

Some New Fuzzy g**- Open Sets, Fuzzy g** - Irresolute and Fuzzy g** - Homeomorphism Mappings in Fuzzy Topological spaces

^[1] Mrityunjay K. Gavimath ^[2] Sadanand N Patil
 ^[1] Assistant Professor, Department of Mathematics
 BVV's S. R. Kanthi Arts Commerce & Science College Mudhol, Dist: Bagalakot, Karnataka (India)
 ^[2]Research Supervisor, VTU RRC, Belagavi, Karnataka (India)
 ^[1] mgavimath@gmail.com^[2] patilsadu@gmail.com

Abstract:— The aim of this paper is to introduce new class of Fuzzy sets, namelyg**-closed fuzzy set for Fuzzy topological spaces. This new class is properly lies between the class of closed Fuzzy set and the class of g-closed fuzzy set, we also introduce application of g** -closed fuzzy sets, the concept of fuzzy g**-continuous, fuzzy g**-irresolute mapping, fuzzy g**-closed maps, fuzzy g**-open maps and fuzzy g** -homeomorphism in Fuzzy topological spaces are also introduced, studied and some of their properties are obtained.

Classification: 2000 Math Subject classification 54A40

Keywords and phrases: fg^{**} - closed fuzzy sets, fg^{**} -continuous, fg^{**} -irresolute, fg^{**} -open, fg^{**} -closed mapping and fg^{**} -homeomorphism.

I. INTRODUCTION

Proof. L.A. Zadeh's [19] in 1965 introduced of the concept of 'fuzzy subset', in the year 1968, C L. Chang [4] introduced the structure of fuzzy topology as an application of fuzzy sets to general topology. Subsequently many researchers like, C.K. Wong[18], R.H. Warren [17], R. Lowen[7], A.S. Mashhour[11], K.K. Azad[1], M. N. Mukherjee[12],G. Balasubramanian &P. Sundaram [2] and many others have contributed to the development of fuzzy topological spaces. The image and the inverse image of fuzzy subsets under Zadeh's functions and their properties proved by C.L.Chang[4] and R.H.Warren [17] are included. Fuzzy topological spaces and some basic concepts and results on fuzzy topological spaces from the works of C.L.Chang [4], R.H.Warren [17], and C.K.Wong[18] are presented.

And some basic preliminaries are included. N.Levine [7] introduced generalized closed sets (gclosed sets) in general topology as a generalization of closed sets. Many researchers have worked on this and related problems both in general and fuzzy topology.Dr. Sadanand Patil [13,14&15] in the year 2009 and R. Devi and M. Muthtamil Selvan[5] in the year 2004, are introduced and studied g-continuous maps. The class of g#- closed fuzzy sets is placed properly between the class of closed fuzzy sets and the class of g *- closed fuzzy sets. The class of g *- closed fuzzy sets is properly placed between the class of closed fuzzy sets and the class of g- closed fuzzy sets.

II. PRELIMINARIES:

Throughout this paper $(X, T), (Y, \sigma) \& (Z, \eta)$ or (simply X, Y, & Z) represents non-empty fuzzy topological spaces on which no separation axiom is assumed unless explicitly stated. For a subset A of a space (X, T). cl(A), int(A) & C(A) denotes the closure, interior and the compliment of A respectively.

Definition 2.01: A fuzzy set A of a fts(X,T) is called:

1) a semi-open fuzzy set, if $A \le cl(int(A))$ and a semi-closed fuzzy set, if $int(cl(A)) \le 0[13]$

2) a pre-open fuzzy set, if $A \le int(cl(A))$ and a preclosed fuzzy set, if $cl(int(A)) \le A$ [13]

3) a α -open fuzzy set, if $A \le int(cl(int(A)))$ and a α closed fuzzy set, if $cl(int(cl(A))) \le A$ [14]

The semi closure (respectively pre-closure, α closure) of a fuzzy set A in a fts(X,T) is the intersection of all semi closed (respectively pre closed fuzzy set, α -closed fuzzy set) fuzzy sets containing A

and is denoted by scl(A) (respectively $pcl(A), \alpha cl(A)$).

