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Abstract— This paper outlines an original algorithm for Bessel functions of complex values. Bessel functions of the first kind, with an 

integer index, 𝑱𝒏(𝒙), when using the standard math or complex headers in C++, are only defined for real numbers. My algorithm uses 

both the power series representation of 𝑱𝒏(𝒙), for x near the origin, otherwise, a Taylor series of 𝑱𝒏(𝒙).  For the Taylor series of𝑱𝒏(𝒙) 

about 𝒙𝟎, the kth derivative, 𝑱𝒏
(𝒌)(𝒙𝟎), is written as (𝒂𝟎 + ∑ 𝒂𝒎

𝒌
𝒎=𝟏 𝒙𝟎

−𝒎)𝑱𝒏−𝟏(𝒙𝟎) + (𝒃𝟎 + ∑ 𝒃𝒎
𝒌
𝒎=𝟏 𝒙𝟎

−𝒎)𝑱𝒏(𝒙𝟎), where the coefficients 

can be calculated from the coefficients from lower derivatives. 

 

Index Terms— algorithm, Bessel function, complex valued, Taylor series 

 

I. INTRODUCTION 

The Bessel function has the properties [1]: 

𝐽𝑛(−𝑧) = (−1)𝑛𝐽𝑛(𝑧)

𝐽𝑛(𝑧‾) = 𝐽𝑛(𝑧))
 

Thus, one only needs to concentrate calculations for 

complex numbers with non-negative real and complex parts. 

The power series of Bessel function [1], with an integer 

index, is 

𝐽𝑛(𝑧) = (
𝑧

2
)
𝑛

∑(
𝑧

2
)
2𝑘

∞

𝑘=0

(−1)𝑘

𝑘! (𝑛 + 𝑘)!
 

Note that the above power series, converges for all 

complex numbers. 

The following is the absolute value of the ratio of 

consecutive terms for the above power series. 

|
(−1)𝑘+1 (

𝑧
2
)
2(𝑘+1)

(𝑘 + 1)! ((𝑘 + 1) + 𝑛)!
|

|
(−1)𝑘 (

𝑧
2
)
2𝑘

𝑘! (𝑘 + 𝑛)!
|

=
|𝑧|2

4(𝑘 + 1)(𝑘 + 1 + 𝑛)
 

Thus, when |𝑧| ≤ 2√𝑛 + 1, the Bessel power series has 

terms whose magnitude is always decreasing. 

So, for all 𝑛, the power series will rapidly converge when 

|𝑧| ≤ 2√𝑛 + 1. 

Note that this region of values is small; in fact, does not 

include even the first non-zero zero of 𝐽𝑛(𝑧). 

II. TAYLOR SERIES 

Since 𝐽𝑛(𝑧)  is a smooth function, we have its Taylor’s 

series, expanded around a number 𝑧0 

𝐽𝑛(𝑧) = ∑
𝐽𝑛
(𝑘)(𝑧0)(𝑧 − 𝑧0)

𝑘

𝑘!

∞

𝑘=0

 

Using the identities  

𝐽𝑛
′ (𝑧) = 𝐽𝑛−1(𝑧) −

𝑛

𝑧
𝐽𝑛(𝑧)

𝐽𝑛−1
′ (𝑧) = −𝐽𝑛(𝑧) +

𝑛 − 1

𝑧
𝐽𝑛−1(𝑧)

 

we, inductively, see that we may write 

𝐽𝑛
(𝑘)(𝑧) = (𝑎0 + ∑ 𝑎𝑚

𝑘

𝑚=1

𝑧−𝑚) 𝐽𝑛−1(𝑧)

+(𝑏0 + ∑ 𝑏𝑚

𝑘

𝑚=1

𝑧−𝑚) 𝐽𝑛(𝑧),

 

where 𝑎0, … , 𝑎𝑘 and 𝑏0, … 𝑏𝑘 are integers. 

Notice that 

𝑑

𝑑𝑧
((𝑎0 +∑𝑎𝑘

𝑞

𝑘=1

𝑧−𝑘) 𝐽𝑛−1(𝑧)

+ (𝑏0 +∑𝑏𝑘

𝑞

𝑘=1

𝑧−𝑘) 𝐽𝑛(𝑧)) = 𝑏0𝐽𝑛−1(𝑧) − 𝑎0𝐽𝑛(𝑧) +

𝐽𝑛−1(𝑧)∑((𝑛 − 𝑘)𝑎𝑘−1 + 𝑏𝑘)

𝑞

𝑘=1

𝑧−𝑘 + (𝑛 − 𝑞 − 1)𝑎𝑞𝑧
−𝑞−1 −

𝐽𝑛(𝑧)∑(𝑎𝑘 + (𝑘 + 𝑛 − 1)𝑏𝑘−1)

