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Abstract:   In this paper, thermal stress analysis of a thick isotropic beam is carried out using First order shear deformation Theory 

(FSDT). A First order shear deformation Theory (FSDT) taking into account transverse shear deformation effect, is presented for 

the bending analysis of thick isotropic beam subjected to non-uniform thermal load. A new shear deformation theory for the 

bending analysis of simply supported isotropic beams by using thermal load on it. The simply supported thick isotropic beams 

analyzed for the axial displacements, transverse displacements, axial bending stress and transverse shear stress. The most 

important feature of the theory is that, the transverse shear stresses can be obtained directly from the use of constitutive relations, 

satisfying the stress free boundary conditions at top and bottom surfaces of the beam.  The present theory obviates the need of 

shear correction factor. Governing differential equations and boundary conditions of the theory are obtained using the principle of 

virtual work. The results obtained for bending analysis of isotropic beam subjected to non-uniform thermal load are compared 

with those obtained by other theories like Elementary Theory of Beam (ETB), to validate the accuracy of the presented theory. 

 

Keywords: Isotropic thick beam, Principle of virtual work, Shear deformation, Thermal loading, Thermal stress and Transverse 

shear stress. 

 

 
I. INTRODUCTION 

Thick beam and isotropic beam are basically forms 

two dimensional problem of elasticity theory. Thick beam or 

isotropic beams are being widely used in structure subjected 

to severe thermal environment which produce an intense 

thermal stress on it. Isotropic beam are structures operating in 

aggressive environment in various engineering projects. Such 

a cases are particularly observed in aerospace and 

aeronautical engineering. This structure are usually refer to as 

high temperature structure such as  structure used in  high 

speed  aircraft and spacecraft & deterring realistic thermal 

load induced stress  in concrete pavements and flexible 

pavements. 

 

It is well-known that elementary theory of bending 

of beam based on Euler-Bernoulli hypothesis disregards the 

effects of shear deformation and stress concentration. The 

theory is suitable for slender beams and is based on the 

assumptions that the transverse normal to neutral axis 

remains so during bending and after bending, which means 

transverse shear strain is zero. Thus this theory 

underestimates the deflection in case of thick beams where 

shear strain is significant. 

 

The first-order shear deformation theory (FSDT) is 

an improvement over the elementary theory of beam or the 

classical theory of plate as the case may be. It is based on the 

hypothesis that the normal to the mid-surface before 

deformation remain straight but not necessarily normal to the 

mid-surface after deformation. This is known as first order 

shear deformation theory because the thickness wise 

displacement field for the axial displacement is linear or of 

the first order. In FSDT transverse shear strain distribution is 

assumed to be constant through the thickness and thus shear 

correction factors are required to take into account 

appropriate strain energy due to shear deformation. Further 

the theory suffers from the boundary condition paradox in 

which the theory does not satisfy the kinematic boundary 

Condition of slope of deflection curve at the built-in end of 

the beam. 

 

Thermal stresses of laminated plates subjected to 

linear thermal load across the thickness of the plate with 

classical plate theory are given by, Jones [19] and Reddy 

[25]. Thermal stress analysis of isotropic plates is given by 

Boley and Weiner [23]. A thin simply supported rectangular 

plate and the temperature distribution function subjected to 

heat supply is determined. Due to thermal bending moments, 

the thermal stress components are evaluated. The results are 

plotted in the form of series solutions K. C. Deshmukh et al. 

[11].          

Thermal stresses in cross-ply laminated plates 

subjected to linear thermal load through the thickness of plate 
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using refined shear deformation theory presented by Ghugal 

and Kulkarni [24].Trigonometric shear deformation theory 

(TSDT) for thermal analysis of composite plates is derived 

by Ghugal and Kulkarni [6]. 

 

Semi-analytical elasticity solutions for thermal 

deformations of functionally graded beams with various end 

conditions, using the state space method based on differential 

quadraturepresentedLu et.al [26]. 

 

Thermoelastic stress analysis of perfectly clamped 

metallic rod using integral transform technique is given by 

Ghugal and G. R. Gandhe [15].Analytical solution for 

bending of cross-ply laminated plates under linear single 

sinusoidal thermal and mechanical load is presented by 

Zenkour [8] using of unified shear deformation plate theory. 

The two-dimensional therm-oelasticity solution for 

functionally graded thick beamspresented Lu et al [13]. 