Definition 2.02: A fuzzy set A of a fts(X,T) is called:

1) a generalized closed (g-closed) fuzzy set, if $cl(A) \le U$, whenever $A \le U$ and U is open fuzzy set in(X,T)).[2]

2) a g^* -closed fuzzy set, if $cl(A) \le U$, whenever $A \le U$ and U is g-open fuzzy set in (X, T).[7]

3) a sg -closed fuzzy set, if $cl(A) \leq U$, whenever

A \leq U and U is *g*-open fuzzy set in (*X*, *T*).[7]

4) a gs-closed fuzzy set, if $cl(A) \le U$, whenever $A \le U$ and U is g-open fuzzy set in (X, T).[7]

5) a gsp-closed fuzzy set, if $cl(A) \le U$, whenever

 $A \le U$ and U is *g*-open fuzzy set in (X, T).[7]

6) a α -generalized closed (α g-closed) fuzzy set, if α cl(A) \leq U, whenever A \leq U and U is open fuzzy

set in (X, T). [13,14 &15]

7) a generalized α closed (g α -closed) fuzzy set, if α cl(A) \leq U, whenever A \leq U and U is open fuzzy

set in (X, T). [13,14 &15]

Complement of g-closed fuzzy (respectively gpclosed fuzzy set, g *-closed fuzzy set, sg-closed fuzzy set, gs-closed fuzzy set, gsp-closed fuzzy set and closed fuzzy set) sets are called g-open (respectively gp-open fuzzy set, g*-open αg fuzzy set, sg-open fuzzy set, gs-open fuzzy set, gs-open fuzzy set and αg -open fuzzy set) sets.

Definition 2.03:Let X ,Y be two fuzzy topological spaces. A function $f:X \rightarrow Y$ is called

- Fuzzy continuous (f-continuous)[13,14,15] if f¹(B) is open fuzzy set in X ,for every open fuzzy set B of Y
- Fuzzy generalized- continuous (fg-continuous) function[13,14,15] if f¹(A) is g-closed fuzzy set in X ,for every closed fuzzy set A of Y
- Fuzzy generalized semi- continuous (fgscontinuous) function[13,14,15] if f⁻¹(A) is gs-closed fuzzy set in X ,for every closed fuzzy set A of Y
- 4) Fuzzy generalized semi-pre-continuous (fgspcontinuous) function[13,14,15] if f⁻¹(A) is gspclosed fuzzy set in X ,for every closed fuzzy set A of Y
- 5) Fuzzy generalized α -continuous (fg α -continuous) function[13,14,15] if f⁻¹(A) is g α -closed fuzzy set in X ,for every closed fuzzy set A of Y

- 6) Fuzzy α generalized -continuous (f α g-continuous) function[13,14,15] if f⁻¹(A) is α g-closed fuzzy set in X ,for every closed fuzzy set A of Y
- 7) Fuzzy g* -continuous (fg*-continuous) function[13,14,15] if f⁻¹(A) is g*-closed fuzzy set in X ,for every closed fuzzy set A of Y

8) Fuzzy generalized c-irresolute (fgc-continuous) function[13,14,15] if $f^{-1}(A)$ is fc-closed fuzzy set in X ,for every g- closed fuzzy set A of Y

Definition 2.04: Let X ,Y be two fuzzy topological spaces. A function $f:X \rightarrow Y$ is called Fuzzy -open (fopen)[13,14,15] iff f(V) is open fuzzy set in Y ,for every open fuzzy set in X.

- Fuzzy g-open (fg-open)[13,14,15] iff f(V) is g-open- fuzzy set in Y ,for every open fuzzy set in X.
- Fuzzy g*-open (fg*-open)[13,14,15] iff f(V) is g-open- fuzzy set in Y ,for every open fuzzy set in X.

III. g** - CLOSED FUZZY SETS

Definition 3.01: A Fuzzy set A of a Fuzzy Topological Space (X, T) is called g^{**} -closed Fuzzy Set If cl(A) $\leq U$ whenever A $\leq U$ & g^{*} -open Fuzzy Set in (X, T).

Theorem 3.02 : Every closed Fuzzy Set is g**-closed Fuzzy Set.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.03 : Let X= {a b c } and the fuzzy set A and B be defined as follows;

Theorem 3.04: Every g**- set is gs-closed fuzzy set in fts X.

Proof : Omitted

The converse of the above theorem need not be true as seen from the following example.

Example 3.05 : Let $X = \{a, b, c\}$ and the fuzzy sets A and B defined as follows ;

A = { (a, 0.4), (b, 0.5), (c,0.7) }, B = { (a, 0.6), (b, 0.6), (c, 0.5) }, C = { (a, 0.3), (b, 0.4), (c, 0.2) } and D = { (a, 0.3), b, 0.4), (c, 0.2) }. Let T = {0, 1, A}. Then (X, T) is fts.. Here the fuzzy set B is gs-closed fuzzy set but not g^{**} -closed set in (X, T).

