
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 78

Implementation of Area and Memory Efficient

Combined ByteSub and InvByteSub

Transformation for AES Algorithm

[1]
 Sushma D K,

[2]
 Dr. Manju Devi

[1]
 Dept. of ECE, TOCE, Bangalore

[2]
Professor & Head, Dept. of ECE, TOCE, Bangalore

Abstract- Efficient implementation of combined ByteSub and InvByteSub transformation for encryption and decryption in

advanced encryption standard (AES) architecture using the composite field arithmetic in finite fields GF (256) or GF (28) hence

this approach is more advantages than the conventional LUT method that incurs the unbreakable delay, greater amount of

memory and area. The proposed architecture which is combined implementing of S-box and InvS-box makes use of an enable pin

to perform encryption and decryption in AES. The architecture uses combinational logic, as both S-box and InvS-box are

implemented on same hardware reduces the area and gate count by the large amount. Low power consumption due to resource

sharing by the multiplicative inverse module of the proposed system. The proposed architecture is accouterment on Spatan6 board

using Verilog HDL in Xilinx ISE 14.6.

Index Terms— Composite field arithmetic, AES, Galois field, look-up table, FPGA.

I. INTRODUCTION

Cryptographic development in recent years has been a

challenging and high priority research area in both fields of

mathematics and engineering. Due to advancement in

embedded system and need of encryption in it has made

encryption more resource constraint in terms of power, area

and delay. Advanced Encryption Standard (AES) is adopted

as the standard for encryption and decryption by National

Institute of Standards. AES makes use of larger key sizes

(128, 192 and 256bits) to provide strong security to digital

data through encryption technique. Encryption algorithms

have two types first one is Private key or Symmetric Key

and the other is public key. Private Key algorithms uses

only one key, for both encryption and decryption whereas,

public key algorithms involve two different keys, for

encryption and decryption [1]. Symmetric key cryptography

is one of the main subjects in cryptography where a key of a

certain size will be shared for the encryptor and decryptor

processes. The AES algorithm as applications in different

fields like banking World Wide Web servers, digital video

recorders Automated Teller Machines (ATMs), smart cards,

cellular phones and sensor nodes. The four important

operations in AES algorithm as four transformations they

are S-Box & InvS-Box, MixColumn and InvMixColumn

have more priority than the addroundkey and shift row

operations.

ByteSub and InvByteSub transformation are non-linear that

encounters each byte of the state that is 128 bits to different

values by making use of the substitution table for S-box and

InvS-box. It can be implemented by using memory method

and memory-less method. In the memory method, ROM

based LUT (Look-up table) is used to compute the S-box

that utilizes more memory, which increases area and power

of AES and thus the disadvantage of this is unbreakable

delay and low latency. In memory-less method,

implementation of S-Box using LUT and SOP approach is

fast but effective in cost. The paper is organized as

following. Proposed architecture is briefed out in section II.

The Composite field arithmetic processes gives details in

section III. Hardware design implementation and results is

defined in section IV.

II. PROPOSED ARCHITECTURE

The ByteSub & InvByteSub transformation are calculated

by the use of multiplicative inverse to the plain text in

GF(28) and then the affine transformation is applied to it.

For decryption, the InvByteSub transformation is calculated

by the use of inverse affine transformation to the cipher text

before applying the multiplicative inverse [6]. The

multiplicative inverse operation is involved in both the

ByteSub and in its inverse transformations too.

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 79

Fig 1: Combined ByteSub and invByteSub transformation

Here „Aff‟ block represents affine transform, „Aff-1‟

represents inverse affine transform, the EN/DN will act as

selection line of s-box and InvS-box, and „Mul_inv‟ block

represents multiplication inverse in GF(28) .Implementing

the architecture of S-Box (and its inverse) using

combinational logic has an advantage of small area

occupancy and on using pipelined structure and also

increases the clock frequency.

A. Affine and inverse affine transform:

The Affine and Affine-1 are the Affine Transformation and

its inverse while the vector is the multiplicative inverse of

the input byte from the state array. From here, it is observed

that both the SubByte and the InvSubByte transformation

involve a multiplicative inversion operation. Thus, both

transformations actually share the same multiplicative

inversion module in a combined architecture. Switching

between SubByte and InvSubByte is just a matter of

changing the value of EN/DN. EN is 0 for SubByte and 1 is

set for InvSubByte operation as desired.

For SubBytes, the multiplicative inverse operates on each

byte of the State is followed by an affine transformation.

Thus SubBytes can be designated by (1)

 =

 (1)

Where Si,j (0<i,j<4) is deliberated as an element of GF(28)

M is 8x8 binary matrix and c is a 8bit binary vector with

only 4 nonzero bits. The transformations in the decryption

process performs the inverse of the resulting transformations

in the encryption process. Specifically, the InvSubByte

performs the subsequent operations on each byte of the State

by (2)

 (2)

Where S and S‟ are input and output bytes in 8-D vector

formats.

