
 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

57

A Visualized Insight into Dependency Risks in

CI/CD Pipelines
[1] Shalparni P Y, [2] Dr Nalini M K, [3] Dr R Ashok Kumar, [4] Muralikrishna Nidugala

[1] CNE, BMS College of Engineering, Bengaluru, India.

[2] Department of ISE, BMS College of Engineering, Bengaluru, India
[3] Department of ISE, BMS College of Engineering, Bengaluru, India

[4] Master Technologist, Hewlett Packard Enterprise

Corresponding Author Email: [1] shalparnipy.scn21@bmsce.ac.in, [2] nalini.ise@bmsce.ac.in, [3] ashokkumar.ise@bmsce.ac.in,
[4] muralikrishna.nidugala@hpe.com

Abstract— Continuous Integration/Continuous Deployment (CI/CD) pipelines have revolutionized software development, providing a

streamlined approach to automate the build, testing, and deployment of applications. This abstract explores the integration of CI/CD

pipelines with dependency management in the GitHub ecosystem. It examines the significance of this collaboration, the challenges

faced, and presents best practices to optimize the development workflow. CI/CD pipelines integrated with dependency management in

GitHub offer developers a powerful platform to manage project dependencies efficiently. The automation of dependency updates ensures

that software projects stay up-to-date with the latest features and security patches, minimizing the risk of vulnerabilities caused by

outdated libraries. By implementing best practices in dependency management. Utilizing package managers like npm, pip, or yarn helps

manage dependencies effectively and simplifies the process of installing required packages. Employing version pinning and semantic

versioning practices ensures a stable and predictable development environment. Moreover, integrating security tools like Dependabot

within the CI/CD pipeline assists in automatically monitoring and updating dependencies, addressing vulnerabilities proactively. By

utilizing GitHub's inherent functionalities, like security alerts and vulnerability assessments, valuable insights can be gained regarding

potential risks within the project's dependency tree.

Keywords: CI/CD pipeline, Vulnerability, Dependency, CodeQL, SLSA, Dependabot, supply chain management, GitGuardian, Power

Bi, Dependency Graph.

I. INTRODUCTION

The Continuous Integration/Continuous Deployment

(CI/CD) pipeline has become a pivotal paradigm in

contemporary software development, empowering teams to

achieve swifter and more efficient application delivery. This

paper provides an overview of CI/CD pipelines, their

significance, and the challenges they pose, as well as

highlighting best practices to optimize their implementation.

CI/CD pipelines automate the process of building, testing,

and deploying software changes, allowing developers to

integrate code frequently and reliably. By adopting this

approach, manual intervention is substantially reduced,

collaboration is streamlined, and the delivery of high-quality

applications to end-users is ensured. By fostering a culture of

continuous improvement, CI/CD pipelines enable software

teams to innovate rapidly and respond promptly to market

demands.

However, with the increasing adoption of CI/CD pipelines,

new challenges have emerged. Security vulnerabilities, such

as code injection, unauthorized access, and misconfigurations,

have become potential threats to the integrity and availability

of software. These vulnerabilities can lead to severe

consequences, including data breaches and service

disruptions. In response to these challenges, state-of-the-art

security techniques have been incorporated into CI/CD

pipelines. Tools like CodeQL, SLSA (Supply Chain Levels

for Software Artifacts), and dependabot play a vital role in

identifying and mitigating security risks, ensuring that the

software remains resilient to attacks.

This paper also underscores essential guidelines for

organizations to contemplate during the implementation of

CI/CD pipelines. It stresses the significance of upholding a

well-defined version control strategy, comprehensive testing

at each pipeline stage, and the adoption of infrastructure as

code to mitigate configuration errors. Furthermore,

cultivating a DevSecOps culture that prioritizes security

throughout the development lifecycle is vital in safeguarding

the integrity of the CI/CD pipeline.

Supply chain management

A supply chain attack, also known as a value-chain or

third-party attack, refers to the infiltration of a system

through an external partner or provider that has access to the

organization's systems and data. This infiltration has led to a

significant transformation in the attack surface of enterprises

in recent years, as more suppliers and service providers now

handle sensitive data than ever before. Consequently, the

risks associated with supply chain attacks have reached

unprecedented levels due to the emergence of novel attack

methods, heightened public awareness of these threats, and

increased scrutiny from regulatory authorities.

