

On Fuzzy weakly g**-Continuous Maps and Fuzzy weakly g**-Irresolute Mappings in Fuzzy Topological spaces

^[1] Satyamurthy V Parvatkar ^[2] Sadanand N Patil
^[1] Assistant Professor, Department of Mathematics
KLE Institute of Technology, Hubballi, Karnataka (India)
^[2]Research Supervisor, VTU RRC, Belagavi, Karnataka (India)
^[1] satyaparvatkar@gmail.com ^[2] patilsadu@gmail.com and sada_np@rediffmail.com

Abstract:— The aim of this paper is to introduce new class of Fuzzy sets, namely wg**-closed fuzzy set for Fuzzy topological spaces. This new class is properly lies between the class of closed Fuzzy set and the class of wg-closed fuzzy set, we also introduce application of wg**-closed fuzzy sets, the concept of fuzzy wg**-continuous, fuzzy wg**-irresolute mapping, fuzzy wg**-closed maps, fuzzy wg**-open maps and fuzzy wg**-homeomorphism in Fuzzy topological spaces are also introduced, studied and some of their properties are obtained.

Classification: 2000 Math Subject classification 54A40

Keywords:— fwg**-closed fuzzy sets, fwg**-continuous, fwg**-irresolute, fwg**-open, fwg**-closed mapping and fwg**-homeomorphism.

I. INTRODUCTION

Prof. L.A. Zadeh's [19] in 1965 introduced of the concept of 'fuzzy subset', in the year 1968, C L. Chang [4] introduced the structure of fuzzy topology as an application of fuzzy sets to general topology. Subsequently many researchers like, C.K. Wong[18], R.H. Warren [17], R. Lowen [7], A.S. Mashhour [11], K.K. M. N. Mukherjee[12],G. Azad[1]. Balasubramanian &P. Sundaram [2] and many others have contributed to the development of fuzzy topological spaces. The image and the inverse image of fuzzy subsets under Zadeh's functions and their properties proved by C.L.Chang [4] and R.H.Warren [17] are included.

Fuzzy topological spaces and some basic concepts and results on fuzzy topological spaces from the works of C.L.Chang [4], R.H.Warren [17], and C.K.Wong [18] are presented. And some basic preliminaries are included. N.Levine [7] introduced generalized closed sets (g-closed sets) in general topology as a generalization of closed sets. Many researchers have worked on this and related problems both in general and fuzzy topology. Dr. Sadanand Patil [14, 15 &16] in the year 2009 and R. Devi and M. Muthtamil Selvan[5] in the year 2004, are introduced and studied g-continuous maps.

The class of wg**- closed fuzzy sets is placed properly between the class of closed fuzzy sets and the class of wg- closed fuzzy sets. The class of wg**closed fuzzy sets is properly placed between the class of closed fuzzy sets and the class of wg- closed fuzzy sets.

II. PRELIMINARIES

Throughout this paper (X, T), (Y,σ) & (Z,η) or (simply X, Y & Z) represents non-empty fuzzy topological spaces on which no separation axiom is assumed unless explicitly stated. For a subset A of a space (X, T). cl (A), int(A) & C(A) denotes the closure, interior and the compliment of A respectively.

Definition 2.01: A fuzzy set A of a fts (X, T) is called:

1) a semi-open fuzzy set, if $A \le cl(int(A))$ and a semiclosed fuzzy set, if $int(cl(A)) \le 0$ [13]

2) a pre-open fuzzy set, if $A \le int(cl(A))$ and a preclosed fuzzy set, if $cl(int(A)) \le A$ [13]

3) a α -open fuzzy set, if $A \leq int(cl(int(A)))$ and a α -closed fuzzy set, if $cl(int(cl(A))) \leq A$ [14]

The semi closure (respectively pre-closure, α closure) of a fuzzy set A in a fts (X, T) is the

intersection of all semi closed (respectively pre closed fuzzy set, α -closed fuzzy set) fuzzy sets containing A and is denoted by scl(A) (respectively pcl(A), α cl(A)).