Theorem 3.06 : Every g**-closed fuzzy set is gspclosed fuzzy set in fts X.

Proof : Omitted

The converse of the above theorem need not be true as seen from the following example.

Example 3.07 : In the example 3.05, (X, T) is a fts. Here the fuzzy set B is gsp-closed fuzzy set but not g^{**} -closed fuzzy set in(X, T).

Theorem 3.08 : Every g**-closed fuzzy set is sg-closed fuzzy set in fts X.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.09 : In the example 3.05 , (X, T) is a fts. Here the fuzzy set B is sg-closed fuzzy set but not g^{**} -closed fuzzy set in (X, T).

Theorem 3.10: Every g**-closed fuzzy set is g*-closed fuzzy set in fts X.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example

Example 3.11 : In the example 3.05, (X, T) is a fts. Here the fuzzy set B is g*-closed fuzzy set but not g**closed fuzzy set in (X, T).

Theorem 3.12 : Every g**-closed fuzzy set is g-closed fuzzy set in fts X.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.13 : In the example 3.05, (X, T) is a fts. Here the fuzzy set B is g-closed fuzzy set but not g^{**} closed fuzzy set in (X, T).

Theorem 3.14: Every g**-closed fuzzy set is αg-closed fuzzy set in fts X.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.15 : In the example 3.05 , (X, T) is a fts. Here the fuzzy set B is ag-closed fuzzy set but not g**closed fuzzy set in (X, T).

Theorem3.16 : Every g^{**} -closed fuzzy set is $g\alpha$ - closed fuzzy set in fts X.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.17: In the example 3.05 , (X, T) is a fts. Here the fuzzy set B is αg -closed fuzzy set but not g^{**} -closed fuzzy set in (X, T). **Theorem 3.18** : In a fts X, if a fuzzy set A is both g^* -open fuzzy set and g^{**} -closed fuzzy set, then A is closed set.

Proof: Omitted.

Theorem 3.19: if A is g^{**} -closed fuzzy set and cl (A) \wedge (1-cl(A))=0, then there is no non-zero g^* -closed fuzzy set F, such that $F \leq cl(A) \wedge (1-A)$.

Proof : Omitted.

Theorem 3.20: If a fuzzy set A is g^{**} -closed fuzzy set in X such that $A \leq B \leq cl(A)$, then B is also a g^{**} -closed fuzzy set in X.

Proof : Omitted.

Theorem 3.21 : A Finite union of g**-closed fuzzy set is a g**-closed fuzzy set.

Proof:Omitted.

We introduce g**-open fuzzy set.

Definition 3.22 : A fuzzy set A of a fts (X, T) is called g**-open fuzzy (briefly g**-open fuzzy set) set if its complement 1–A is g**-closed fuzzy set.

We have the following characterization.

Theorem 3.23 : A fuzzy set A of a fts X is g^{**} -open iff $F \leq int(A)$. Whenever F is g^* -closed fuzzy set and $F \leq A$.

Proof : Omitted.

Theorem3.24 : Every open fuzzy set is a g**-open fuzzy set.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.25 : Let $X = \{a, b, c\}$. Define the fuzzy sets A and B as fallows.

A= {(a, 0.4), (b, 0.5), (c,0.7)}, B={(a, 0), (b, 0.1), (c, 0.2)}. Then (X,T) is a the fts with the fuzzy topology T = {0, 1, A}. Here the fuzzy set B is g^{**} -open fuzzy set but not a open fuzzy set in X.

Theorem 3.26 : In a fts , Every g^* -open fuzzy set is a gs-open fuzzy set.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.27: Let X={a,b,c}. Define the fuzzy sets A and B as follows. A={(a,4),(b,5),(c,.7)}, B={(a,0),(b,.1),(c,.2)}. Then (X,T) is a fts with the fuzzy topology T={0,1,A}.Here the fuzzy set B is g** open fuzzy set but not a open fuzzy set in X. fuzzy set

 $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is gs-open fuzzy set but not g**-open fuzzy set in X.

Theorem 3.28: In a fts X, Every g**-open fuzzy set is a gsp-open fuzzy set.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.29 : In the example 3.27, fuzzy set $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is gsp-open fuzzy set but not g^{**} -open fuzzy set in X.