The integration of CI/CD pipelines with dependency

management in GitHub has significantly enhanced software

development practices. By adopting best practices and

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

58

incorporating automated security measures, developers can

efficiently manage dependencies, reduce risks, and ensure the

continuous delivery of high-quality, secure software.

Embracing these advancements empowers teams to

accelerate innovation, minimize vulnerabilities, and deliver

reliable software products to end-users.

II. LITERATURE REVIEW

Vulnerabilities in Continuous, Delivery Pipelines A Case

Study This paper team members that work with the CD

pipeline in different roles do not have a strong security

background but are aware of security attributes in general.

projects were analyzed using the STRIDE threat analysis

approach. Analysis of two industry CD pipelines focusing.

Execution of a STRIDE threat analysis (confidentiality,

integrity, availability) and mapping of the identified threats

based on NIST and OWASP project. Manual vulnerability

assessment based on the results of the STRIDE threat

analysis [1]. Continuous Security Testing A Case Study on

Integrating Dynamic Security Testing Tools in CI/CD

Pipelines. In this paper, approach to integrate three

automated dynamic testing techniques into CI/CD pipeline

provide an empirical analysis of the introduced identify

unique research challenges the DevSecOps communities.

The three dynamic application security testing techniques we

integrated into a CI/CD pipeline are: Web Application

Security Scanning (WAST) using Zed Attack Proxy (ZAP)1,

Security API Scanning (SAS) with JMeter 2 and Behaviour

Driven Security Testing (BDST) using SeleniumBase

automation framework [2] Continuous Integration, Delivery

and Deployment: A Systematic Review on Approaches,

Tools, Challenges and Practices. This research aimed at

systematically reviewing the state of the art of continuous

practices to classify approaches,tools, identify challenges and

practices [3]. Software Supply Chain And Devops Security

Practices[4]. The paper’s objective is to produce practical and

actionable guidelines that meaningfully integrate security

practices into development methodologies. The project will

also strive to demonstrate the use of current and emerging

secure development frameworks, practices, and tools to

address cybersecurity challenges.

III. METHODOLOGY

In GitHub, dependencies pertain to external libraries,

frameworks, or packages essential for a project's proper

functioning. These dependencies are typically integrated to

introduce specific functionalities or features without the

necessity of developing everything from scratch. They

encompass diverse types of software components, including

code libraries, plugins, or modules. Managing dependencies

is crucial for software development because it allows

developers to leverage existing solutions and focus on

building the unique aspects of their projects. GitHub provides

several ways to handle dependencies, and one of the most

common methods is using package managers. Package

managers are tools that automate the process of installing,

updating, and removing dependencies. They keep track of the

versions and dependencies required by a project and ensure

that everything is consistent and compatible. Some popular

package managers used in GitHub projects include:

 npm (Node Package Manager): Used for JavaScript

projects, primarily in the Node.js ecosystem.

 pip: Used for Python projects.

1. Creation of CI/CD pipeline in repository

Creating a CI/CD pipeline for a repository on GitHub

involves setting up an automated workflow that performs

continuous integration (CI) and continuous

delivery/deployment (CD) tasks. The CI/CD pipeline

automates the build, test, and deployment processes, enabling

faster and more reliable development cycles. Below are the

general steps to create a CI/CD pipeline in a GitHub

repository:

 Setup GitHub Repository: Create a new repository on

GitHub or use an existing one to host your project.

 Version Control: Ensure that your project is

well-structured and uses version control, preferably

Git, to track changes effectively.

 Opt for a CI/CD Service: Decide on a CI/CD service

that seamlessly integrates with GitHub.

Some popular options include:

GitHub Actions (integrated directly into GitHub)

Travis CI

CircleCI

Jenkins (self-hosted)

 Configuration File: In your repository, create a

configuration file for the CI/CD pipeline. The file

specifies the steps to be executed during the

workflow.

 Continuous Integration (CI): The CI part of the

pipeline ensures that code changes are continuously

integrated into the main codebase. This process

involves the following steps:

Setting up the build environment.

Installing dependencies.

Building the application.

Running unit tests and other relevant tests.