Definition 2.02: A fuzzy set A of a fts (X, T) is called:

- 1) a generalized closed (g-closed) fuzzy set, if $cl(A) \le U$, whenever $A \le U$ and U is open fuzzy Set in (X, T). [2]
- a weakly-generalized-closed (wg-closed) fuzzy Set, if cl(A) ≤ U, whenever A ≤ U and U is open fuzzy set in (X, T).[14]

3) a weakly-generalized* closed (wg*-closed) fuzzy set, if $cl(A) \le U$, whenever $A \le U$ and U is open fuzzy set in (X,T). [14,15&16]

Complement of g-closed fuzzy (respectively wgclosed fuzzy set and wg*-closed fuzzy set) sets are called g-open (respectively wg-open fuzzy set and wg*open fuzzy set) sets.

Definition 2.03: Let X, Y be two fuzzy topological spaces. A function f: $X \rightarrow Y$ is called

- Fuzzy continuous (f-continuous) [14,15&16] if f¹(B) is open fuzzy set in X, for every open fuzzy set B of Y
- Fuzzy generalized continuous (fg-continuous) function [14,15&16] if f¹(A) is g-closed fuzzy set in X, for every closed fuzzy set A of Y
- 3) Fuzzy g*-continuous (fg*-continuous) function[14,15&16] if f¹(A) is g*-closed fuzzy set in X, for every closed fuzzy set A of Y

Definition 2.04: Let X, Y be two fuzzy topological spaces. A function f: $X \rightarrow Y$ is called

- Fuzzy -open (f-open) [14, 15&16] iff f (V) is open fuzzy set in Y, for every open fuzzy set in X.
- Fuzzy g-open (fg-open) [14, 15&16] iff f (V) is g-open- fuzzy set in Y, for every open fuzzy set in X.
- Fuzzy g*-open (fg*-open) [14, 15&16] iff f(V) is g-open- fuzzy set in Y, for every open fuzzy set in X.

III. Weakly g** CLOSED FUZZY SETS

Definitions 3.01: A fuzzy set A of fuzzy topological space in (X, T) is called weakly g^{**} closed fuzzy sets if $cl(int(A)) \leq U$ whenever $A \leq U$ and U is g^{*-} open fuzzy set in (X,T).

Theorem 3.02: Every closed fuzzy set is weakly g** closed fuzzy set.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.03: Let X={a, b, c} and the fuzzy sets A and B be defined as follows

 $A = \{(a, 0.4), (b, 0.5), (c, 0.7)\}, B = \{(a, 1), (b, 0.9), (c, 0.8)\}.$

Let $T = \{0, 1, A\}$. Then (X, T) is a fts. Note that the

fuzzy subset B is weakly g^{**} closed fuzzy set in (X, T) but not a closed fuzzy set in (X, T).

Theorem 3.04: Every g** - closed fuzzy set is weakly g** - closed fuzzy set in (X, T).

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.05: Let $X=\{a,b,c\}$ fuzzy sets A and B be defined as follows $A=\{(a,0.2),(b,0.5),(c,0.3)\}$ and $B=\{(a,0.5),(b,0.2),(c,0.3)\}$. Consider

 $T = \{0, 1, A\}$. Then (X, T) is fts. The fuzzy set B is wg*closed but not g*closed fuzzy set in X.

Theorem 3.06: Every weakly g** closed fuzzy set is weakly g-closed fuzzy set in fts X. **Proof:** Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.07: In the example 3.05, The fuzzy set B is wg-closed but not wg**-closed fuzzy set.

Theorem 3.08: Every weakly g** closed fuzzy set is weakly g*-closed fuzzy set in fts X.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.09: In the 3.05, The fuzzy set B is wg*-closed but not wg**-closed fuzzy set.

Theorem 3.10: If a fuzzy set A of a fts X is both open and wg**-closed fuzzy set then it is a closed fuzzy set.

Proof: Suppose a fuzzy set A of fts X is both open and wg^{**} -closed. Now $A \le A$, A is open and so g^{*} -open. Then we have $cl(int A) \le A$ which implies $cl(A) \le A$ Since A is open. Since $A \le cl(A)$, we have cl(A) = A. Thus A is closed fuzzy set.

Theorem 3.11: If a fuzzy set A is both open and wg**closed then it is both regular open and regular closed fuzzy set.

Proof: Omitted.

Theorem 3.12: If a fuzzy set A of fts X is open and wg**-closed then A is g*-closed.