Theorem 3.30 : In a fts , Every g*-open fuzzy set is a sg-open fuzzy set.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.31: In the example 3.27, fuzzy set $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is sg-open fuzzy set but not g^{**} -open fuzzy set in X.

Theorem 3.32 : In a fts , Every g**-open fuzzy set is a g*-open fuzzy set.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.33 : In the example 3.27, fuzzy set $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is g*-open fuzzy set but not g**-open fuzzy set in X.

Theorem 3.34 : In a fts , Every g*-open fuzzy set is a g-open fuzzy set.

Proof :Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.35 : In the example 3.27, fuzzy set $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is g-open fuzzy set but not g**-open fuzzy set in X.

Theorem 3.36 : In a fts , Every g^* -open fuzzy set is a αg -open fuzzy set.

Proof : Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.37 : In the example 3.27, fuzzy set $1-B=\{(a, 0.4), (b, 0.4), (c, 0.5)\}$ is αg -open fuzzy set but not g**-open fuzzy set in X.

Theorem 3.38 : In a fts , Every g*-open fuzzy set is a g α -open fuzzy set.

Proof : Omitted.

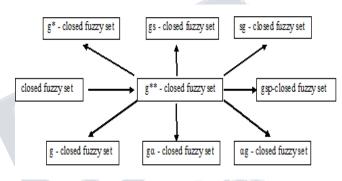
The converse of the above theorem need not be true as seen from the following example.

Example 3.39 : In the example 3.27, fuzzy set 1– B={(a, 0.4), (b, 0.4),(c, 0.5)} is ga-open fuzzy set but not g**-open fuzzy set in X.

Theorem 3.40 : If int $(A) \le B \le A$ and if A is g**-open fuzzy set, then B is g**-open fuzzy set in a fts X.

Proof : Omitted.

Theorem 3.41 : If $A \le B \le X$ where A is g**-open fuzzy relative to B and B is g**-open fuzzy relative to X, then A is g**-open fuzzy relative to fts X. **Proof** : Omitted.



Where A \longrightarrow B (A \longrightarrow B) represents A implies B but not conversely. (A and B are independent).

Theorem 3.42 : Finite intersection of g^{**} -open fuzzy set is a g^{**} -open fuzzy set.

Proof : Omitted.

Theorem 3.43 : If a fuzzy set A is g^{**} -closed fuzzy set and cl (A) \land (1–cl (A)) =0, then cl (A) \land (1–A) is g^{**} -open set in X.

Proof : Omitted.

Definition 3.45 : For any fuzzy set A in any fts.

fg**-cl (A) = \land {U:U is g**-closed fuzzy set and A \leq U }.

fg**- int (A) = {V:v is g**-open fuzzy set and $A \ge V$ }.

Theorem 3.46 : Let A be any fuzzy set in a fts (X, T). Then

And fg^{**} -int $(1-A) = 1-fg^{**}$ -cl (A).

Proof : Omitted.

Theorem 3.47 : In a fts (X,T), a fuzzy set A is g^{**} -closed iff A =fg^{**}-cl (A).

Proof : Omitted.

Theorem 3.48 : In a fts X the following results hold for fuzzy g^{**} -closure.

1) $g^{**}-cl(0)=0$.

- 2) g**-ci(A) is **-closed fuzzy set in X.
- 3) g^{**} -cl(A) $\leq g^{**}$ -cl(B). If A \leq B.

- 4) $g^{**}-cl(g^{**}-cl(A)) = g^{**}-cl(A)$
- 5) $g^{**}cl(A \lor B) \ge g^{**}-cl(A) \lor g^{**}-cl(B)$
- 6) $g^{**}cl(A \land B) \ge g^{**}-cl(A) \land g^{**}-cl(B).$

Proof : the easy verification is omitted.

Theorem 3.49 : In a fts X, a fuzzy set A is g^{**} -open fuzzy set iff A =f g^{**} -int (A).

Proof : Omitted.

Theorem 3.50: In a fts X the following results hold for fuzzy g^{**} -interior.

- 1) $g^{**}-int(0)=0$.
- 2) g**-int(A) is **-open fuzzy set in X.
- 3) g^{**} -int(A) $\leq g^{**}$ -int(B). If A \leq B.
- 4) $g^{**}-cl(g^{**}-int(A)) = g^{**}-int(A)$
- 5) $g^{**}int(A \lor B) \ge g^{**}-int(A) \lor g^{**}-int(B)$
- 6) g^{**} int $(A \land B) \ge g^{**}$ -int $(A) \land g^{**}$ -int(B).