 Continuous Delivery/Deployment (CD): The CD

component of the pipeline automates the deployment

process following a successful CI. This process

includes the following steps:

Deployment to a staging environment for additional testing

Deployment to production or any other designated target

environment.

 Handling Secrets and Environment Variables: Ensure

that any sensitive information, such as API keys or

passwords, is properly handled using GitHub's secrets

or an external secret management tool.

 Push Pipeline Configuration to Repository: Commit

and push the configuration file for your CI/CD

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

59

pipeline to your GitHub repository. This triggers the

CI/CD service to execute the defined workflow

whenever changes are pushed to the repository.

 Monitor and Debug: Monitor the CI/CD pipeline's

execution, and if any issues arise, use the logs and

debugging tools provided by your CI/CD service to

identify and fix the problems.

 Iterate and Improve: Continuously refine and improve

your CI/CD pipeline based on feedback and changing

requirements.

2. Handling Dependency in a repository

Dependencies are comprised of external libraries,

frameworks, or packages that a software project necessitates

to operate accurately. These dependencies are integral

elements of a project and frequently serve to deliver distinct

functionalities, minimize development workload, and ensure

the reuse of code. Within GitHub repositories, configuration

files are frequently present, detailing the dependencies of the

project and the precise versions they require. These files

make it easier for developers to set up the development

environment and ensure consistency across different

installations. Some common dependency management files

in GitHub repositories include:

package.json: Used for JavaScript projects managed with

npm (Node Package Manager). It lists the project's

dependencies and their versions.

requirements.txt: Typically used for Python projects, it

includes a list of required Python packages and their versions.

pom.xml: Used for Java projects managed with Apache

Maven. The Project Object Model (POM) file lists the

project's dependencies and other project-related information.

Gemfile: Used for Ruby projects, it contains a list of Ruby

gems (dependencies) and their versions.

composer.json: Used for PHP projects managed with

Composer. It specifies the project's PHP dependencies and

their versions.

Handling dependencies in a GitHub repository involves

properly managing and updating these files, so the project's

dependencies are correctly installed and maintained.

Developers can use package managers like npm, pip, Maven,

or Composer to install and manage these dependencies

automatically. It is important to keep dependencies

up-to-date to ensure security, stability, and compatibility with

other parts of the project. Additionally, GitHub provides

various features and tools that help manage dependencies

effectively, such as dependency graphs, which visualize a

repository's dependencies and their relationships. Regularly

reviewing and updating dependencies, along with performing

security audits, are essential practices to maintain a healthy

and secure codebase in a GitHub repository. This ensures that

the project remains robust and can take advantage of the

latest features and improvements offered by external libraries

and frameworks.

Handling dependencies in a repository is crucial for

ensuring that your project can be built, tested, and executed

correctly on different systems. Managing dependencies

involves specifying the required external libraries,

frameworks, or packages that your project relies on. Here are

some best practices for handling dependencies in a

repository:

 Use a Package Manager:

Most programming languages have package managers that

help manage dependencies automatically. Examples include

npm (Node.js), pip (Python), Maven (Java), and Composer

(PHP). Using a package manager simplifies the process of

installing, updating, and removing dependencies.

 Dependency File:

Create a file (e.g., package.json, requirements.txt) in your

repository to list all the dependencies and their versions. This

file acts as a manifest of required packages, making it easy

for other developers to set up the same development

environment.

 Lock File:

Some package managers generate a lock file (e.g.,

package-lock.json, pip-lock.txt) that ensures consistent

versions of dependencies across different installations. This

file is useful for maintaining a stable build environment.

 Avoid Global Dependencies:

Whenever possible, avoid installing dependencies globally.

Instead, keep dependencies local to your project, making it

easier to manage versions and avoid conflicts with other

projects.

 Versioning:

Be explicit about the versions of dependencies your project

requires. Use semantic versioning (e.g., ^1.2.3, ~2.1.0) to

specify acceptable version ranges. This helps prevent

unexpected updates that could introduce breaking changes.

 Security Audits:

Regularly audit your project's dependencies for security

vulnerabilities. Many package managers provide tools for

scanning and flagging vulnerable dependencies. Keep your

dependencies up to date to minimize security risks.

 Automated Testing:

Include automated tests in your CI/CD pipeline that ensure

your project works with the specified dependency versions.