Proof: Omitted.

Theorem 3.13: If a fuzzy set A of fts X is open and wg- closed then A is wg* closed.

Proof: Suppose A is open and wg-closed. Let $A \le U$ where U is g-open. Since A is wg-closed we have

 $A \le A$, A is open implies $cl(int A) \le A \le U$. That is $cl(int A) \le U$ and hence A is wg*-closed.

Theorem 3.14: If A is wg**-closed fuzzy set and cl(int A) \land (1-cl(int A))=0 then cl(int A) \land (1-A) has no non zero g-closed fuzzy set.

Proof: Suppose F is any g-closed fuzzy set such that $F \leq cl(int A) \land (1-A)$. Now $F \leq 1-A$, which implies that $A \leq 1-F$, 1-F is g-open. Since A is wg*-closed, $cl(int A) \leq 1-F$, Which implies $F \leq 1-cl(int A)$. Thus $F \leq cl(int A)$ and $F \leq 1-cl(int A)$. Therefore

 $F \le cl(int A) \land (1-cl(int A)) = 0$. Which implies that F = 0. Hence the result follows.

Theorem 3.15: If a fuzzy set A is weakly g^{**} closed fuzzy set in X such that $A \le B \le cl(int A)$, then B is also a weakly g^{**} closed fuzzy set in X.

Proof: Let U be a g-open fuzzy set in X, such that $B \le U$, then $A \le U$. Since A is weakly g^* closed fuzzy set, then by definitions $cl(int(A)) \le U$. Now int $B \le B \le cl(int(A))$, which implies $cl(int(B)) \le cl(cl(int A) = cl(int A) \le U$. That is $cl(int(B)) \le U$. Hence B is a weakly g^{**} closed fuzzy set.

Theorem 3.16: Let $A \le Y \le X$ and suppose that A is wg**- closed in fts X. Then A is wg**-closed relative to Y.

Proof: Given that $A \le Y \le X$ and A is wg**- closed fuzzy set .To prove that A is wg**-closed relative to Y. Let $A \le Y \land G$. Then $A \le G$ where G is g*-open in X Since A is wg** -closed in X. cl(int A) $\le G$. which implies that cl(int A) $\le Y \land$ cl(int A) and therefore cl(int A) $\le Y \land G$. Hence A is wg**-closed relative to Y.

We introduce weakly g** open fuzzy set

Definition 3.17: A fuzzy set A of the fts (X,T) is called weakly g ** open fuzzy set if its complement 1-A is weakly g** closed fuzzy set.

Theorem 3.18: A fuzzy set A of a fts X is weakly g^{**} open fuzzy set iff $F \le int(cl A)$

Whenever F is g*-closed fuzzy set and $F \leq A$

Proof: Omitted.

Theorem 3.19: Every open fuzzy set is a weakly g** open fuzzy set.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.20: Let $X = \{a,b,c\}$. Define the fuzzy sets A and B as follows. A= $\{(a,0.4), (b,0.5), (c,0.7)\}$, B= $\{(a,0), (b,0.1), (c,0.2)\}$. Then (X, T) is a fts with the fuzzy topology T= $\{0, 1, A\}$. Here the fuzzy set B is weakly g** open fuzzy set but not a open fuzzy set in X.

Theorem 3.21: If a fts every wg**-open fuzzy set is wg-open.

Proof: Omitted.

The converse of the above theorem need not be true as shown from the following example.

Example 3.22: In the example 3.20, Here the fuzzy set B is weakly g closed fuzzy set but not a wg* closed fuzzy set in X.

Theorem 3.23: If int (cl (A)) $\leq B \leq A$ and if A is weakly g^{**} open fuzzy set, B is weakly g^{**} open fuzzy set in a fts X.

Proof: We have $int(cl(A)) \le B \le A$. Then $(1-A) \le (1-B) \le cl(int(1-A))$ and since (1-A) is weakly g^{**} closed fuzzy set and by theorem 2.19 .we have (1-B) is weakly g^{**} closed fuzzy set in X. Hence B is weakly g^{**} open fuzzy set is fts X.

Theorem 3.24: Every g*-open fuzzy set is wg**-open. **Proof:** Omitted.

