Genome Project to sequence the complete 

genomes and establish the matching medical records of 

100,000 individuals [35]. 

 

 All   these   sequencing   projects,   along   with   

other related ones, such as the Neanderthal Genome Project 

[36] and the Chimpanzee Genome Project [37, 38], provided  

a comprehensive  view of the genomes  of healthy humans 

with normal polymorphisms as well as mutations associated 

with various diseases. The Cancer  Genome  Atlas  (TCGA)  

represents  probably the   most   motivated   cancer-   

genome   sequencing project, which aims to sequence up to 

10,000 cancer genomes covering 25 major cancer types by 

2014 and make  the  data  publicly  available  [39].  Such  

data tends to provide a substantial amount of information 

about cancer-related genomic mutations and by comparing 

the genome sequences of a cancer and the matching  normal  

tissue  researchers  can identify  all the genomic  changes  in 

the  cancer  genome,  which tends to fall into two categories: 

simple and complex mutations  [40]. Specifically,  simple  

mutations  refer to single base-pair mutations and DNA 

single or double-strand breaks; and complex mutations refer 

to duplications  and  deletions  (together  referred  to  as 

copy-number changes), translocations and inversions of  

genomic  segments.  Simple  mutations  can  result from 

exogenous  factors such as radiation, air-borne and food-

related carcinogens in the environment, as well as from 

endogenous factors in the microenvironments inside our 

bodies, including ROS (reactive  oxygen  species)  and  other  

reactive metabolites plus random mutations [41]. Eg., 

ionizing radiation, including X-rays and gamma rays, can 

directly cause point mutations and DNA breaks. In addition,  

a  variety  of  non-radioactive  carcinogens have been 

identified that can damage DNA, including microbes,  

chemical  compounds  in  the  environment and  reactive   

species   inside   our  cells  [41].   Free radicals represent a 

large class of internal, potentially carcinogenic  agents  that  

are  highly  reactive molecules and can partake in undesired 

reactions, causing damages to cells and particularly to DNA. 

Infidelity  of transcription  including  repair  can  also lead  

to  simple  mutations.  While  these  carcinogens can produce 

simple DNA damages, it is the faulty or imprecise  DNA  

replication  and  repair  machineries that lead to the complex 

mutations, namely undesired duplications, deletions, 

inversions and translocations of large DNA segments.  There 

are multiple instances that can result in such complex 

genomic mutations. Eg., under persistent hypoxic conditions, 

cells tend to use  emergency  mechanisms  to  repair  simple 

mutations,  but  the  inaccuracy  of  such  mechanisms can 

lead to complex mutations [41, 42]. One such mechanism, 

namely micro homology-mediated end joining  (MMEJ)  for  

repairing  double-strand  DNA breaks, through which 

unwanted DNA copy number changes,   inversions   and  

translocations   can  result [43]. Usually like the regular 

repair mechanism for double-strand breaks, MMEJ uses the 

sister chromosome  as  the  template  to  replace  the  region 

with a break and the difference is that it uses a much shorter 

homologous region in the sister chromosome, typically 5–25 

bps rather than the usual 200 bps required  by  the  normal  

DNA  repair  mechanism. Hence the designation is micro 

homology-mediated. While  the  advantage  in  this  

mechanism  is substantially faster than the regular DNA 

repair machinery, which is needed under certain emergency 

conditions, it is error prone due to the less stringent 

requirement for finding the equivalent region in the sister 

chromosome, thus leading to various complex mutations 

[44]. This mechanism is used only under highly stressful 

conditions when the regular DNA repair  mechanisms  are  

functionally  repressed  [45], and hence is often used in 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

 Vol 2, Issue 4, April 2017 
 

 

 All Rights Reserved © 2017 IJSEM                 28 

 

