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Abstract: -- In this paper analytical solutions of isotropic and orthotropic laminated composite plates are analyzed by using 

Higher Order Shear Deformation Theory. By using Principal of virtual work we get the governing equations. A simply 

supported square plate is used to compare various numerical results. The shear correction factor is obviated in this theory. It 

observed that solution obtained from present theory make a good agreement with exact higher order shear deformation theory. 
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I. INTRODUCTION 

The composite Laminates are widely used in many 

engineering structures like aerospace engineering, Marin 

engineering etc. Due to mechanical properties of composite 

structure it reduces heavy weight and improves the stiffness of 

that structure, so these composite structures are light in weight 

and ease to handle. In composite materials fibers and matrix 

are used. According to necessity of structure orientation we 

can change fiber orientations. As we know, the change in 

environment affect to the durability and life of that structure. 

Therefore many engineering structures subjected to severe 

thermal environment due to composite attractive properties 

such as temperature resistance and low thermal coefficient of 

expansion. Due to thermal loading, thermal stresses are 

developed at the interface between two different materials 

which can be significant factor in the failure of Laminated 

Composite Structures. Therefore it is necessary to predict 

more accurately the thermal stresses in composite structures. 

Many theories are developed by various researchers to predict 

the correct behavior of composite laminates under mechanical 

or thermal or thermo-mechanical loading. 

 

II. LITERATURE REVIEW 

 

Mechab [1] presents the analytical solutions of cross-ply 

laminated plates under thermo-mechanical loading based on 

higher order shear deformation theory. The effects of plate 

width-to thickness ratio, thickness ratio, aspect ratio and 

boundary conditions on the displacement of laminated 

composite plates are presented. Program is developed in  

 

FORTRAN. Ghugal [2, 3] investigate the effects of nonlinear 

thermo-mechanical load on a composite laminated plate. 

Flexural stress analysis of cross-ply laminated composite 

plates subjected to 

Transverse parabolic load and line load. Kapuria [4] present 

higher order zigzag theory (HZIGT) for laminated plates 

under thermal loading. Zenkur [5] presented unified shear 

deformable plate theory for buckling of fiber-reinforced 

viscoelastic composite plates to study the static response of 

laminated plates subjected to non-uniform thermal or thermo-

mechanical loads. The two-dimensional analysis of composite 

laminated plates has been based on the classical lamination 

theory or the shear deformation theory [9-13]. In both of these 

theories, it is assumed that the displacements are continuous 

functions over the thickness, and the laminate is characterized 

as an equivalent and homogeneous layer, however, these 

theories predict discontinuous stress distributions at the layer 

interfaces due to dissimilar elastic properties of adjacent 

layers. Fares [6] presented thermal model accounts for First-

order Reissner and Mindlin displacements and continuous 

stress distributions through the laminate thickness that are 

consistent with the surface conditions. Zhen [7] developed the 

global–local higher order model to analyze thermal response 

of laminated plates under actual temperature fields. Savoia [8] 

presents three dimensional solutions of rectangular 

multilayered plates subjected to thermo-mechanical loads 

within the quasi static theory of thermo elasticity. Bhaskar et 

al. [14] presented 3D elasticity solution for laminated 

cylindrical and bi directional bending considering linear 

thermal profile through the thickness of the symmetric 
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laminate. Kirchhoff [15] gives Classical plate theory (CPT) 

and Mindlin [16] developed first order shear deformation 

theory (FSDT). Reddy [17] developed higher order shear 

deformation theory (HSDT). Sayyad [18] developed theory by 

using four variable for Thermoelastic bending analysis by 

assuming linear thermal variation for various aspect ratio. 

Sayyad [19] gives exponential shear deformation theory 

(ESDT) for analysis of thermal stress for laminated composite 

plates. Kant and Shiyekar [20] gives analytical model for 

thermal stress analysis of cross ply laminates subjected to 

gradient thermal profile across thickness of plate. Ghugal and 

Kulkarni [23,24] explained thermal stresses and displacements 

for orthotropic, two layer antisymmetric and three layer 

symmetric square cross ply laminated plates by considering 

nonlinear thermal variation across thickness of plate.  