Proof : the easy verification is omit

IV. FUZZY g**-CONTINUOUS MAPPING

In this section the concept of fuzzy g^{**} -continuous , fuzzy g^{**} -irresolute functions and fuzzy g^{**} -homeomorphism , fuzzy g^{**} -open and fuzzy g^{**} -closed mapping in fuzzy topological spaces have been introduced and studied.

Definition 4.01: Let X and Y be two fts. A function $f: X \rightarrow Y$ is said to be fuzzy g^{**} -continuous (briefly f g^{**} -continuous) if the inverse image of every open fuzzyset in Y is g^{**} -open fuzzy set in X.

Theorem 4.02: A function $f: X \rightarrow Y$ is f g**-continuous iff the inverse image of every closed fuzzy set in Y is wg**-closed fuzzy set in X.

Proof:Omitted.

Theorem 4.03:Every f-continuous function is f g**continuous.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.04: Let X=Y={a,b,c} and the fuzzy sets A,B and C be defined as follows. A={(a,0),(b,0.1),(c,0.2)}, B={(a,0.4),(b,0.5),(c,0.7)}, C={(a,1),(b,0.9),(c,0.8)}. Consider T={0,1,B} and $\sigma = \{0,1,A\}$. Then (X,T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a) =a, f(b) =b and f(c) =c. Then f is f wg**-continuous but not f-continuous as the fuzzy set C is closed

fuzzy set in Y and $f^{1}(C) = C$ is not closed fuzzy set in X but g**-closed fuzzy set in X. Hence f is f g**continuous **Theorem 4.05:**Every f g**-continuous function is fg-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.06 :Let $X=Y=\{a,b,c\}$ and the fuzzy sets A,B,C and D be defined as follows. A= $\{(a,0.2),(b,0.5),(c,0.3)\}$, B= $\{(a,0.8),(b,0.5),(c,0.7)\}$, C= $\{(a,0.5),(b,0.2),(c,0.3)\}$ and

D={(a,0.5),(b,0.8),(c,0.7)}. Consider T={0,1,A} and σ ={0,1,A,B}. Then (X,T) and (Y, σ) are fts. Define f:X \rightarrow Y by f(a) =b, f(b) =a and f(c) =c. Then f is fg-continuous but not f g**-continuous as the inverse image of closed fuzzy set A in Y is f¹(A) =C which is not g**-closed fuzzy set in X. Hence f is fg-continuous **Theorem 4.07:** Every f g**-continuous function is fg*-

continuous. **Proof:** Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.08: In the example 4.06, Then f is fg^{*}-continuous but not fg^{**}-continuous as the inverse image of closed fuzzy set A in Y is $f^{1}(A) = C$ which is not g^{**}-closed fuzzy set in X. Hence f is fg^{*}-continuous.

Theorem 4.09:Every f g**-continuous function is fsg-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.10: In the example 4.06, Then f is fsgcontinuous but not f g^{**} -continuous as the inverse image of closed fuzzy set A in Y is $f^{-1}(A) = C$ which is not g^{**} -closed fuzzy set in X. Hence f is fsg-continuous **Theorem 4.11:** Every f g^{**} -continuous function is fgscontinuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.12:In the example 4.06,Then f is fgscontinuous but not fg^{**} -continuous as the inverse image of closed fuzzy set A in Y is $f^{-1}(A) = C$ which is not g^{**} -closed fuzzy set in X. Hence f is fgscontinuous.

Theorem 4.13: Every f g**-continuous function is f α g-continuous.

Proof: Omitted..

The converse of the above theorem need not be true as seen from the following example.

Example 4.14:In the example 4.06, Then f is fagcontinuous but not f g**-continuous as the inverse image of closed fuzzy set A in Y is $f^{-1}(A) = C$ which is not g**-closed fuzzy set in X. Hence f is fagcontinuous.

Theorem 4.15: Every f g**-continuous function is fgαcontinuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.16: In the example4.06, Then f is $fg\alpha$ -continuous but not fg^{**} -continuous as the inverse image of closed fuzzy set A in Y is $f^{-1}(A) = C$ which is not g^{**} -closed fuzzy set in X. Hence f is $fg\alpha$ -continuous

Theorem 4.17:Every f g**-continuous function is fgsp-continuous.

Proof: Omitted.

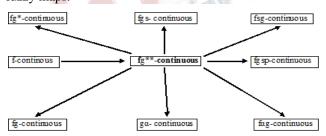
The converse of the above theorem need not be true as seen from the following example.