 

cancer associated environments.  Knowledge  about  how  

different genomic mutations occur, one could possibly 

develop computational   models   to   infer   the   

evolutionary history of the mutations observed in a cancer 

genome from the matching reference genome. Idea is, one 

can first identify all the genomic differences between a 

cancer genome and the matching reference genome. For each 

identified complex mutation, one can apply a mechanistic 

model to predict how it occurs from the previous generation 

of the genome, while simple mutations can be assumed to 

take place randomly according to some stochastic models. It 

is noteworthy that  some  of  the  evolutionary  intermediates 

(mutations) may or may not be present in the cancer genome, 

due to the possibilities that some portions of the  genome  

might  have  been  deleted  during evolution. In addition, it 

should be emphasized that such an ―Omic Data‖, 

Information Derivable and Computational  Needs  approach  

(even  when  taking into consideration the other emergency 

DNA repair mechanisms) always not necessarily yield a 

unique evolutionary path from the reference to the cancer 

genome. One possible way to constrain this phylogenetic  

reconstruction  problem  to  a  solution space as small as 

possible is to find such a path under the parsimony 

assumption [46], as usually used in phylogenetic 

reconstruction algorithms. Specifically one can require that 

the predicted evolutionary path have either the smallest 

number of generations or the highest consistency with the 

occurrence probabilities of different types of mutations as 

documented in the literature. As of now, no one has 

published such algorithms for making evolutionary path 

predictions, but the need for such tools is clearly there in 

order to understand   the   evolution   of   a   cancer   

genome. Various types of information may also be derivable 

from cancer genomes, such as: 

 

(1) oncogenes and tumor suppressor genes that may be 

specific to a particular cancer type. Eg., gene fusions  as  in  

the  case  of  the  Philadelphia chromosome  for chronic  

myelogenous  leukemia (CML) [47, 48]; 

(2)  potential  incorporation  of  microbial  genes into the 

cancer genomes as in the case of hepatitis B virus genes 

integrated into the host genome; 

(3) biological and metabolic pathways that are enriched   

with   genetic   mutations   in   a   particular cancer, leading 

to the loss of function at the pathway level; and 

(4) changes in mutation patterns as the cancer advances. 