The converse of the above theorem need not be true as shown from the following example.

Example 3.25: In the example 3.20, the fuzzy set

1–B is wg**-open but not g*-open in X.

Theorem 3.26: A Finite union of weakly g** closed fuzzy set is a weakly g** closed fuzzy set.

Proof: Omitted.

Remark 3.27: The intersection of two wg**-open fuzzy sets need not be wg** -open.

Fuzzy wg*-closure (wg* cl) and fuzzy wg*interior (wg* int) of a fuzzy set are defined as follows.

Definition 3.28: If A is any fuzzy set in a fts, then wg** cl(A)= \land {U:U is wg**-closed fuzzy set and A \leq U}

wg**int(A)= \lor {V:V is wg**-open fuzzy set and A \ge V}

Theorem 3.29: Let A be any fuzzy set in a fts (X, T) Then

 wg^{**} cl(A)= wg^{**} cl(1- A)=1- wg^{**} cl(1- A)=1- wg^{**} int(A) and wg^{**} int(1-A)=1- wg^{**} cl(A) **Proof:** Omitted.

Theorem 3.30: In a fts (X, T), a fuzzy set A is weakly g^{**} -closed iff A= wg^{**} -cl(A).

Proof: Let A be a weakly g^{**} -closed fuzzy set in fts (X, T).since $A \le A$ and A is weakly g^{**} -closed fuzzy set, $A \in \{f:f \text{ is weakly } g^{**} \text{ -closed fuzzy set and } A \le f\}$ and $A \le f$ implies that

 $A{=} \land \{f{:}f \text{ is weakly } g^{**} \text{ -closed fuzzy set and } A \leq f \}$ that is $A = wg^{**}{-}cl(A)$

Conversely, Suppose that $A = wg^{**}$ -cl(A), that is $A = \land \{ f:f \text{ is weakly } g^{**} \text{ -closed fuzzy set and } A \leq f \}$. This implies that $A \in \{f:f \text{ is weakly} \}$

 g^{**} -closed fuzzy set and $A \leq f\}.$ Hence A is weakly $g^{**}\text{-closed}$ fuzzy set.

Theorem 3.31: In fts X be the following results hold for fuzzy weakly g**-closer

- 1) weakly $g^{**}-cl(0)=0$
- weakly g**-cl(A) is weakly g**-closed fuzzy set in X
- 3) weakly g^{**} -cl(A) \leq weakly g^{**} -cl(B) if $A \leq B$
- weakly g**-cl(weakly g**-cl(A)) =. weakly g**-cl(A)
- 5) weakly g^{**} -cl(A \vee B) \geq weakly g^{**} -cl(A) \vee weakly g^{**} -cl(B)
- 6) weakly $g^{**}-cl(A \land B) \le weakly g^{**}-cl(A) \land weakly g^{**}-cl(B)$

Proof: The easy verification is omitted.

Theorem 3.32: In a fts X, a fuzzy set A is weakly g**open fuzzy set iff A=wg**-int(A).

Proof: Omitted.

Theorem 3.33: In fts X be the following results hold for fuzzy weakly g**-interior

- 1) weakly g^{**} -int((0)=0
- weakly g**-int(A) is weakly g**-open fuzzy set in X
- 3) weakly g^{**} -int(A) \leq weakly g^{**} -int(B) if A \leq B
- weakly g**-int(weakly g**-int(A)) = weakly g**-int(A)
- 5) weakly g**-int(A∨B) ≥ weakly g**-int(A) ∨ weakly g**-int(B)
- 6) weakly $g^{**-int}(A \land B) \le \text{weakly } g^{**-int}(A) \land \text{weakly } g^{**-int}(B)$

Proof: The easy verification is omitted.

Theorem 3.34: In a fts X every weakly g** open fuzzy set is wg-open fuzzy set. **Proof:** Omitted. The converse of the above theorem need not be true as seen from the following example.

Example 3.35: In the example 3.20, the fuzzy subset $1-B=\{(a,0.4),(b,0.4),(c,0.5)\}$ is wg -open fuzzy set but not weakly g^{**} open fuzzy set in X.