Example 4.18:In the example 4.06, Then f is fgspcontinuous but not f g^{**} -continuous as the inverse image of closed fuzzy set A in Y is $f^{1}(A) = C$ which is not g^{**} -closed fuzzy set in X. Hence f is fgspcontinuous.

Theorem 4.19: If $f: X \to Y$ is fg^{**} -continuous and $g: Y \to Z$ is f-continuous, then $gof: X \to Z$ is fg^{**} -continuous.

Proof: Omitted.

Remark 4.20:The following diagram shows the relationship of fg**-continuous maps with ome other fuzzy maps.



Where $A \longrightarrow B(A \iff B)$ represents A implies B but not conversely. (A and B are independent).

Theorem 4.16:Let X_1 and X_2 be fts and $P_i:X_1x$ $X_2 \rightarrow X_i(i=1,2)$ be the projection mappings. If $f:X \rightarrow X_1$ xX_2 is fg**-continuous then the P_iof:X \rightarrow X_i (i=1,2) is fg**-continuous.

Proof:Omitted.

Theorem 4.21:Every f-strongly continuous function is fg**-continuous.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example. **Example 4.22:** In the example 3.27, the function f is fg**-continuous but not f-strongly continuous, for the fuzzy set C in Y, $f^{-1}(C)=C$ is not both open and closed fuzzy set in X

Theorem 4.23:Every f-perfectly continuous function is fg**-continuous.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example. **Example 4.24:** In the example 3.27, the function f is fg**-continuous but not f-perfectly continuous as the fuzzy set A is open in Y and $f^{-1}(A)=A$ is not both open and closed fuzzy set in X

Theorem 4.25:Every f-completely continuous function is fg**-continuous.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example. **Example 4.26:**In the example 3.27, the function f is fg**-continuous but not f-completely continuous as the fuzzy set A is open in Y and $f^{-1}(A)=A$ is not regularopen fuzzy set in X

We introduce the following.

Definition 4.27:a function f: $X \rightarrow Y$ is said to be fuzzy g^{**} -irresolute (briefly fg^{**}-irresolute) if the inverse image of every g^{**} -closed fuzzy set in Y is g^{**} -closed fuzzy set in X.

Theorem 4.28: A function f: $X \rightarrow Y$ is fg**-irresolute iff the inverse image of every g**-open fuzzy set in Y is g**-open fuzzy set in X.

Proof:Omitted.

Theorem 4.29:Every fg**-irresolute function is fg**-continuous.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.30:Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B,C,D and E be defined as follows.

A= { (a,1),(b,0),(c,0) }, B = {(a,0),(b,1),(c,0) } C= {(a,1),(b,1),(c,0) }, D = {(a,1),(b,0),(c,1) }, E =

{(a,0),(b,1),(c,1)}. Consider $T = \{0,1,A,B,C,D\}$ and $\sigma = \{0,1,C\}$. Then (X,T) and (Y, σ) are fts. Define f:X \rightarrow Y by f(a)=b, f(b) = c and f(c) = a. Then f is fwg**-continuous but not fg**-irresolute as the fuzzy set in E is g**-closed fuzzy set in Y, but f¹(E) = C is not g**-closed fuzzy set in X. Hence f is fg**-continuous.

Theorem 4.31: if $f:X \rightarrow Y$ is fg^{**} -continuous, and g: $Y \rightarrow Z$ is f-continuous then gof: $X \rightarrow Z$ is fg^{**-} continuous.

Proof: Omitted.

Theorem 4.32:Let $f:X \rightarrow Y$, $g:Y \rightarrow Z$ be two functions. If f and g are fg^{**} -irresolute functions then gof $:X \rightarrow Z$ is fg^{**} -irresolute functions.

Proof:Omitted.

Theorem4.33:Let $f:X \rightarrow Y$, $g:Y \rightarrow Zbe$ two functions. If f is fg**-irresolute and g is fg**-continuous then gof: $X \rightarrow Z$ is fg**-continuous.

Proof:Omitted.

Definition 4.34: A function $f: X \rightarrow Y$ is said to be fuzzy gc-irresolute (briefly fgc-irresolute) function if the inverse image of every g-closed fuzzy set in Y is g-closed fuzzy set in X.

Theorem 4.35 : $f:X \rightarrow Y$ be a fgc-irresolute and a fclosed map. Then f(A) is a g**-closed fuzzy setoff Y, for every wg**-closed fuzzy set A of X. **Proof:** Omitted.