Timoshenko [1] proposed a hypothesis for the development 

of first order shear deformation theory which states that the 

plane section which is perpendicular to the neutral axis 

before bending remains plane but not necessarily 

perpendicular to the neutral axis after bending. In this theory 

the transverse shear strain distribution over the crosssection 

of the beam is assumed to be constant through the thickness 

and thus require shear correction factor. Bresse [4], Rayleigh 

[3] and Timoshenko [2] were the pioneer investigators to 

include refined effects such as rotatory inertia and shear 

deformation in the beam theory. Timoshenko showed that the 

effect of transverse vibration of prismatic bars. This theory is 

now widely referred to as Timoshenko beam theory or first 

order shear deformation theory (FSDT) in the literature. In 

this theory transverse shear strain distribution is assumed to 

be constant through the beam thickness and thus requires 

shear correction factor to appropriately represent the strain 

energy of deformation. A study of literature by Ghugal and 

Shimpi [14] indicates that the research work dealing with 

flexural analysis of thick beams using refined trigonometric 

and hyperbolic shear deformation theories is very scarce and 

is still in infancy. Krishna Murty [12],Levinson [20], 

Bickford [27], Bhimaraddi and Chandrashekhara [28] 

presented parabolic shear deformation theories assuming a 

higher variation of axial displacement in terms of thickness 

coordinate. These theories satisfy shear stress free boundary 

conditions on top and bottom surfaces of beam and thus 

obviate the need of shear correction factor. Cowper [17] has 

given refined expression for the shear correction factor for 

different cross-sections of beam. The accuracy of 

Timoshenko beam theory for transverse vibrations of simply 

supported beam in respect of the fundamental frequency is 

verified by Cowper [21] with a plane stress exact elasticity 

solution. To remove the discrepancies in classical and first 

order shear deformation theories, higher order or refined 

shear deformation theories were developed and are available 

in the open literature for static and vibration analysis of 

beam. 

 

II. THEOROTICAL FORMULATION 

 

The variationally correct forms of differential 

equations and boundary conditions, based on the assumed 

displacement field are obtained using the principle of virtual 

work. The beamunder consideration occupies the following 

region: 

 

0 ; 0 ; / 2 / 2x L y b h z h        

 

Consider a thick isotropic simply supported beam of 

length Lynx direction, Width b in y direction and depth h as 

shown in Figure 1. Where x, y and z are Cartesian 

coordinates. The beam is subjected to, thermal load of 

intensity T(x) on whole length of beam. Under this condition, 

the axial displacement, Transverse displacement, Axial 

bending stress and transverses hear stress are required to be 

determined. 

 
 

Figure 1: Simply supported beam bending under   x-z plane 

 

III. ASSUMPTIONS MADE IN THE THEORETICAL 

FORMULATION: 

 

Theoretical formulation of present theory is based on the 

following assumptions. 

 

1) The displacements are small in comparison with the 

beam thickness and therefore strains involved are 

infinitesimal. 

2) Displacements given by elementary theory of bending. 

3) The transverse displacement (w) in z direction is 

assumed to be function of x coordinate. 

4) The beam is subjected to thermal load only. 

5) The body forces are neglected. 

 

 

 

 

 

IV. THE DISPLACEMENT FIELD 
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Based upon the before mentioned assumptions, the 

displacement field of the proposed beam theory is given as 

below 

     

     

, z 1

, z 2

u x z x

w x w x

 


 

Where, 

u = Axial displacement in x direction which is function of x 

and z.

 
 w = Transverse displacement in z direction which is function 

of x.

 
  = Rotation of cross section of beam at neutral axis which 

is function of x.  

 

Normal strain: 

 

Normal strains and shear strains are obtained within the 

framework of linear theory of elasticity using the 

displacement field given by Eq.(1) 

 

 3x

u
z

x x

 
   

 
 

 Shear strain: 

 

 4xz

u w w

z x x
 

  
    
  

 

Stress: 

 

The one dimensional Hooke’s law is applied for 

isotropic material, stress is related to strain and shear stress is 

related to shear strain by the following constitutive relations. 

 ( )

( ) 0( ) 1( )

0( ) 1( )

put

x x

x x

x x x

x x x x

E

E T

z
T T T

h

z
E T T

h





 

 

  

 

  
     

  

 

 

 

0( ) 1( )

0( ) 1( ) 5

G 6

x x

x x x

xz xz

z
E z T T

x h

z
zE ET E T

x h

w
G

x


 


  

  

 
    

 

 
    

 

 
    

 

 

Where E and G are young’s modulus and shear 

modulus or the elastic constants of the beam material, and ∝ 

is the coefficients of non-linear in thermal expansion in x and 

z direction respectively and  T0 and T1 is the thermal load. 

 

The temperature field variation through the 

thickness is assumed to be 

 

       0 1, , , 7
z

T x z T x z T x z
h

   

 Where T0 and T1 are the thermal load. 