Theorem 3.36: In a fts X, every weakly g** open fuzzy set is wg*-open fuzzy set.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 3.37: In the example 3.20, the fuzzy subset $1-B=\{(a,0.4),(b,0.4),(c,0.5)\}$ is wg*-open fuzzy set but not weakly g** open fuzzy set in X.

Theorem 3.38: If $A \le B \le X$ where A is weakly g^{**} open fuzzy relative to B and B is weakly g^{**} open fuzzy relative to X, Then A is weakly g^{**} open fuzzy relative to fts X.

Proof: Omitted.

Remarks 3.39: The following diagram shows the relationships of weakly g^{**} closed fuzzy sets with some other fuzzy sets.

Where $A \longrightarrow B(A \iff B)$

Represents A implies B but not conversely. (A and B are independent).

IV. FUZZY WEAKLY g** -CONTINUOUS MAPPING

In this section the concept of fuzzy wg**continuous, fuzzy wg**-irresolute functions and fuzzy wg**-homeomorphism, fuzzy wg**-open and fuzzy wg**-closed mapping in fuzzy topological spaces have been introduced and studied.

Definition 4.01: Let X and Y be two fts. A function f: $X \rightarrow Y$ is said to be fuzzy wg**-continuous (briefly

fwg**-continuous) if the inverse image of every open fuzzy set in Y is wg**-open fuzzy set in X.

Theorem 4.02: A function f: $X \rightarrow Y$ is fwg^{**}-continuous iff the inverse image of every closed fuzzy set in Y is wg^{**}-closed fuzzy set in X.

Proof: Omitted.

Theorem 4.03: Every f-continuous function is

fwg**-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.04: Let $X=Y=\{a,b,c\}$ and the fuzzy sets A,B and C be defined as follows.

A={(a,0),(b,0.1),(c,0.2)}, B={(a,0.4),(b,0.5),(c,0.7)}, C={(a,1),(b,0.9),(c,0.8)}. Consider T= {0, 1, B} and $\sigma = \{0, 1, A\}$. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f (a) =a, f (b) =b and f(c) =c. Then f is

fwg**-continuous but not f-continuous as the fuzzy set C is closed fuzzy set in Y and $f^{1}(C) = C$ is not closed fuzzy set in X but wg**-closed fuzzy set in X. Hence f is fwg**-continuous

Theorem 4.05: Every fwg**-continuous function is fwg- continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.06: Let $X=Y= \{a,b,c\}$ and the fuzzy sets A,B,C and D be defined as follows. $A=\{(a,0,2),(b,0,5),(c,0,3)\},$

 $B = \{(a, 0.8), (b, 0.5), (c, 0.7)\},\$

 $C = \{(a, 0.5), (b, 0.2), (c, 0.3)\}$ and

D={(a,0.5),(b,0.8),(c,0.7)}. Consider T={0,1,A} and σ ={0,1,A,B}. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f (a) =b, f (b) =a and f(c) =c. Then f is fwg-continuous but not fwg**-continuous as the inverse image of closed fuzzy set A in Y is f¹(A) =C which is not wg**-closed fuzzy set in X. Hence f is fwg-continuous.

Theorem 4.07: Every fwg**-continuous function is fwg*- continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.08: In the example 4.06, Then f is fwg*continuous but not fwg**-continuous as the inverse image of closed fuzzy set A in Y is $f^{1}(A) = C$ which is not wg**-closed fuzzy set in X. Hence f is fwg*continuous **Theorem 4.09:** If f: $X \rightarrow Y$ is f wg**-continuous and g: $Y \rightarrow Z$ is f-continuous, then gof: $X \rightarrow Z$ is fwg**-continuous.

Proof: Omitted.

Remark 4.10: The following diagram shows the relationship of fwg**-continuous maps with some other fuzzy maps.

Theorem 4.11: Let X1 and X₂ be fts and

P_i: X1 x X₂ \rightarrow X_i (i=1, 2) be the projection mappings. If f: X \rightarrow X₁ x X₂ is fwg**-continuous then the P_iof:X \rightarrow X_i (i=1,2) is fwg**-continuous.

Proof: Omitted.