 

III. THEORETICAL FORMULATION 

 

Consider a square plate of length (a), width (b) and thickness 

(h) composed of orthotropic layers. The material of each layer 

is assumed to have one plane of material property symmetry 

parallel to x-y plane. The coordinate system is such that the 

mid plane of the plate coincides with x-y plane, and z axis is 

normal to the middle plane. The upper surface of the plate is 

subjected to transverse load q(x, y). The plate occupies in ((o-

x-y-z) i.e. right handed Cartesian coordinate system) a region. 

ax 0 , by 0 , 2/2/ hzh   

 
Figure 1 Coordinate system and Geometry of Laminated 

Plate 
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are represents rotations of given plate at neutral surface. From 
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It can be noted that transverse shear strain are zero at top and 

bottom of the plate. Since the laminate is made of several 

orthotropic layers, the constitutive relations in the k
th

 layer are 

given as,           
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    1266 GQ 
,        2344 GQ 

,        1355 GQ 
  ,  

The temperature variation through the thickness is assumed to 

  TzyxT ,,
  

 

IV. GOVERNING EQUATIONS 

 

The governing equation and boundary conditions are derived 

using principle of virtual work, vibrational consistent 

differential equations and the boundary conditions for the 

plate under considerations are obtained. The principle of 

virtual work when applied to plate we get, 

    0wdxdyqdxdydzxyxyyyxx 

  Integrating equation by parts and collecting 

the coefficient of 000000 ,,,,,  wvu
 the 

following governing equations and boundary conditions are 

obtained. 

We will get following boundary conditions, 
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In this paper, We discuss three numerical non-dimensional 

displacement and stresses are determined for simply supported 

isotropic, orthotropic and three layer (0
0
-90

0
-0

0
) symmetric 

cross ply laminated composite plates subjected to thermal load 

linearly varying across the thickness of the plate. The plate is 

made by graphite-epoxy composite material with following 

properties, 

 

Example 1: Simply supported isotropic laminated composite 

plates subjected to thermal load linearly varying across the 

thickness of the plate with following properties, 
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Example 2: Simply supported orthotropic laminated 

composite plates subjected to thermal load linearly varying 

across the thickness of the plate with following properties, 
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By using Navier’s solution we get governing equations and 

boundary conditions.  

 

 

 

V. RESULT AND DISCUSSION 

 

In this paper, displacements and stresses are determined for 

antisymmetric laminated plates subjected to linear thermal 

load across the thickness of plate. Results are presented in the 

following normalized forms for the purpose of discussion. 

Normalized displacements and thermal stresses for isotropic 

laminated plates, 
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Table 1 Normalized Displacements for Square Isotropic 

Plate Subjected To Linear Thermal Load for Aspect Ratio 10 

(Example 1) 

 
From Table 1 and Table 2, it is observed that the in plane 

displacements predicted by present theory, TSDT of Ghugal 

and Kulkarni [24],  FSDT of Mindlin[16]  and CPT of 

Kirchhoff[15]are nearly close agreement with each other. 

 

Table 3 Normalized displacements for orthotropic plate 

subjected to linear thermal load for aspect ratio 5 and 10 

(Example 2) 

Aspect 

Ratio 
Model u  v  w  

5 Present 0.4759 0.3810 1.0342 

 TSDT24] 0.3222 0.3729 1.0709 

 FSDT[16] 0.3190 0.3812 1.0721 

 CPT[15] 0.3240 0.3240 1.0312 

10 Present 0.1704 0.1704 1.1295 

 TSDT[24] 0.1617 0.1697 1.0439 

 FSDT[16] 0.1612 0.1709 1.0440 

 CPT[15] 0.1620 0.1620 1.0312 

 

 

Table 4 Normalized stresses for orthotropic plate subjected 

to linear thermal load for aspect ratio 5 and 10 (Example 

2) 
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5 Present 
0.044
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10 Present 
0.002
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2 

0.157
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TSDT[2

4] 

0.004
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0.096

7 

0.052

1 

0.035

6 

0.035

8 

 
FSDT[1
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0.002
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0.099
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- - 

 

From Table 3 and Table 4, it is observed that the in plane 

displacements, in plane normal stresses and transverse shear 

stresses predicted by present theory TSDT of Ghugal and 

Kulkarni [24], FSDT of Mindlin[16]  and CPT of 

Kirchhoff[15]are overestimate.  
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