 

V. GOVERNING DIFFERENTIAL EQUATIONS 

 

Governing differential equations and boundary 

conditions are obtained from Principle of virtual work. Using 

equations for stresses, strains and principle of virtual work, 

variationally consistent differential equations for beam under 

consideration are obtained. The principle of virtual work 

when applied to beam leads to: 

 

 

2

0
2

( )
0

0 8

h
x l z

h x x xz xz
x z

x l

x
x

b dz dx

q wdx

    



 

 





  



 



 

 

Where δ = variational operator 

 

Employing Greens theorem in above Equation 

successively, we obtain the coupled Euler-Lagrange 

equations which are the governing differential equations and 

associated boundary conditions of the beam. The governing 

differential equations obtained are as follows: 

 

 

 

2

( )2

2

2

1( )

9

0

10

x

x

w
GA q

x x

w
EI GA

x x

T
EI

h x








  
  

  

  
    

  

 
 

 

 

The associated consistent natural boundary conditions 

obtained are of following form along the edges x = 0 and x = 

L. 
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 0 11
w

GA
x


 

  
 

Where w 

is prescribed. 

 1( )
0 12

xT
EI EI

x h x

    
  

  
 

Where   is prescribed. 

 

Where E is elastic constants of the material and I is moment 

of inertia of beam. 

 

VI. THE SOLUTION SCHEME 

 

Here we concern with the close form solutions of simply 

supported and rectangular steel beam. The boundary 

conditions for simply supported edges are 

 

0 0

At 0, and

0 and 0

x x L

u w

 

 
 

 

The following is the solution form for 

   0 0, , ,u x z w x z that satisfies above boundary conditions 

exactly. Such solution in theory of plates and shells is called 

as “closed-form” solution. This type of solution was 

suggested by Navier (1820) for the bending problem of 

simply supported rectangular beam. 

 

0w( ) = sin

1
m

m x
x w

Lm





0

0

0

sin (13)

( ) = sin

1

cos (14)

m

x
w w

L

m x
x

Lm

x

L




 


 









 

 

To assess the performance of the present theory in the 

prediction of bending response of a beam under a thermal 

load, a simply supported isotropic beam of length L, width b, 

and thickness h is considered. The beam is subjected to 

thermal load which is given by 

 

1( ) 0

1( ) 0

sin

1

sin (15)

x m

x

m x
T T

Lm

x
T T

L






 





 

where 0mT  is the coefficients of Fourier expansion 

0
0

0

4T
T 1,2,3

T 0 2,4,6

m

m

for m
m

for m


 

 
 

Here To is the intensity of thermal load. 

( ) 0

0 0

sin (16)

At 0, and

0 and 0

x

x
q q

L

x x L

u w




 

 

 

Put the value eq. (13), (14), (15) and (16) in eq. (9) and (10), 

Where m mw and  are the unknown coefficients of the 

respective Fourier expansion and m isthe positive integer. 

Substituting this form of solution and the load  q x into 

governingequations and discarding all the terms containing 

time derivatives yields the two algebraic simultaneous 

equations which can be written in following matrix form. 

 

 

   

2

0 02

0

2
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 
  
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   
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2
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cos cos
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l h l l

  


  

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   
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2

1
0 0 2

0
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 
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1
0 0 2

21 22
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l l hl
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2
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2
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l
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K EI GA
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






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 
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21 22 0 1

19
w qK K

K K T
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    

    
 

But ( ) 0xq   (mechanical load is absents) and consider 

transverse load is zero (pure thermal load) 

 

 

VII. ILLUSTRATIVE EXAMPLE 

 

In order to prove the efficiency of the present 

theory, the following numerical examples are considered. 

The following material properties for steel beam is used 

having E = 210 GPa,                  T1=50
0
, µ=0.3, α=12x10

-6 

and G=E/2(1+µ)where E is the Young’s modulus and μ is the 

Poisson’s Units. Consider Cross section of beam is as follows 

Length=3m, Width=0.23m, Depth=0.30m and subjected to 

thermal load on it. 
3

0

3

0

1.824

1.910

w E

E







  

 
Example 1: Simply supported beam with thermal 

load T (x) 

 

A simply supported beam with the origin of beam 

on left end supported at x=0. The beam is subjected to, 

thermal load of intensity T (x) over the span L on surface z = 

h/2 acting in the z direction. 