Theorem 4.12: Every f -strongly continuous function is fwg**-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.13: In the example 3.05, the function f is fwg**-continuous but not f -strongly continuous, for the fuzzy set C in Y, $f^{-1}(C) = C$ is not both open and closed fuzzy set in X

Theorem 4.14: Every f -perfectly continuous function is fwg**-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.15: In the example 3.05, the function f is fwg**-continuous but not f-perfectly continuous as the fuzzy set A is open in Y and $f^{1}(A) = A$ is not both open and closed fuzzy set in X

Theorem 4.16: Every f -completely continuous function is fwg**-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.17: In the example 3.05, the function f is fg^{**} -continuous but not f -completely continuous as the fuzzy set A is open in Y and $f^{1}(A) = A$ is not regular-open fuzzy set in X

We introduce the following.

Definition 4.18: A function f: $X \rightarrow Y$ is said to be fuzzy wg**-irresolute (briefly fwg**-irresolute) if the inverse image of every wg**-closed fuzzy set in Y is wg**-closed fuzzy set in X.

Theorem 4.19: A function f: $X \rightarrow Y$ is fwg**-irresolute iff the inverse image of every wg**-open fuzzy set in Y is wg**-open fuzzy set in X.

Proof: Omitted.

Theorem 4.20: Every fwg**-irresolute function is fwg**-continuous.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.21: Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B,C,D and E be defined as follows.

A= { (a,1),(b,0),(c,0) }, B = {(a,0),(b,1),(c,0) }

 $C = \{(a,1),(b,1),(c,0)\}, D = \{(a,1),(b,0),(c,1)\},\$

 $E = \{(a, 0), (b, 1), (c, 1)\}.$ Consider

T = {0,1,A,B,C,D} and σ = {0,1,C}. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=b, f(b) = c and f(c) = a. Then f is fwg**-continuous but not fwg**-irresolute as the fuzzy set in E is wg**-closed fuzzy set in Y, but f⁻¹(E) = C is not wg**-closed fuzzy set in X. Hence f is fwg**-continuous.

Theorem 4.22: If f: $X \rightarrow Y$ is fwg**-continuous, and g: $Y \rightarrow Z$ is f-continuous then gof: $X \rightarrow Z$ is f wg**-continuous.

Proof: Omitted.

Theorem 4.23: Let f: $X \rightarrow Y$, g: $Y \rightarrow Z$ be two functions. If f and g are fwg**-irresolute functions then gof: $X \rightarrow Z$ is fwg**-irresolute functions.

Proof: Omitted.

Theorem 4.24: Let f: $X \rightarrow Y$, g: $Y \rightarrow Z$ be two functions. If f is fwg**-irresolute and g is fwg**-continuous then gof: $X \rightarrow Z$ is fwg**-continuous.

Proof: Omitted.

Definition 4.25: A function f: $X \rightarrow Y$ is said to be fuzzy gc-irresolute (briefly fgc-irresolute) function if the inverse image of every g-closed fuzzy set in Y is g-closed fuzzy set in X.

Theorem 4.26: f: $X \rightarrow Y$ be a fgc-irresolute and a fclosed map. Then f (A) is a wg**-closed fuzzy set of Y, for every wg**-closed fuzzy set A of X.

Proof: Omitted.

We introduce the following.

Definition 4.27: A function f: $X \rightarrow Y$ is said to be fuzzy wg**-open (briefly fwg**-open) if the image of every open fuzzy set in X is wg**-open fuzzy set in Y.

Definition 4.28: A function f: $X \rightarrow Y$ is said to be fuzzy wg**-closed (briefly fwg**-closed) if the image of every closed fuzzy set in X is wg**-closed fuzzy set in Y.

Theorem 4.29: Every f-open map is fwg**-open map. **Proof:** Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.30: Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows.

 $\begin{array}{l} A = \{(a,0),(b,0.1),(c,0.2)\} \ , B = \{(a,0.4),(b,0.5),(c,0.7)\} \\ C = \{(a,1),(b,0.9),(c,0.8)\}. \ \ Consider \end{array}$

T = {0,1,A} and σ = {0,1,B}. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=a, f(b) = b and f(c) = c. Then f is fwg**-open map but not f-open map as the fuzzy set A open fuzzy set in X, its image f(A) = A is not open fuzzy set in Y which is wg**-open fuzzy set in Y.