We introduce the following.

Definition 4.36 : A function $f: X \rightarrow Y$ is said to be fuzzy g^{**} -open (briefly fg^{**} -open) if the image of every open fuzzy set in X is g^{**} -open fuzzy set in Y.

Definition 4.38:A function $f:X \rightarrow Y$ is said to be fuzzy g^{**} -closed (briefly fg^{**} -closed) if the image of every closed fuzzy set in X is g^{**} -closed fuzzy set in Y. **Theorem 4.39:**Every f-open map is fg^{**} -open map. **Proof:**Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.40:Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows.

A= { (a,0),(b,0.1),(c,0.2) } , B = { (a,0.4),(b,0.5),(c,0.7) } C= { (a,1),(b,0.9),(c,0.8) }. Consider T = {0,1,A} and $\sigma = \{0,1,B\}$. Then (X,T) and (Y, σ) are fts. Define f:X \rightarrow Y by f(a)=a, f(b) = b and f(c) = c. Then f is fwg**-open map but not f-open map as the fuzzy set A open fuzzy set in X,its image f(A) = A is not open fuzzy set in Y which is g**-open fuzzy set in Y. **Theorem 4.41 :**Every fg**-open map is fgs-open.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example. **Example 4.42 :**Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows. A= $\{(a,0.2),(b,0.5),(c,0.3)\}$, B = $\{(a,0.8),(b,0.5),(c,0.7)\}$ C= $\{(a,0.5),(b,0.2),(c,0.3)\}$. Consider T = $\{0,1,A\}$ and $\sigma = \{0,1,A,B\}$. Then (X,T) and (Y, σ) are fts. Define f:X \rightarrow Y by f(a)=b, f(b) = a and f(c) = c. Then the function f is fgs-open map but not fg**-open map as the image of open fuzzy set A in X is f(A) = C open fuzzy set in Y but not g**-open fuzzy set in Y.

Theorem 4.43:Every f-closed map is fg**-closed map.. **Proof:**Omitted.

The converse of the above theorem need not be true as seen from the following example. **Example4.44 :**Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows. A= { (a,0),(b,0.1),(c,0.2) } , B = { (a,0.4),(b,0.5),(c,0.7) } C= { (a,1),(b,0.9),(c,0.8) }. Consider T = { 0,1,A } and $\sigma = \{0,1,B\}$. Then (X,T) and (Y, σ) are fts. Define f:X \rightarrow Y by f(a)=a, f(b) = b and f(c) = c. Then f is

find the object of the formula formul

Proof:Omitted.

Theorem 4.46: If a map $f: X \to Y$ is fgc-irresolute and fg^{**} - closed and A is g^{**} - closed fuzzy set of X then f(A) is g^{**-} closed fuzzy set in Y. **Proof:** Omitted.

Theorem 4.47: If $f: X \to Y$ is *f*-closed map and $h: Y \to Z$ is fg**- closed maps, then $hof: X \to Z$ is fg**- closed map.

Proof:Omitted.

Theorem 4.48 : Let $f: X \to Y$ be an f-continuous, open and fg**- closed surjection. If X is regular*fts* then Y is regular.

Proof:Omitted.

Theorem 4.49: If $f: X \to Y$ and $h: Y \to Z$ be two maps such that $hof : X \to Z$ is fg**- closed map.

i) If f is f-continuous and surjective, then h is fg**- closed map.

ii) If h is fg**- irresolute and injective, then f is fg**- closed map.

Proof: Omitted.

Definition 4.50: Let *X* and *Y* be two *fts*. Abijective map $f: X \to Y$ is called fuzzy-homeomorphism (briefly *f*-homeomorphism) if *f* and f^{-1} are fuzzy-continuous. We introduced the following.

Definition 4.51: A function $f: X \to Y$ is called fuzzy g^{**-} homeomorphism (briefly g^{**-} homeomorphism) if f and f^{-1} are g^{**-} continuous.

Theorem 4.52: Every f-homeomorphism is fg**-homeomorphism.

Proof:Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.53 : Let $X = Y = \{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows. $A = \{(a, 1), (b, 0), (c, 0)\}, B = \{(a, 1), (b, 1), (c, 0)\}, C = \{(a, 1), (b, 0), (c, 1)\}.$ Consider $T = \{0, 1, A\}$ and $\sigma = \{0, 1, B\}$. Then (X, T) and (Y, σ) are *fts*. Define f: $X \rightarrow Y$ by f(a) = a, f(b) = c and f(c) = b. Then *f* is fg**- homeomorphism but not *f*-homeomorphism as *A* is open fuzzy set in *X* and its image of f(A) = A is not open fuzzy set in *Y*. $f^{-1}: Y \rightarrow X$ is not *f*-continuous.