Automated testing helps catch compatibility issues early.

 Documentation:

Include clear documentation in your repository's

README or documentation files about how to set up the

development environment and install the necessary

dependencies.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

60

By following these best practices, manage dependencies

effectively, leading to a more reliable and maintainable

project. Remember to regularly review and update

dependencies to benefit from the latest features, bug fixes,

and security patches.

3. Using a dependency graph to comprehend

vulnerabilities in the files.

The dependency graph in GitHub is a powerful tool that

offers a graphical depiction of a repository's dependencies. It

aids developers in comprehending the connections between

the repository's code and the external libraries, frameworks,

and packages it relies on. Managing and maintaining projects

with such dependencies becomes more accessible through

this feature. The dependency graph is accessible for both

public and private repositories employing package managers

like npm, pip, Maven, Composer, and others. By

automatically analyzing the repository's dependency files,

such as package.json, requirements.txt, pom.xml, Gemfile, or

composer.json, it creates a comprehensive graph based on the

declared dependencies.

Key features of the dependency graph in GitHub include:

Dependency Visualization: The graph displays the

dependencies of the repository's code and how they are

interconnected. It provides a clear and easy-to-understand

visual representation of the project's dependency hierarchy.

Security Alerts: The dependency graph can also show

security alerts for known vulnerabilities in the project's

dependencies. If any vulnerable dependencies are detected,

GitHub will display alerts and recommend updating to a

secure version.

Version Information: The graph typically includes version

numbers for each dependency, allowing developers to see if

the project is using the latest or outdated versions.

Filtering and Search: The dependency graph permits the

filtering and searching of distinct dependencies or packages,

simplifying the process of locating and concentrating on

specific elements. Observations: It offers valuable

observations regarding the project's well-being and

framework, particularly in relation to external dependencies.

The dependency graph proves to be a valuable asset in

upholding project well-being and security, aiding developers

in comprehending and proficiently handling dependencies. It

fosters enhanced collaboration, well-informed choices, and

expedited problem-solving when addressing dependencies

within a GitHub repository.

Figure 1: List of dependencies in a GitHub project

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

61

Dependency graph using Power Bi

Power BI, a robust business analytics service developed by

Microsoft, empowers users to craft engaging and interactive

reports and dashboards from diverse data sources. Through

the utilization of Power BI, enterprises acquire valuable

insights from their data, thereby enabling informed decisions

based on data. Embraced across various sectors, Power BI

functions as a versatile instrument for data analysis, business

intelligence, and reporting. It accommodates both individuals

seeking self-service analytics and organizations requiring

robust data solutions to enhance their business processes. The

project name, incidents and the number of dependencies are

considered and by using Power Bi Dependency graph is

generated.

IV. RESULTS

Figure 2: CI/CD Pipeline in Github

Dependency Graph in GitHub provides a visual

representation of the dependencies present in a repository.

However, the availability and exact results of the

Dependency Graph may vary depending on the repository's

configuration, package managers used, and the specific

dependencies declared. Once the Dependency Graph is

generated, a visual representation of project's dependencies

and how they are connected. It will display a tree-like

structure, indicating the hierarchy of dependencies, and may

also show any security vulnerabilities detected in those

dependencies. Remember that the results in the Dependency

Graph are based on the package manager and dependencies

declared in your repository's configuration files.

Figure 3: Workflow of the project

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

62

Figure 4: Dependency in a project and the dependents

Figure 5: Dependabot alerts in GitHub

Git Guardian

GitGuardian's focus is to detect and safeguard against

leaks of sensitive information, including API keys,

credentials, passwords, and confidential data that might

accidentally surface in a repository's source code or

configuration files. These leaks can present substantial

security risks, potentially resulting in unauthorized access,

data breaches, and other cybersecurity incidents.

The key features and capabilities offered by GitGuardian

encompass:

Sensitive Data Detection: GitGuardian diligently scans a

repository's code and configuration files to pinpoint potential

instances of sensitive information. It employs pattern

matching and machine learning algorithms to identify known

patterns of sensitive data, such as API keys, access tokens,

and database passwords.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

63

Automated Scanning: With continuous monitoring of

repositories, GitGuardian automatically conducts real-time

scans of newly pushed code, pull requests, and commits. This

proactive approach aids in promptly detecting any sensitive

data leaks, effectively preventing security breaches.