 By systematically identifying the genomes 

variations  of  multiple  patients  of  the  same  cancer type, 

one can identify biological pathways enriched with such  

mutations,  using  analysis  tools  like DAVID  [49]  against  

pathway  databases  such  as KEGG [50, 51, 52], 

BIOCARTA [53] or cancer- related gene sets [54, 55]. Eg., a 

study, published in 2007  on  genomic  mutations  observed  

across  210 cancer types, discovered that the pathway having 

the highest enrichment  with non-synonymous  mutations is 

the FGF (fibroblast growth factor) signaling pathway, 

revealing one commonality among changes needed by 

cancer evolution across different cancer types [56]. With 

such an information, one can further assume  which  cellular  

processes  need  to  be terminated  or  become  hyperactive  

in  any  specific order as a cancer evolves, hence possibly 

developing new insights about the evolutionary paths unique 

to particular cancer types or common among all cancer 

types. Epigenomic data provide information about all the 

chemical modifications in the genomic DNA and associated 

histone proteins in a cell, namely DNA methylation and 

histone modification, among others. While epigenetic 

analyses are not new, it is the high- throughput array and 

sequencing techniques that have made such analyses at a 

genome scale possible and have  clearly  advanced  our  

overall  capabilities  to study cancer. DNA methylation is a 

process by which a methyl group is added to the carbon 5 

position of cytosine residues (C) in CpG dinucleotides and 

this is accomplished through a group of enzymes known as 

DNA methyl-transferases, the reactions of which can be  

reversed  by  another  group  of  enzymes  termed DNA 

demethylases. While a CpG region is highly methylated, 

they attract a group of enzymes called histone deacetylases 

that will initiate chromatin remodeling to change the local 

structure of the DNA, hence altering its accessibility to large 

molecular structures such as the transcription machinery, 

RNA polymerase. Since long CpG islands tend to be 

associated with the promoters of genes, methylation of such 

regions represses the expression of the genes [14].  Histones  

are proteins  that bind  with  DNA  to form the basic folding 

units, denoted as nucleosomes, of chromatin. The packing 

density of chromatin is closely related to the transcriptional 

state of a gene, i.e., lower packing the density, higher the 

transcriptional  activity  and  cells  change  their chromatin 

structures through post-translational modifications on the 

relevant histones, including acetylation,  deamination,  

methylation, phosphorylation,   SUMOylation  and  

ubiquitination. The  understanding  is that  interactions  

between histones   and   DNA   are   formed   by   

electrostatic attraction between the positive charges on the 

histone surface and the negative charges on DNA and 
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consequently, modifications on histones may change the 

charges of the surface residues, possibly changing the 

conformation and the transcriptional accessibility of a folded 

DNA and ultimately enhancing or repressing expression of 

the relevant genes [57, 58]. Another  mechanism  is  through  

recruiting  and applying chromatin remodeling ATPases, 

where histone   modifications   can  lead  to  disruptions   of 

ATPase  attraction  to  the  chromatin,  hence  altering the 

DNA‘s physical accessibility to the RNA polymerase [59]. 

Various technologies have been developed to reliably 

capture DNA methylations and histone modifications at a 

genome level. Among the assays that have been used for 

detecting methylations is the bisulfite sequencing technique 

[60]. By converting each methylated C to a T and removing 

the  methylation,  the  bisulfite  method  utilizes  the current  

sequencing  techniques  to  produce  the modified sequence 

and then recovers the methylation locations     through     

comparisons     between     the sequenced Ts and Cs at the 

same locations in the original DNA and the modified DNA. 

Histone modification  sites  can be detected  using  the  

ChIP- chip array technique [61], which has been used to 

identify  the  binding  sites  of  transcriptional  factors. The  

difference  here  is  to  detect  the  DNA  binding sites with 

histones relevant to the packing of DNA. Comparisons  

between  the  identified  DNA  binding sites under different 

conditions can lead to the identification of modified 

chromatin structures. The advancement  of  sequencing  

techniques  in  the  past few years has led to the development 

of the second generation ChIP technique, namely ChIP-seq, 

which can provide more quantitative and reliable data about 

histone modification sites as well [62]. From any of the two 

types of epigenomic data, one needs to infer genes that are 

primed to be repressed or enhanced transcriptionally at the 

epigenomic level. These data, in conjunction with other 

omic-data such as transcriptomic and genomic information, 

can be used to  derive  association  relationships  between 

epigenomic  activities  and  the  cellular  as  well  as micro-

environmental states [63]. This leads to identification of 

possible triggers and regulatory pathways of different 

epigenomic activities. Information of this type is clearly 

needed since, although numerous epigenomic effectors such 

the enzymes for DNA methylation and histone modifications   

have  been  identified,  very  little  is known  about  the  

regulation  of  these  effectors  and under what conditions a 

specific set of genes will be methylated [64]. The 

epigenomic level changes can be considered as an 

intermediate step between functional state changes of 

effector molecules and the permanent  genetic  mutations.  A  

number  of  large- scale  epigenomic   sequencing   projects   

have   been started with similar goals to those of the genome 

sequencing projects. These projects include: (a) the NIH 

Roadmap Epigenomics Program, started in 2008 with the 

aim of producing histone modification data for over 30 types 

of modifications in a variety of human cell types; 

(b) a component of the ENCODE (Encyclopedia of  DNA  

Elements)  project  launched  by  the  US National Human 

Genome Research Institute aiming as part of its goal the 

characterization of the epigenomic profiles of 50 different 

tissue types [65]; (c)  the  International  Human 

Epigenome Consortium  having its goal to build on and 

expand the NIH Epigenomics Program to include nonhuman 

cells and tissues, and to make it a functional international 

program; and (d) some regional epigenomics projects such 

as the ―Epigenetics, Environment and Health‖ project in 

Canada and the Australian  Alliance for Epigenetics [64, 65]. 