Theorem 4.53: Let $f: X \to Y$ be a bijective function. Then the following are equivalent:

a) f is fg**- homeomorphism.

b) f is fg**- continuous and fg**- open maps.

c) f is fg**- continuous and fg**- closed maps.

Proof: Omitted.

Definition 4.54: Let X and Y be two *fts*. A bijective map $f: X \rightarrow Y$ is called fuzzy fg**- c-homeomorphism (briefly fg**- c-homeomorphism) if f and f^{-1} are fuzzy g**- irresolute.

Theorem 4.55: Let *X*, *Y*, *Z* be fuzzy topological spaces and $f: X \to Y, g: Y \to Z$ be fg**- c-homeomorphisms then their composition $gof: X \to Z$ is fg**- chomeomorphism.

Proof:Omitted.

Theorem 4.56: Every fg**- c-homeomorphism is fg**- homeomorphism.

Proof:Omitted.

Reference:

[1] K. K. Azad, On fuzzy semi- continuity, fuzzy almost continuity & fuzzy weakly continuity, J Math Anal Appl 82,14-32 (1981).

[2] G. Balasubramanian & P. sundaram, "On some generalization of fuzzy continuous function, fuzzy sets & system, 86,93-100(1997).

[3] A.S.Bin shahna, On fuzzy strong continuity & fuzzy pre continuity, fuzzy sets & system,44,(1991),303-308

[4] C. L. Chang, Fuzzy topological spaces, J Math Anal Appl 24,182-190 (1968).

[5] R.Devi and M.Muthtamil Selvan, On fuzzy generalized* extremally disconnectedness, Bulletin of Pure and Applied Science, Vol.23E(No.1) 2004, P.19-26.

[6] T.Fukutake, R.K.Saraf, M.Caldas & S. Mishra, Mapping via Fgp-Closed sets. Bull of Fuku.Univ of Edu.Vol 52,PartIII (2003) 11-20.

[7] N.Levine, Generalized closed sets in topology, Rend circ, Math Palermw,

19(2)(1970),89-96.

[8] R. Lowen, Fuzzy topological spaces & fuzzy compactness, J Math Anal Appl 56,621-633 (1976).

[9] H.Maki, R.Devi & K.Balachandran, Generalized α closed sets in topology, Bulletin of Fakuoka Univ of Edu. Part III 42: 13-21,1993.

[10] H.Maki, R.Devi & K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed set. Mem.Fac.Sci.KochiUniv.Ser Math,15(1994),51-63.

[11] A.S.Mashhour, I.A.Hasanein and S.N.EI-Deeb, α continuous and α -open mappings, Acta Math. Hung. 41(3-4)1983,213-218.

[12] M.N.Mukherjee and S.P.Sinha, Irresolute and almost open function between fuzzy topological spaces, Fuzzy sets and systems 29(1989), 381-388.

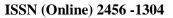
[13] Sadanand.N.Patil, On $g^{\#}$ - closed fuzzy set & fuzzy $g^{\#}$ -continuous maps in fuzzy

topological spaces, proc of the KMANational seminar on Fuzzy Math & Appl, Kothamangalam (53-79).

[14] Sadanand.N.Patil, On $g^{\#}$ -semi closed fuzzy sets and $g^{\#}$ -semi contours maps inFuzzy topological spaces. IMS conference Roorkey (UP) (26-30) Dec2005.

[15] Sadanand.N.Patil, On some Recent Advances in Topology. Ph.D Theses, Karnataka University, Dharwad 2008.

[16] M.K.R.S.Veerakumar, $g^{\#}$ -semi closed sets in topology Acta ciencia, Indica. Vol xxix, m No. 1,081(2002)



[17] Pauline Mary Helen M et.al , g** -closed set in topological spaces, IJMA-3(5),2012,2005-2019.
[18] R.H.Warren, Continuity of Mapping on fuzzy topological spaces, Notices. Amer. Math. Soc. 21(1974) A-451.

[**19**] C.K.Wong, Covering properties of fuzzy set, Indiana Univ. Math. JI Vol.26 No. 2(1977) 191-197.

19)L.A.Zadeh, Fuzzy sets, Information and control, 8(1965)338-353.

connecting engineers...deretoping research