Multiplicative inverse module:

This multiplicative inverse module is a complex operation,

such that it is divided which is the major operation in both

the ByteSub and in inverse ByteSub transformation. It takes

more than 630 gates to implement it with repetitive

multiplications in GF (28). So, to reduce the gate count in

large amount, composite field arithmetic is used.

Fig 2: Multiplicative inverse module for AES algorithm

Isomorphic mapping function and its inverse

Composite field is symbolized as GF((2n)m) , that is

Isomorphic to the finite field GF(2k), for k = nm. The

composite field GF(28) can be made iteratively from minor

order fields like GF(2) by making use of irreducible

polynomials that are stated in (3):

 (3)

Where φ = {10}2 & δ = {1100}2. To represent an element

of finite field GF(28) in its composite field, an isomorphic

mapping function is used and after applying the

multiplicative inverse for output of isomorphic function,

again to convert the result into finite field GF(28), an

inverse isomorphic mapping function is used. The 8 × 8

binary matrices of isomorphic (δ) and its inverse (δ-1)

functions can be decided by the irreducible Polynomial p(x)

= x8 + x4 + x3 + x +1 of the finite field GF (28) and by the

irreducible polynomials of its composite fields which are

mentioned in (3). Let „a‟ be an element (can represent in

column matrix of order 8×1) in GF (28), then the

isomorphic mapping can be written as a matrix

multiplication, δ×a and its inverse as another matrix

multiplication δ-1×a, as shown in (4) and (5):

 (4)

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 80

 (5)

The isomorphic mapping can be appliance easily by using

verilog code and this matrix multiplication can be done

using XOR operations.

ii. Multiplicative inversion in GF(28):

In the composite field GF(28) , an element can be expressed

as bx + c, where b, c in GF(24) are first and second nibbles

of the byte and x is a root of irreducible polynomial P2(x) in

(3). The multiplicative inverse of bx + c modulo P2(x) can

be computed by using Extended Euclidean algorithm [2] [5]

as shown in (6).

(6)

From the above equation implies that there are multiply,

addition, squaring and multiplication inversion in GF(24)

operations in Galois Field. Each of these operators can be

transformed into individual blocks when constructing the

circuit for computing the multiplicative inverse. From above

simplified equation, the multiplicative inverse circuit

GF(28) can be obtained.

III. COMPOSITE FIELD ARITHMETIC

OPERATIONS

Any arbitrary polynomial can be represented by bx + c

where b is upper half term and c is the lower half term.

Therefore, from here, a binary number in Galois Field q can

be spilt to qH x + qL for instance, if q = {1011}2, it can be

represented as {1 0}2x + {1 1}2, where qH is {1 0}2 and qL

is {1 1}2. The decomposing is done by making use of the

irreducible polynomials introduced at (3). Using this idea,

the logical equations for the addition, squaring,

multiplication and inversion can be derived.

A. Addition in GF(24):

Addition of two elements in Galois Field is translated to

simple bitwise XOR operation between the two elements.

B. Squaring in GF(24):

Let „q‟ is an element in GF(24) which can written as qHx +

qL and this can be split, let „k‟ is another element in GF(24)

which is equal to square of q as given in equation (7).

kH x+ kL = (qHx+qL)2 = qH2x2+qL2 (7)

The x2 term can be modulo reduced using the irreducible

polynomial from 3), x2 + x + φ. By setting x2 = x + φ and

replacing it into x2. Doing so yields the new expressions

below.

 (8)

The logic diagram to the above equations is given in fig:3.

Fig3: Representation of square in GF(24)

C. Multiplication with constant λ in GF(24):

Let q and k are the 4bit elements of GF(24) and let k=qλ,

where λ={1100}2 hence neglect lower λL and the equation

given by

k = qH λH x2 +qL λH x (9)

Modulo reduction can be performed by substituting x2 = x +

φ using the irreducible polynomial in (3) which yields the

following equations.

 (10)

Fig 4: Multiplication with constant λ

D. Multiplication in GF(24):

Let k = qw, where k, q and w are elements of GF(24).

k= kH x+kL= (qH x+ qL) (wH x+wL)

k= (qHwH) x2 + (qHwL + qLwH) x + qLwL (11)

Substituting the x2 term with x2 = x + φ yields the

following

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 81

k= (qHwH + qHwL+qLwH) x + qHwH φ+ qLwL ϵ GF(22)

(12)

Equation (12) is in the form GF (22). It can be observed that

there exists addition and multiplication operations in

GF(22). As mentioned in Section III (A), addition in GF(22)

is but bitwise XOR operation. Multiplication in GF(22), on

the other hand, requires decomposition to GF(2) to be

implemented in hardware. Also, it the expression would be

too complex if equation (12) were to be broken down to

GF(2). Thus, the formula for multiplication in GF(22) and

constant φ will be derived instead. Figure 5 below shows the

hardware implementation for multiplication in GF(24).

