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Abstract- Efficient implementation of combined ByteSub and InvByteSub transformation for encryption and decryption in 

advanced encryption standard (AES) architecture using the composite field arithmetic in finite fields GF (256) or GF (28) hence 

this approach is more advantages than the conventional LUT method that incurs the unbreakable delay, greater amount of 

memory and area. The proposed architecture which is combined implementing of S-box and InvS-box makes use of an enable pin 

to perform encryption and decryption in AES. The architecture uses combinational logic, as both S-box and InvS-box are 

implemented on same hardware reduces the area and gate count by the large amount. Low power consumption due to resource 

sharing by the multiplicative inverse module of the proposed system. The proposed architecture is accouterment on Spatan6 board 

using Verilog HDL in Xilinx ISE 14.6. 

 

Index Terms— Composite field arithmetic, AES, Galois field, look-up table, FPGA. 

 

I. INTRODUCTION 

Cryptographic development in recent years has been a 

challenging and high priority research area in both fields of 

mathematics and engineering. Due to advancement in 

embedded system and need of encryption in it has made 

encryption more resource constraint in terms of power, area 

and delay. Advanced Encryption Standard (AES) is adopted 

as the standard for encryption and decryption by National 

Institute of Standards.  AES makes use of larger key sizes 

(128, 192 and 256bits) to provide strong security to digital 

data through encryption technique. Encryption algorithms 

have two types first one is Private key or Symmetric Key 

and the other is public key. Private Key algorithms uses 

only one key, for both encryption and decryption whereas, 

public key algorithms involve two different keys, for 

encryption and decryption [1]. Symmetric key cryptography 

is one of the main subjects in cryptography where a key of a 

certain size will be shared for the encryptor and decryptor 

processes. The AES algorithm as applications in  different 

fields like banking World Wide Web servers, digital video 

recorders Automated Teller Machines (ATMs), smart cards, 

cellular phones and sensor nodes. The four important 

operations in AES algorithm as four transformations they 

are S-Box & InvS-Box, MixColumn and InvMixColumn 

have more priority than the addroundkey and shift row 

operations. 

 

ByteSub and InvByteSub transformation are non-linear that 

encounters each byte of the state that is 128 bits to different 

values by making use of the substitution table for S-box and 

InvS-box. It can be implemented by using memory method 

and memory-less method. In the memory method, ROM 

based LUT (Look-up table) is used to compute the S-box 

that utilizes more memory, which increases area and power 

of AES and thus the disadvantage of this is unbreakable 

delay and low latency. In memory-less method, 

implementation of S-Box using LUT and SOP approach is 

fast but effective in cost. The paper is organized as 

following. Proposed architecture is briefed out in section II. 

The Composite field arithmetic processes gives details in 

section III. Hardware design implementation and results is 

defined in section IV. 

 

II. PROPOSED ARCHITECTURE 

 

The ByteSub & InvByteSub transformation are calculated 

by the use of multiplicative inverse to the plain text in 

GF(28) and then the affine transformation is applied to it. 

For decryption, the InvByteSub transformation is calculated 

by the use of inverse affine transformation to the cipher text 

before applying the multiplicative inverse [6]. The 

multiplicative inverse operation is involved in both the 

ByteSub and in its inverse transformations too.  
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Fig 1: Combined ByteSub and invByteSub transformation 

 

Here „Aff‟ block represents affine transform, „Aff-1‟ 

represents inverse affine transform, the EN/DN will act as 

selection line of s-box and InvS-box, and „Mul_inv‟ block 

represents multiplication inverse in GF(28) .Implementing 

the architecture of S-Box (and its inverse) using 

combinational logic has an advantage of small area 

occupancy and on using pipelined structure and also 

increases the clock frequency. 

 

A. Affine and inverse affine transform: 

The Affine and Affine-1 are the Affine Transformation and 

its inverse while the vector is the multiplicative inverse of 

the input byte from the state array. From here, it is observed 

that both the SubByte and the InvSubByte transformation 

involve a multiplicative inversion operation. Thus, both 

transformations actually share the same multiplicative 

inversion module in a combined architecture. Switching 

between SubByte and InvSubByte is just a matter of 

changing the value of EN/DN. EN is 0 for SubByte and 1 is 

set for InvSubByte operation as desired.  

For SubBytes, the multiplicative inverse operates on each 

byte of the State is followed by an affine transformation. 

Thus SubBytes can be designated by (1) 

 

    
 =      

                 (1) 

Where Si,j (0<i,j<4) is deliberated as an element of GF(28) 

M is 8x8 binary matrix and c is a 8bit binary vector with 

only 4 nonzero bits. The transformations in the decryption 

process performs the inverse of the resulting transformations 

in the encryption process. Specifically, the InvSubByte 

performs the subsequent operations on each byte of the State 

by (2) 

    
                       (2) 

Where S and S‟ are input and output bytes in 8-D vector 

formats. 

