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Abstract: -- In this paper analytical solutions of isotropic and orthotropic laminated composite plates are analyzed by using
Higher Order Shear Deformation Theory. By using Principal of virtual work we get the governing equations. A simply
supported square plate is used to compare various numerical results. The shear correction factor is obviated in this theory. It
observed that solution obtained from present theory make a good agreement with exact higher order shear deformation theory.
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I. INTRODUCTION

The composite Laminates are widely used in many
engineering structures like aerospace engineering, Marin
engineering etc. Due to mechanical properties of composite
structure it reduces heavy weight and improves the stiffness of
that structure, so these composite structures are light in weight
and ease to handle. In composite materials fibers and matrix
are used. According to necessity of structure orientation we
can change fiber orientations. As we know, the change in
environment affect to the durability and life of that structure.
Therefore many engineering structures subjected to severe
thermal environment due to composite attractive properties
such as temperature resistance and low thermal coefficient of
expansion. Due to thermal loading, thermal stresses are
developed at the interface between two different materials
which can be significant factor in the failure of Laminated
Composite Structures. Therefore it is necessary to predict
more accurately the thermal stresses in composite structures.
Many theories are developed by various researchers to predict
the correct behavior of composite laminates under mechanical
or thermal or thermo-mechanical loading.

Il. LITERATURE REVIEW

Mechab [1] presents the analytical solutions of cross-ply
laminated plates under thermo-mechanical loading based on
higher order shear deformation theory. The effects of plate
width-to thickness ratio, thickness ratio, aspect ratio and
boundary conditions on the displacement of laminated
composite plates are presented. Program is developed in

FORTRAN. Ghugal [2, 3] investigate the effects of nonlinear
thermo-mechanical load on a composite laminated plate.
Flexural stress analysis of cross-ply laminated composite
plates subjected to

Transverse parabolic load and line load. Kapuria [4] present
higher order zigzag theory (HZIGT) for laminated plates
under thermal loading. Zenkur [5] presented unified shear
deformable plate theory for buckling of fiber-reinforced
viscoelastic composite plates to study the static response of
laminated plates subjected to non-uniform thermal or thermo-
mechanical loads. The two-dimensional analysis of composite
laminated plates has been based on the classical lamination
theory or the shear deformation theory [9-13]. In both of these
theories, it is assumed that the displacements are continuous
functions over the thickness, and the laminate is characterized
as an equivalent and homogeneous layer, however, these
theories predict discontinuous stress distributions at the layer
interfaces due to dissimilar elastic properties of adjacent
layers. Fares [6] presented thermal model accounts for First-
order Reissner and Mindlin displacements and continuous
stress distributions through the laminate thickness that are
consistent with the surface conditions. Zhen [7] developed the
global-local higher order model to analyze thermal response
of laminated plates under actual temperature fields. Savoia [8]
presents three dimensional solutions of rectangular
multilayered plates subjected to thermo-mechanical loads
within the quasi static theory of thermo elasticity. Bhaskar et
al. [14] presented 3D elasticity solution for laminated
cylindrical and bi directional bending considering linear
thermal profile through the thickness of the symmetric
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laminate. Kirchhoff [15] gives Classical plate theory (CPT)
and Mindlin [16] developed first order shear deformation
theory (FSDT). Reddy [17] developed higher order shear
deformation theory (HSDT). Sayyad [18] developed theory by
using four variable for Thermoelastic bending analysis by
assuming linear thermal variation for various aspect ratio.
Sayyad [19] gives exponential shear deformation theory
(ESDT) for analysis of thermal stress for laminated composite
plates. Kant and Shiyekar [20] gives analytical model for
thermal stress analysis of cross ply laminates subjected to
gradient thermal profile across thickness of plate. Ghugal and
Kulkarni [23,24] explained thermal stresses and displacements
for orthotropic, two layer antisymmetric and three layer
symmetric square cross ply laminated plates by considering
nonlinear thermal variation across thickness of plate.

I11. THEORETICAL FORMULATION

Consider a square plate of length (a), width (b) and thickness
(h) composed of orthotropic layers. The material of each layer
is assumed to have one plane of material property symmetry
parallel to x-y plane. The coordinate system is such that the
mid plane of the plate coincides with x-y plane, and z axis is
normal to the middle plane. The upper surface of the plate is
subjected to transverse load q(x, y). The plate occupies in ((o-
X-y-2) i.e. right handed Cartesian coordinate system) a region.