𝑞

𝑘=1

𝑧−𝑘 + (𝑞 + 𝑛)𝑏𝑞𝑧
−𝑞−1

 

Thus, we can recursively write the 𝑘𝑡ℎ derivative of 𝐽𝑛(𝑧) 
as 

(𝑎𝑘,0 + ∑ 𝑎𝑘,𝑚

𝑘

𝑚=1

𝑧−𝑚) 𝐽𝑛−1(𝑧) + 
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(𝑏𝑘,0 + ∑ 𝑏𝑘,𝑚

𝑘

𝑚=1

𝑧−𝑚) 𝐽𝑛(𝑧) 

Where 𝑎0,0 = 0 and 𝑏0,0 = 1, 

𝑎𝑘,0 = 𝑏𝑘−1,0 and 𝑏𝑘,0 = −𝑎𝑘−1,0, 

𝑎𝑘,𝑘 = (𝑛 − 𝑘)𝑎𝑘−1,𝑘−1 and 𝑏𝑘,𝑘 = −(𝑘 + 𝑛 − 1)𝑏𝑘−1,𝑘−1 

And for 1 ≤ 𝑚 < 𝑘, 

𝑎𝑘,𝑚 = (𝑛 − 𝑚)𝑎𝑘−1,𝑚−1 + 𝑏𝑘−1,𝑚 

𝑏𝑘,𝑚 = −𝑎𝑘−1,𝑚 − (𝑚 + 𝑛 − 1)𝑏𝑘−1,𝑚−1 

In the same manner, we can recursively write the 𝑘𝑡ℎ 

derivative of 𝐽𝑛−1(𝑧) as 

(𝑐𝑘,0 + ∑ 𝑐𝑘,𝑚
𝑘
𝑚=1 𝑧−𝑚)𝐽𝑛−1(𝑧) +  

(𝑑𝑘,0 + ∑ 𝑑𝑘,𝑚

𝑘

𝑚=1

𝑧−𝑚) 𝐽𝑛(𝑧) 

where 

𝑐0,0 = 1 and 𝑑0,0 = 0, 

𝑐𝑘,0 = 𝑑𝑚−1,0 and 𝑑𝑘,0 = −𝑐𝑘−1,0, 

𝑐𝑘,𝑘 = (𝑛 − 𝑘)𝑐𝑘−1,𝑘−1 and 𝑑𝑘,𝑘 = −(𝑘 + 𝑛 − 1)𝑑𝑘−1,𝑘−1 

And for 1 ≤ 𝑘 < 𝑚, 

𝑐𝑘,𝑚 = (𝑛 − 𝑚)𝑐𝑘−1,𝑚−1 + 𝑑𝑘−1,𝑚 

𝑑𝑘,𝑚 = −𝑐𝑘−1,𝑚 − (𝑚 + 𝑛 − 1)𝑑𝑘−1,𝑚−1 

Therefore, we have the new Bessel series 

𝐽𝑛(𝑧) =

∑
((𝑎𝑘,0 + ∑ 𝑎𝑘,𝑚

𝑘
𝑚=1 𝑧0

−𝑚)𝐽𝑛−1(𝑧0)) (𝑧 − 𝑧0)
𝑘

𝑘!

∞

𝑘=0

+

∑
((𝑏𝑘,0 + ∑ 𝑏𝑘,𝑚

𝑘
𝑚=1 𝑧0

−𝑚)𝐽𝑛(𝑧0)) (𝑧 − 𝑧0)
𝑘

𝑘!

∞

𝑘=0

𝐽𝑛−1(𝑧) =

∑
((𝑎𝑘,0 + ∑ 𝑎𝑘,𝑚

𝑘
𝑚=1 𝑧0

−𝑚)𝐽𝑛−1(𝑧0)) (𝑧 − 𝑧0)
𝑘

𝑘!

∞

𝑘=0

+

∑
((𝑏𝑘,0 + ∑ 𝑏𝑘,𝑚

𝑘
𝑚=1 𝑧0

−𝑚)𝐽𝑛(𝑧0)) (𝑧 − 𝑧0)
𝑘

𝑘!

∞

𝑘=0

 

III. ALGORITHM 

Bessel Evaluation Algorithm for 𝑧 in the First Quadrant 

in the Complex Plane 

Algorithm 1 

If |𝑧| ≤ 2√𝑛 + 1  

Use the Bessel power series. 

Else 

Set 𝑧0 = 2√𝑛 + 1  

Use the Bessel power series to calculate 𝐽𝑛−1(𝑧0)  and 

𝐽𝑛(𝑧0).  
While 

Re(𝑧) − 𝑧0 > 0.5  

Set 𝑧1 = 𝑧0 + 0.5  

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛−1(𝑧1) and 𝐽𝑛(𝑧1).  
Set 𝑧0 = 𝑧1. 