Again,  one  bioinformatics  initiative  of interest to 

population scientists is the cancer Biomedical Informatics 

Grid (caBIG®), a cyberinfrastructure  designed  to  connect  

all communities in the cancer family—researchers, 

physicians,  and  patients—to  share  cancer  genomic data 

and knowledge [66]. Within caBIG, sharing is predicated on 

interoperability, the ability of a system to access and use the 

parts or data of another system and this interoperability 

requires the development of data and software standards so 

that systems communicate with one another in a meaningful 

way to enhance data sharing [66, 67]. Underlying these 

standards  are  four  principles:  ―federated,‖  meaning that 

tools and data are widely distributed and locally controlled; 

―open development,‖ where tools and infrastructure  are  

built  using  an  open  and participatory process; ―open 

access,‖ where tools and resources are freely available; and 

―open source,‖ where the written code (documentation) is 

freely available and therefore, the tools and infrastructure of 

caBIG are open to all in order to foster their reuse well 

beyond cancer research. For example, epidemiologic risk 

factor questionnaire and biospecimen data may be collected 

separately from various clinical databases; caBIG offers the 

tools and infrastructure to integrate disparate data to test why 

Indians have a higher incidence of diabetes but lower 

mortality rate from colon cancer. Several bioinformatics 

tools & techniques that are available, or in development, 

through caBIG or elsewhere are highlighted in this paper. 

Population scientists aim to understand  disease patterns and 

develop approaches for disease prevention, detection, and 

diagnosis at an early stage to reduce the burden of disease 

[68]. Research data ranging from the molecular to the 
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societal level should be aggregated, integrated, and analyzed 

across all levels and inter-related data are needed across the 

disease control continuum—from the healthy through the 

outcome of treatment; for instance, one goal of research in 

this area is to investigate  why  African-American  women  

have  a lower incidence but higher mortality from breast 

cancer. But in many such areas, data often exist in a ―stove-

pipe,‖ but accessible only to the investigators who generates 

them. Hindrances to data access and use may arise from the 

need for access to sources that were never intended for 

health research. A number of human epigenomic databases 

have been developed as the result of these projects [66, 67, 

68]. 

V           CONCLUSION 

 

 The  bioinformatics  initiatives  described  in this 

review paper enhances a collaborative and inclusive 

approach to development of data and tools—many of which 

have originated from the cancer research community, but 

with substantial applicability to other areas  of  health  

science  research  [7,  69]. Bioinformatics  has  changed  the  

research  landscape and provided opportunities for scientists 

to utilize improved  methodologies,  enhance  use  of  

―omic‖  - data,  and  rapidly  address  important  research 

questions. Greater engagement by the population science 

community in bioinformatics will enhance integration  of  

multidimensional  data and new tools will help accelerate 

research to prevent disease, promote health, detect disease 

early, and reduce its impact and a substantial amount of 

information concerning the activities of individual 

biochemical pathways,  their  dynamics  and  the  complex 

relationships   among   them,   and   with   respect   to 

various micro-environmental factors, is hidden in the very  

large  pool  of  publicly  available  cancer  omic data,   

including   transcriptomic,   genomic, metabolomic and 

epigenomic data [66, 67, 68]. Powerful statistical analysis 

techniques can assist immensely in uncovering these 

information if one poses  the  right  questions.  Such  focused  

questions create  a framework  for  hypothesis-guided  data 

mining to check for the validity of the formulated 

hypothesis, as well as for guiding the formulation of further  

question  fremework,  which  may  ultimately lead to the 

elucidation of specific pathway database or even possibly 

causal relationships among the activities of different 

pathways. More powerful analysis tools for different omic 

data types are clearly needed in order to address more 

complex and deeper questions about the available data such 

as de- convolution of gene-expression information collected 

on  tissue  samples  consisting  of multiple  cell  types and 

inference of causal relationships. Integrative analyses of 

multiple types of omic and computational data proves to be 

the key to effective data mining and  knowledge  

about    genes    and   proteins,    DOI: information discovery 

[27, 28]. 
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