O<x<a O0Osy<b —-h/2<z<h/2

Figure 1 Coordinate system and Geometry of Laminated
Plate
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It can be noted that transverse shear strain are zero at top and
bottom of the plate. Since the laminate is made of several
orthotropic layers, the constitutive relations in the k™ layer are
given as,
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Q111Q221Q33' etc. are reduced stiffness coefficients of kth
layer as given below,
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st = Gls

Qs = 612’ Qu = 623,
The temperature variation through the thickness is assumed to
T(x,y,2)=AT

IV. GOVERNING EQUATIONS

The governing equation and boundary conditions are derived
using principle of virtual work, vibrational consistent
differential equations and the boundary conditions for the
plate under considerations are obtained. The principle of
virtual work when applied to plate we get,

m (axdex +0,06, + 7,0/ )Jlxdydz - ﬂ qowdxdy =0
Integrating equation by parts and collecting

the coefficient of &0'&0'&\/0’&50’&/’0’550 the

following governing equations and boundary conditions are
obtained.
We will get following boundary conditions,
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In this paper, We discuss three numerical non-dimensional
displacement and stresses are determined for simply supported
isotropic, orthotropic and three layer (0°-90°-0°) symmetric
cross ply laminated composite plates subjected to thermal load
linearly varying across the thickness of the plate. The plate is
made by graphite-epoxy composite material with following
properties,

+Dg, )+

Ty Tz
+ ‘] 23 + ‘]33 )

Example 1: Simply supported isotropic laminated composite
plates subjected to thermal load linearly varying across the
thickness of the plate with following properties,

Hhy =ty = Moy = lgy = Hyy = Jgy =0.3
% _%_gp
E,=E,=E,=380GPa «, «

G,, =G,, =G,, =146.54GPa

X

Example 2: Simply supported orthotropic laminated
composite plates subjected to thermal load linearly varying
across the thickness of the plate with following properties,
E
—1 =25
] E,=E,=10GPa

G,,=G,;;=05E, G,;=0.2E,
Hhy = 3 = Moy =l =0.25

%30
Moy = Mg :O-Ol, o, «a

X

By using Navier’s solution we get governing equations and
boundary conditions.

V. RESULT AND DISCUSSION

In this paper, displacements and stresses are determined for
antisymmetric laminated plates subjected to linear thermal
load across the thickness of plate. Results are presented in the
following normalized forms for the purpose of discussion.
Normalized displacements and thermal stresses for isotropic
laminated plates,

- 1 - 1
=u V=V
a,T,h a,T,h
— 1 — 1
W=Ww c,=0,———
OlXToh X axTO E2
— 1 ) W 1
O =0y—— =7, —
y YaTE, ¥ YaT,E,

Normalized displacements and thermal stresses for orthotropic
laminated plates
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Table 1 Normalized Displacements for Square Isotropic
Plate Subjected To Linear Thermal Load for Aspect Ratio 10

(Example 1)
ATECT j - — —
RATIO MODEL i W ke
10 DREZENT 20015 20015 13.1273
TEDT[24] 1.0680 1.0680 13.1718
FEDT[146] 10680 10680 131712
CET[15] 20680 20680 13.1712

TAELF I NORMALIZED STRES3ES FOR S3QUARE ISOTROPFIC FLATE SUB/ECTED

TO LINEAR THERMAL LOAD FOR ASFECT RATIO 10 (EXAMFLE 1)

ASTECT — — —
MOoDEL [ o, Ty
BaTic = ; x
10 DREZENT 0.6303 0.6303 0.5054
TEDT[24] 0. 5000 0. 5000 0.5000
FEDT[14] 05000 05000 0.5000
CPT[13] 05000 05000 0.5000

From Table 1 and Table 2, it is observed that the in plane
displacements predicted by present theory, TSDT of Ghugal
and Kulkarni [24], FSDT of Mindlin[16] and CPT of
Kirchhoff[15]are nearly close agreement with each other.

Table 3 Normalized displacements for orthotropic plate
subjected to linear thermal load for aspect ratio 5 and 10
(Example 2)
é;ﬁgm Model u v W
5 Present 0.4759 0.3810 1.0342
TSDT24] | 0.3222 0.3729 1.0709
FSDT[16] | 0.3190 0.3812 1.0721
CPT[15] | 0.3240 0.3240 1.0312
10 Present 0.1704 0.1704 1.1295
TSDT[24] | 0.1617 0.1697 1.0439
FSDT[16] | 0.1612 0.1709 1.0440
CPT[15] | 0.1620 0.1620 1.0312
Table 4 Normalized stresses for orthotropic plate subjected
to linear thermal load for aspect ratio 5 and 10 (Example
2)
Asp
?Qcatti Model Gx O-y z-><y sz z-yz
0
5 Present 0.044 | 0.197 | 0.112 | 0.106 | 0.118
9 0 0 4 3

TSDT2 [0.015 [ 0.183 [ 0.109 [ 0.112 | 0.114
4] 5 0 2 0 5
FSDT[1 | 0.039 | 0.180 | 0.110 | 0.074 | 0.074
6] 4 6 0 0 0
CPT[15 | 0.005 | 0.198 | 0.101
] 3 3 8 i i
10 | present | 0-002 | 0.104 |0.052 | 0.035 | 0.157
9 9 6 2 1
TSDT[2 | 0.004 | 0.096 | 0.052 | 0.035 | 0.035
4] 2 7 1 6 8
FSDT[1 | 0.008 | 0.096 | 0.052 | 0.023 | 0.023
6] 0 4 2 1 1
CPT[15 | 0.002 | 0.099 | 0.050
] 6 1 9 i i

From Table 3 and Table 4, it is observed that the in plane
displacements, in plane normal stresses and transverse shear
stresses predicted by present theory TSDT of Ghugal and
Kulkarni  [24], FSDT of Mindlin[16] and CPT of
Kirchhoff[15]are overestimate.
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