Multiplicative inverse module: 

 

This multiplicative inverse module is a complex operation, 

such that it is divided which is the major operation in both 

the ByteSub and in inverse ByteSub transformation. It takes 

more than 630 gates to implement it with repetitive 

multiplications in GF (28). So, to reduce the gate count in 

large amount, composite field arithmetic is used. 

 
 

Fig 2: Multiplicative inverse module for AES algorithm 

 

Isomorphic mapping function and its inverse  

Composite field is symbolized as GF((2n)m) , that is 

Isomorphic to the finite field GF(2k), for k = nm. The 

composite field GF(28) can be made iteratively from minor 

order fields like GF(2) by making use of irreducible 

polynomials that are stated in (3): 

    (3) 

Where φ = {10}2 & δ = {1100}2. To represent an element 

of finite field GF(28) in its composite field, an isomorphic 

mapping function is used and after applying the 

multiplicative inverse for  output of isomorphic function, 

again to convert the result into finite field GF(28), an 

inverse isomorphic mapping function is used. The 8 × 8 

binary matrices of isomorphic (δ) and its inverse (δ-1) 

functions can be decided by the irreducible Polynomial p(x) 

= x8 + x4 + x3 + x +1 of the finite field GF (28) and by the 

irreducible polynomials of its composite fields which are 

mentioned in (3). Let „a‟ be an element (can represent in 

column matrix of order 8×1) in GF (28), then the 

isomorphic mapping can be written as a matrix 

multiplication, δ×a and its inverse as another matrix 

multiplication δ-1×a, as shown in (4) and (5): 

 

  (4) 
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  (5) 

The isomorphic mapping can be appliance easily by using 

verilog code and this matrix multiplication can be done 

using XOR operations. 

ii. Multiplicative inversion in GF(28): 

In the composite field GF(28) , an element can be expressed 

as bx + c, where b, c in GF(24) are first and second nibbles 

of the byte and x is a root of irreducible polynomial P2(x) in 

(3). The multiplicative inverse of bx + c modulo P2(x) can 

be computed by using Extended Euclidean algorithm [2] [5] 

as shown in (6). 

 

(6) 

 

From the above equation implies that there are multiply, 

addition, squaring and multiplication inversion in GF(24) 

operations in Galois Field. Each of these operators can be 

transformed into individual blocks when constructing the 

circuit for computing the multiplicative inverse. From above 

simplified equation, the multiplicative inverse circuit 

GF(28) can be obtained. 

 

III. COMPOSITE FIELD ARITHMETIC 

OPERATIONS 

 

Any arbitrary polynomial can be represented by bx + c 

where b is upper half term and c is the lower half term. 

Therefore, from here, a binary number in Galois Field q can 

be spilt to qH x + qL for instance, if q = {1011}2, it can be 

represented as {1 0}2x + {1 1}2, where qH is {1 0}2 and qL 

is {1 1}2. The decomposing is done by making use of the 

irreducible polynomials introduced at (3). Using this idea, 

the logical equations for the addition, squaring, 

multiplication and inversion can be derived. 

 

A. Addition in GF(24): 

Addition of two elements in Galois Field is translated to 

simple bitwise XOR operation between the two elements. 

 

B. Squaring in GF(24): 

Let „q‟ is an element in GF(24) which can written as qHx + 

qL and this can be split, let „k‟ is another element in GF(24) 

which is equal to square of q as given in equation (7). 

 

kH  x+ kL = (qHx+qL)2 = qH2x2+qL2                (7) 

The x2 term can be modulo reduced using the irreducible 

polynomial from 3), x2 + x + φ. By setting x2 = x + φ and 

replacing it into x2. Doing so yields the new expressions 

below. 

     (8) 

The logic diagram to the above equations is given in fig:3. 

 
Fig3: Representation of square in GF(24) 

 

C. Multiplication with constant λ in GF(24): 

Let q and k are the 4bit elements of GF(24)  and let k=qλ, 

where λ={1100}2 hence neglect lower λL and the equation 

given by 

k = qH λH x2 +qL λH x    (9) 

 

Modulo reduction can be performed by substituting x2 = x + 

φ using the irreducible polynomial in (3) which yields the 

following equations. 

    (10) 

 
Fig 4: Multiplication with constant λ 

 

D. Multiplication in GF(24): 

Let k = qw, where k, q and w are elements of GF(24). 