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛(𝑅𝑒(𝑧)).  
Set 𝑧0 = 𝑅𝑒(𝑧)  and use the Bessel power series to 

calculate 𝐽𝑛−1(𝑧0) and 𝐽𝑛(𝑧0).  
While Im(𝑧) − 𝐼𝑚(𝑧0) > 0.5 

Set 𝑧1 = 𝑧0 + 0.5i 

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛−1(𝑧1) and 𝐽𝑛(𝑧1). Set 𝑧0 = 𝑧1. 

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛(𝑧).  
To speed up this algorithm, an array of values of 𝐽𝑛(𝑥), for 

0 ≤ 𝑛 ≤ 202 , where 𝑥 = 2(𝑎 + 𝑏𝑖) , 𝑎  and 𝑏  are integers 

such that 0 ≤ 𝑎 ≤ 150  and 0 ≤ 𝑏 ≤ 150 , was calculated 

using multiple precision (65 digits). 

Algorithm 2 

Select integers 𝑎 and 𝑏 so that 2(𝑎 + 𝑏𝑖) is closest to 𝑧. 

Set 𝑧0 = 2(𝑎 + 𝑏𝑖), 𝐽𝑛(𝑧0) to be the element in row 𝑏 and 

column 𝑎  in the array for 𝐽𝑛(𝑧0)  and 𝐽𝑛−1(𝑧0)  to be the 

element in row 𝑏 and column 𝑎 in the array for 𝐽𝑛−1(𝑥).  
Set 𝑣0 = (𝑥𝑧 − 𝑧0)/(2|𝑧 − 𝑧0|). 
While |𝑧 − 𝑧0| > 0.5 

Set 𝑧1 = 𝑧0 + 𝑣0  

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛−1(𝑧1) and 𝐽𝑛(𝑧1).  
Set 𝑧0 = 𝑧1. 

Use 𝐽𝑛−1(𝑧0)  and 𝐽𝑛(𝑧0) , in the new Bessel series, to 

approximate 𝐽𝑛(𝑧). 

IV. STATISTICAL ANALYSIS 

For an unbiased check for accuracy of the algorithm, the 

identity, 𝐽𝑛+2(𝑥) = 2(𝑛 + 1)𝐽𝑛+1(𝑥)/𝑥 − 𝐽𝑛(𝑥) was used to 

compare the algorithm against itself. 

Two complex regions were investigated: [0,300] ×
[0𝑖, 10𝑖] and [0,300] × [10𝑖, 300𝑖]. A random set of 1000 

complex numbers were chosen from each region. For each 

random number, both sides of the equation were calculated 

and the two calculations were compared for the number of 

matching significant digits. The Bessel function’s index was 

varied from 0 to 200. Calculations were done using python, in 

double precision and multiple precision with 34 digits. 

The same set of random numbers were used for farther 

comparison, double precision of octave’s Bessel function and 
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python’s (special from scipy), and multiple precision, 34 

digits, of the calculator from the website keisan.casio.com 

and the mpmath python Bessel function. 

V. RESULTS 

Number of Agreed Digits 

Double Precision: Region 1 

 Min. Mean Stand. Dev. 

octave 0 12.982 1.7695 

python 0 13.120 1.8020 

algorithm 0 14.119 1.2882 

Note: All 0’s occurred with high indexes and near the 

origin. 

Double Precision: Region 2 

 Min. Mean Stand. Dev. 

octave 6 13.362 1.5039 

python 7 13.383 1.6299 

algorithm 8 14.434 0.84430 

34 Digits: Region 1 

 Min. Mean Stand. Dev. 

web 10 30.325 5.32787 

python 27 33.391 0.81832 

algorithm 26 32.792 1.1198 

34 Digits: Region 2 

 Min. Mean Stand. Dev. 

web 11 31.391 4.6493 

python 29 33.586 0.61193 

algorithm 26 32.792 1.1198 

Double Precision Accuracy: Region 1 

 
Octave 

 
Python 

 
Algorithm 

Double Precision Accuracy: Region 2 

 
Octave 

 
Python 
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Algorithm 

34 Digit Accuracy: Region 1 

 
Web 

 
Python 

 
Algorithm 

34 Digit Accuracy: Region 2 

 
Web 

 
Python 

 
Algorithm 

VI. CONCLUSIONS 

Concentrating on the effectiveness of each algorithm on 

preserving the identity 𝐽𝑛+2(𝑧) =
2(𝑛+1)

𝑧
𝐽𝑛+1(𝑧) − 𝐽𝑛(𝑧), the 

analysis shows that, for double precision, my algorithm, 

compared to the Bessel algorithm for octave and python, is 

better and (95%) significantly better for the indexes greater 

than 88. 
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For 34-digit precision, the algorithm used by python was 

best, but not (95%) significantly better than either of the other 

algorithms. 

All algorithms showed that increasing the index of the 

Bessel function had a negative influence on the accuracy. 
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