 
 

 

Figure 2: A simply supported uniform beam subjected to 

thermal load 

 

VIII. NUMERICAL RESULTS 

In this paper the numerical results for axial displacement, 

transverse displacement, bending stress, transverse shear 

stress and thermal stress are determined for simply supported 

isotropic beam subjected to thermal load across the thickness 

of beam.  
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
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 
  

 

 
  

 
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        
     

 

Table1.Axial displacements u at  0, / 2x z h   , 

axial stress x at  / 2, / 2x L z h   , Maximum 

Transverse shear stress xz at  0, / 2x z h   , simply 

supported isotropic beam subjected to thermal load for 

ETB Theory 

 

z/h u x  xz  

0.15 -0.0000458 0.000048 0 

0.12 -0.0000366 0.0000384 0.00000135 

0.08 -0.0000244 0.0000256 0.00000269 

0.04 -0.0000122 0.0000128 0.0000035 

0.02 -0.00000611 0.0000064 0.0000037 

0 0 0 0.00000376 

-0.02 0.00000611 -0.0000064 0.0000037 

-0.04 0.0000122 -0.0000128 0.0000035 

-0.08 0.0000244 -0.0000256 0.00000269 

-0.12 0.0000366 -0.0000384 0.00000135 

-0.15 0.0000458 -0.000048 0 

 

Table2. Axial displacements u 

at  0, / 2x z h   ,axial stress 

x at  / 2, / 2x L z h   , Maximum Transverse 

shear stress xz at  0, / 2x z h   , simply supported 

isotropic beam subjected to thermal load for FSDT 

Theory. 

 

z/h u x  xz  

0.15 -0.0002865 0.0003 0 

0.12 -0.0002292 0.00024 0.00000848 

0.08 -0.0001528 0.00016 0.00001686 

0.04 -0.0000764 0.00008 0.00002188 

0.02 -0.0000382 0.00004 0.00002314 

0 0 0 0.00002356 

-0.02 0.0000382 -0.00004 0.00002314 

-0.04 0.0000764 -0.00008 0.00002188 

-0.08 0.0001528 -0.00016 0.00001686 

-0.12 0.0002292 -0.00024 0.00000848 

-0.15 0.0002864 -0.0003 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Variation of Maximum Axial Displacement (u) 
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Figure 4: Variation of Maximum Axial Stress ( x ) 

 
 

Figure 5: Variation of Maximum Transverse Shear Stress 

( xz ) 

 

IX. DISCUSSION OF RESULTS 

Thermal stress analysis of a thick beam using First 

order shear deformation theory is carried out in the present 

research work and result obtained are discussed as follows. 

The theory has several features as given below: 

 

a) The number of unknown variables is same as that in 

ETB.  

b) The shear deformation in the beam is properly 

accounted.  

c) The theory obviates the need of shear correction 

factor.  

d) The governing differential equations and the 

associated boundary conditions are variationally 

consistent. 

The results obtained for axial displacements, stresses and 

Transverse shear stress for simply supported isotropic beam 

subjected to non-linear thermal load are presented in Table 1 

and Table 2. The Table 1.and Table 2. shows the comparison 

of maximum displacements, stressesand Transverse shear 

stress for the isotropic beam (steel) subjected to thermal load 

through thickness variation of displacements and stress. The 

comparison of theories show that the value of maximum 

displacements, stressesand Transverse shear stress obtained 

by FSDT are higher compared to the values given by ETB. 

The result of maximum axial displacement u obtained by 

present theory. The variation of u is presented as shown in 

Figure 3.The variation of maximum dimensional axial 

stresses x  for a beam as shown in Figure 4. The maximum 

transverse shear stress xz  obtained by present theory using 

constitutive relation. The through thickness variation of this 

stress obtained via constitutive relation obtained are 

presented in Figures 5. 

 

X. CONCLUSION 

Thermal response of isotropic beam underthermal load across 

the thickness of beam has been studied by using First order 

shear deformation Theory (FSDT)).Present theory gives good 

prediction of the thermal response of beam in respect of 

displacements and stresses. The present theory obviates the 

need of shear correction factor and theory is variationally 

consistent. The present theory satisfies the shear stress free 

surface conditions on the top and bottom surfaces of the 

beam. 

 

APPENDIX 

 

LIST OF NOMENCLATURE 

 

A = Cross sectional area of beam= bh 

b = Width of beam in y direction;  

E, G and µ= Elastic constants of the material;  

E = Young’s modulus;  

G = Shear modulus; 

h= Thickness of beam;  

I =Moment of inertia of cross section of beam; 

L =Span of the beam; 

q =Intensity of  transverse Load; 

u =Axial displacement in x direction; 

w =Transverse displacement in z direction; 

x, y, z =Rectangular Cartesian coordinates;  

 =  Variational operator;  

µ=Poisson’s ratio of the beam material;  

σ =Axial stress in x direction;  

τ=Transverse shear stress in zxplane;  

σ = Transverse normal stress in z direction;  

w=Non-dimensional transverse displacement; 

T= Thermal load 

 

 

LIST OF ABBREVIATIONS 

 

ETB            Elementary theory of beam 

FSDT          First order shear deformation  

                    Theory 
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