 

k= kH x+kL= (qH x+ qL) (wH x+wL) 

k= (qHwH) x2 + (qHwL + qLwH) x + qLwL (11) 

 

Substituting the x2 term with x2 = x + φ yields the 

following 
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k= (qHwH + qHwL+qLwH) x + qHwH φ+ qLwL ϵ GF(22) 

(12) 

 

Equation (12) is in the form GF (22). It can be observed that 

there exists addition and multiplication operations in 

GF(22). As mentioned in Section III (A), addition in GF(22) 

is but bitwise XOR operation. Multiplication in GF(22), on 

the other hand, requires decomposition to GF(2) to be 

implemented in hardware. Also, it the expression would be 

too complex if equation (12) were to be broken down to 

GF(2). Thus, the formula for multiplication in GF(22) and 

constant φ will be derived instead. Figure 5 below shows the 

hardware implementation for multiplication in GF(24). 

 
Fig 5: Hardware logic for multiplication in GF(22) 

 

E. Multiplication in GF(22): 

 

Let k = qw, where k = {k1 k0}2, q = {q1 q0}2 and w = {w1 

w0}2 are elements of GF (22). 

 

k= (q1w1 ) x2 + (q1w0+q0w1) x+q0w0  (13) 

 

Modulo reduction to x2 term is done using the irreducible 

polynomial x2= x+1 in (13) to obtain (14) 

 

k= ( q1w1+q1w0+q0w1) x+ (q1w1+q0w0)ϵ GF(2) (14) 

 

The equation above can now be implemented in hardware as 

multiplication in GF(2) which involves only the usage of 

AND gates. The formula for computing multiplication in 

GF(2) is as follows. 

 

   (15) 

 
Fig 6: Representation of multiplication in GF (22) 

 

F. Multiplication with constant φ in GF(22): 

 

Let k = qφ, where k = {k1 k0}2, q = {q1 q0}2 and φ = 

{10}2 are elements of GF (22). 

 

k= (q1 x +q0) x= q1x2+q0    (16) 

 

Here the x2 term is substituted with x2 = x + 1, to yield the 

expression below 

k=q1(x+1) + q0x=(q1+q0)x+q1   (17) 

The logic obtained to design the multiplications with 

constant φ operation in GF(22) is   

 

    (18) 

 
Fig 7: multiplication with constant φ 

 

G. Multiplication inversion in GF(24): 

The composite field decomposition approach is used to 

compute the multiplicative inverse of q (where q is an 

element of GF (24)) such that q-1 = {q3 -1,q2 -1,q1-1,q0-1}. 

Hence reduces the gate count and shortest path delay. The 

inverses of the individual bits can be computed from the 

equation below. 

 (19) 
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IV. HARDWARE DESIGN IMPLEMENTATION AND 

RESULTS 

The analytical validation of the combined S-box and InvS-

box for AES is accoutrement and verified using the Spartan 

6 (xc6slx2tqg144) board using HDL in Xilinx 14.6 tool. The 

proposed module is initiated and executed in the main 

module as combined implementation of S-box and InvS-box 

by using an enable pin to select SubByte/InvSubByte 

transformation for AES algorithm. The architecture is 

appliance using two 2:1 multiplexer and the design consists 

of implementing modules such as isomorphic functions and 

Invs-isomorphic functions, squaring unit, inversion unit and 

affine transformation.  

Thus, the architecture utilizes 77 slice of LUT‟s and the 

reduction in area by 50% and decrease in gate count when 

compared with previous LUT methods for S-box and lower 

power consumption. The number of gates and mux used are 

tabulated below. 

Table1: Synthesis Report 

2:1 Multiplexer  2 

Number of XOR gates 116 

No of Slice LUTs 77 

Path Delay (ns) 19.889 

The simulation outcomes of the suggested architecture using 

Xilinx ISE14.6 is shown below in fig1,2,3. The SubByte 

and InvSubByte transformations are formed using the 

multiplicative inverse module, mux and affine 

transformations by using an enable pin to select either 

encryption or decryption based on the selection for the AES 

algorithm. 

 
Fig8: Simulation result of SubByte transformations when 

enable pin EN=1 

 
Fig9: Simulation result of InvSubByte transformations 

when enable pin EN=0 

 
Fig10: Simulation result of combined SubByte 

&InvSubByte transformations 

 

The power consumption of this proposed architecture of 

combined s-box and InvS-box for SubByte and InvSubByte 

of AES algorithm is 0.014w for an input of 128 bits and the 

frequency of operation is about 60MHz. 

 

V. CONCLUSION 

 

For the efficient implementation of proposed architecture of 

the SubBytes/InvSubByte is realized by combinational logic 

to overcome the unbreakable delays of LUTs in the 

analytical designs. Further, composite field arithmetic and 

finite fields is used to reduce the hardware complexity and 

also uses different approaches to implement inversion in 

subfield GF(24) are compared. The architecture is 

implemented on Spartan6 FPGA board using Verilog HDL 

code by making use of enable pin to select s-box/ Invs-box 

during the operation. The overall path delay initiated is 

19.8ns and consumes very less power of 14mW and 

occupies very less area and memory for the reason that 

resource allocation is done using multiplicative inversion 

module.  
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