Alerts and Notifications: When GitGuardian identifies

sensitive data in a repository, it generates alerts and

notifications, promptly informing the repository owners or

designated security personnel. This enables swift remediation

of the exposed information.

Integration with CI/CD Pipelines: GitGuardian seamlessly

integrates with continuous integration/continuous

deployment (CI/CD) pipelines to ensure inadvertent leaks of

sensitive data do not occur during development and

deployment processes.

Compliance and Policy Enforcement: GitGuardian

supports security policy enforcement, ensuring that sensitive

data remains inaccessible within repositories. It assists

organizations in adhering to data protection regulations and

industry best practices.

Support for Multiple Platforms: While GitGuardian is

primarily tailored for Git repositories, it extends its support to

various version control platforms, code repositories, and

collaboration tools.

Figure 6: Git guardian dependency incidents

Power Bi

Power BI, a potent business analytics service created by

Microsoft, enables users to create captivating and interactive

reports and dashboards from various data sources. Through

Power BI, organizations unlock valuable insights from their

data, facilitating data-driven decision-making. Embraced

across industries, Power BI stands as a versatile tool for data

analysis, business intelligence, and reporting, catering to both

individuals seeking self-service analytics and organizations

requiring robust data solutions for their business operations.

Figure 7: Tree representation of the dependencies using Power Bi tool

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 10, Issue 10, October 2023

64

V. CONCLUSION

The Dependency Graph in GitHub offers a valuable and

informative feature that visually represents a repository's

dependencies. It aids developers and organizations in

comprehending how the project's code relies on external

libraries, frameworks, or packages. By presenting a clear and

user-friendly view of the dependency hierarchy, the

Dependency Graph simplifies dependency management,

fostering a stronger and more efficient codebase. Notably,

this feature plays a crucial role in identifying and rectifying

potential security vulnerabilities by highlighting outdated or

vulnerable dependencies. By enabling effective tracking and

updating of dependencies, the Dependency Graph ensures a

secure and up-to-date development environment.

Furthermore, the Dependency Graph seamlessly integrates

with continuous monitoring and automated scanning, swiftly

detecting any changes in dependencies to prevent issues and

expedite problem resolution. This promotes collaboration

and empowers developers to make well-informed decisions

based on the latest insights regarding their project's

dependencies.

In summary, the Dependency Graph serves as an

invaluable tool supporting software development practices,

empowering users to create more reliable, maintainable, and

secure applications within their GitHub repositories. As

GitHub and its features evolve, the Dependency Graph will

continue to be a fundamental component in managing

dependencies and fostering efficiency in the development

process.

REFERENCES

[1] “Christina Paule, Thomas F. Dullmann, and Andr ¨ e van

Hoorn, Vulnerabilities in Continuous Delivery Pipelines? A

Case Study- 2019 IEEE”

[2] “Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen Fatih

Turkmen: Testing Continuous Security Testing:A Case Study

on Integrating Dynamic Security Testing Tools in CI/CD

Pipelines-2020 IEEE”

[3] “Mojtaba Shahin, Muhammad Ali Babar, Liming

Zhu-Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and

Practices-2017IEEE”

[4] “Murugiah Souppaya Michael Ogata Paul Watrobsk: software

supply chain and devops security practices 2022 NIST”

[5] “Sergejs Bobrovskis, Aleksejs Jurenoks: A Survey of

Continuous Integration, Continuous Delivery and Continuous

Deployment”

[6] “Michael Färber: Analyzing the GitHub Repositories 2022-

researchgate”

[7] “Charanjot Singh, Nikita Seth Gaba, Manjot Kaur:

Comparison of Different CI/CD Tools Integrated with Cloud

Platform, 2019-IEEE”

[8] “Abdul Malik 1,2, Muhammad Shumail Naveed: Analysis of

Code Vulnerabilities in Repositories of GitHub and

RosettaCode: A Comparative Study, 2022 IJIST”

[9] “R. He, H. He, Y. Zhang and M. Zhou, "Automating

Dependency Updates in Practice: An Exploratory Study on

GitHub Dependabot, 2023 IEEE”.