Theorem 4.31: Every fwg**-open map is fwg-open. **Proof:** Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.32: Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows.

 $A = \{(a, 0.2), (b, 0.5), (c, 0.3)\},\$

 $B = \{(a,0.8), (b,0.5), (c,0.7)\},\$

 $C = \{(a, 0.5), (b, 0.2), (c, 0.3)\}.$ Consider

 $T = \{0,1,A\}$ and $\sigma = \{0,1,A,B\}$. Then (X, T) and (Y,σ) are fts. Define f: $X \rightarrow Y$ by f(a)=b, f(b) = a and f(c) = c. Then the function f is fgs-open map but not fwg**-open map as the image of open fuzzy set A in X is f(A) = C open fuzzy set in Y but not wg**-open fuzzy set in Y.

Theorem 4.33: Every f-closed map is fwg**-closed map.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

is

Example 4.34: Let $X = Y = \{a,b,c\}$ and the fuzzy sets A,B, and C be defined as follows.

 $A = \{(a,0), (b,0.1), (c,0.2)\},\$

 $B = \{(a,0.4), (b,0.5), (c,0.7)\},\$

 $C = \{(a,1), (b,0.9), (c,0.8)\}.$ Consider

T = {0,1,A} and σ = {0,1,B}. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=a, f(b) = b and f(c) = c. Then f is fwg**-closed map but not f-closed map as the fuzzy set C is closed fuzzy set in X, and its image f(C) = C is wg**-closed fuzzy set in Y but not closed fuzzy set in Y.

Theorem 4.35: A map $f:X \rightarrow Y$ is fwg**-closed iff for each fuzzy set S of Y and for each open fuzzy set U such that $f^{-1}(S) \leq U$, there is a wg**-open fuzzy set V of Y such that $S \leq V$ and $f^{-1}(V) \leq U$.

Proof: Omitted.

Theorem 4.36: If a map f: $X \rightarrow Y$ is fgc-irresolute and fwg**- closed and A is wg**- closed fuzzy set of X, then f(A) is wg**- closed fuzzy set in Y. **Proof:** Omitted.

Theorem 4.37: If f: $X \rightarrow Y$ is f-closed map and h: $Y \rightarrow Z$ is fwg**- closed maps, then hof: $X \rightarrow Z$

fwg**- closed map.

Proof: Omitted.

Theorem 4.38: Let f: $X \rightarrow Y$ be an f -continuous, open and fwg**- closed surjection. If X is regular fts then Y is regular.

Proof: Omitted.

Theorem 4.39: If f: $X \rightarrow Y$ and h: $Y \rightarrow Z$ be two maps such that hof: $X \rightarrow Z$ is fwg**- closed map.

- i) If f is f-continuous and surjective, then h is fwg**- closed map.
- ii) If h is fwg**- irresolute and injective, then f is fwg**- closed map.

Proof: Omitted.

Definition 4.40: Let X and Y be two fts. A bijective map f: $X \rightarrow Y$ is called fuzzy-homeomorphism (briefly f-homeomorphism) if f and f⁻¹ are fuzzy-continuous. We introduced the following.

Definition 4.41: A function f: $X \rightarrow Y$ is called fuzzy wg**- homeomorphism (briefly wg**homeomorphism) if f and f⁻¹ are wg**- continuous. **Theorem 4.42:** Every f-homeomorphism is fwg**-

homeomorphism.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.43: Let $X=Y=\{a,b,c\}$ and the fuzzy sets A, B and C be defined as follows. A= $\{(a,1),(b,0),(c,0)\}$, B= $\{(a,1),(b,1),(c,0)\}$, C= $\{(a,1),(b,0),(c,1)\}$. Consider T= $\{0,1,A\}$ and $\sigma=\{0,1,B\}$. Then (X, T) and (Y, σ) are fts. Define

f: $X \rightarrow Y$ by f(a)=a, f(b)=c and f(c)=b. Then f is

fwg**- homeomorphism but not f-homeomorphism as A is open fuzzy set in X and its image of f(A)=A is not open fuzzy set in Y. $f^1:Y \rightarrow X$ is not

f-continuous.

Theorem 4.44: Let f: $X \rightarrow Y$ be a bijective function. Then the following are equivalent:

- a) f is fwg**- homeomorphism.
- b) f is fwg**- continuous and fwg**- open maps.
- c) f is fwg**- continuous and fwg**- closed maps.

Proof: Omitted.

Definition 4.45: Let X and Y be two fts. A bijective map f: $X \rightarrow Y$ is called fuzzy fwg**- c-homeomorphism (briefly fwg**- c-homeomorphism) if f and f⁻¹ are fuzzy wg**- irresolute.

Theorem 4.46: Let X, Y, Z be fuzzy topological spaces and f: $X \rightarrow Y$, g: $Y \rightarrow Z$ be fwg**- c-homeomorphisms then their composition gof: $X \rightarrow Z$ is fwg**- c-homeomorphism.

Proof: Omitted.

Theorem 4.47: Every fwg**- c-homeomorphism is fwg**- homeomorphism.

Proof: Omitted.

Reference:

[1] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity & fuzzy weakly continuity, J Math Anal Appl 82, 14-32 (1981).

[2] G. Balasubramanian & P. sundaram, "On some generalization of fuzzy continuous function, fuzzy sets & system, 86, 93-100(1997).

[3] A.S.Bin shahna, On fuzzy strong continuity & fuzzy pre continuity, fuzzy sets & system,44,(1991),303-308

[4] C. L. Chang, Fuzzy topological spaces, J Math Anal Appl 24,182-190 (1968).

[5] R.Devi and M.Muthtamil Selvan, On fuzzy generalized* extremally disconnectedness, Bulletin of Pure and Applied Science, Vol.23E (No.1) 2004, P.19-26.

ers...dereloping research

International Journal of Science, Engineering and Management (IJSEM) Vol 1, Issue 5, September 2016

[6] T.Fukutake, R.K.Saraf, M.Caldas & S. Mishra, Mapping via Fgp-Closed sets. Bull of Fuku.Univ of Edu.Vol 52, PartIII (2003) 11-20.

[7] N.Levine, Generalized closed sets in topology, Rend circ, Math Palermw,

19(2)(1970),89-96.

[8] R. Lowen, Fuzzy topological spaces & fuzzy compactness, J Math Anal Appl 56,621-633 (1976).

[9] H.Maki, R.Devi & K.Balachandran, Generalized α closed sets in topology, Bulletin of Fakuoka Univ of Edu. Part III 42: 13-21, 1993.

[10] H.Maki, R.Devi & K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed set. Mem.Fac.Sci.KochiUniv.Ser Math,15(1994),51-63.

[11] A.S.Mashhour, I.A.Hasanein and S.N.EI-Deeb, α continuous and α -open mappings, Acta Math. Hung. 41(3-4)1983, 213-218.

[12] M.N.Mukherjee and S.P.Sinha, Irresolute and almost open function between fuzzy topological spaces, Fuzzy sets and systems 29(1989), 381-388.

[13] Mukundam.C and Nagaveni.N, A weaker form of a generalized closed set, IJContemparary Mathematical Science, vol.6 (20), (2011).

[14] Sadanand, N.Patil, On g#- closed fuzzy set & fuzzy g#-continuous maps in fuzzy

Topological spaces, proc of the KMANational seminar on Fuzzy Math & Appl, Kothamangalam (53-79).

[15] Sadanand, N.Patil, On g#-semi closed fuzzy sets and g#-semi contours maps in Fuzzy topological spaces. IMS conference Roorkey (UP) (26-30) Dec2005.

[16] Sadanand.N.Patil, On some Recent Advances in Topology. Ph.D Theses, Karnataka University, Dharwad 2008.

[17] M.K.R.S.Veerakumar, g#-semi closed sets in topology Acta ciencia, Indica. Vol xxix, m No. 1,081(2002).

[18] Pauline Mary Helen M et.al, g**-closed sets in topological spaces, IJMA-3(5), 2012, 2005-2019.

[19] R.H.Warren, Continuity of Mapping on fuzzy topological spaces, Notices. Amer. Math. Soc. 21(1974) A-451.

[20] C.K.Wong, covering properties of fuzzy set, Indiana Univ. Math. JI Vol.26 No. 2(1977) 191-197.

L.A.Zadeh, Fuzzy sets, Information and control, 8(1965)338-353.