Fig 5: Hardware logic for multiplication in GF(22)

E. Multiplication in GF(22):

Let k = qw, where k = {k1 k0}2, q = {q1 q0}2 and w = {w1

w0}2 are elements of GF (22).

k= (q1w1) x2 + (q1w0+q0w1) x+q0w0 (13)

Modulo reduction to x2 term is done using the irreducible

polynomial x2= x+1 in (13) to obtain (14)

k= (q1w1+q1w0+q0w1) x+ (q1w1+q0w0)ϵ GF(2) (14)

The equation above can now be implemented in hardware as

multiplication in GF(2) which involves only the usage of

AND gates. The formula for computing multiplication in

GF(2) is as follows.

 (15)

Fig 6: Representation of multiplication in GF (22)

F. Multiplication with constant φ in GF(22):

Let k = qφ, where k = {k1 k0}2, q = {q1 q0}2 and φ =

{10}2 are elements of GF (22).

k= (q1 x +q0) x= q1x2+q0 (16)

Here the x2 term is substituted with x2 = x + 1, to yield the

expression below

k=q1(x+1) + q0x=(q1+q0)x+q1 (17)

The logic obtained to design the multiplications with

constant φ operation in GF(22) is

 (18)

Fig 7: multiplication with constant φ

G. Multiplication inversion in GF(24):

The composite field decomposition approach is used to

compute the multiplicative inverse of q (where q is an

element of GF (24)) such that q-1 = {q3 -1,q2 -1,q1-1,q0-1}.

Hence reduces the gate count and shortest path delay. The

inverses of the individual bits can be computed from the

equation below.

 (19)

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 82

IV. HARDWARE DESIGN IMPLEMENTATION AND

RESULTS

The analytical validation of the combined S-box and InvS-

box for AES is accoutrement and verified using the Spartan

6 (xc6slx2tqg144) board using HDL in Xilinx 14.6 tool. The

proposed module is initiated and executed in the main

module as combined implementation of S-box and InvS-box

by using an enable pin to select SubByte/InvSubByte

transformation for AES algorithm. The architecture is

appliance using two 2:1 multiplexer and the design consists

of implementing modules such as isomorphic functions and

Invs-isomorphic functions, squaring unit, inversion unit and

affine transformation.

Thus, the architecture utilizes 77 slice of LUT‟s and the

reduction in area by 50% and decrease in gate count when

compared with previous LUT methods for S-box and lower

power consumption. The number of gates and mux used are

tabulated below.

Table1: Synthesis Report

2:1 Multiplexer 2

Number of XOR gates 116

No of Slice LUTs 77

Path Delay (ns) 19.889

The simulation outcomes of the suggested architecture using

Xilinx ISE14.6 is shown below in fig1,2,3. The SubByte

and InvSubByte transformations are formed using the

multiplicative inverse module, mux and affine

transformations by using an enable pin to select either

encryption or decryption based on the selection for the AES

algorithm.

Fig8: Simulation result of SubByte transformations when

enable pin EN=1

Fig9: Simulation result of InvSubByte transformations

when enable pin EN=0

Fig10: Simulation result of combined SubByte

&InvSubByte transformations

The power consumption of this proposed architecture of

combined s-box and InvS-box for SubByte and InvSubByte

of AES algorithm is 0.014w for an input of 128 bits and the

frequency of operation is about 60MHz.

V. CONCLUSION

For the efficient implementation of proposed architecture of

the SubBytes/InvSubByte is realized by combinational logic

to overcome the unbreakable delays of LUTs in the

analytical designs. Further, composite field arithmetic and

finite fields is used to reduce the hardware complexity and

also uses different approaches to implement inversion in

subfield GF(24) are compared. The architecture is

implemented on Spartan6 FPGA board using Verilog HDL

code by making use of enable pin to select s-box/ Invs-box

during the operation. The overall path delay initiated is

19.8ns and consumes very less power of 14mW and

occupies very less area and memory for the reason that

resource allocation is done using multiplicative inversion

module.

VI. ACKNOWLEDGMENT

We acknowledge to department of electronics and

communication for giving the laboratory resources.

REFERENCES

[1]Edwin NC Mui, "Practical Implementation of Rijndael S-

Box Using combinational Logic", Custom R&D Engineer

Texco Enterprise

[2] Xinmiao Zhang and Keshab K. Parhi, “High-Speed

VLSI Architectures for the AES Algorithm.”, IEEE

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 5, Issue 5, May 2018

 83

Transactions on Very Large Scale Integration(VLSI)

Systems, Vol.12, No. 9, September 2004.

[3] P.V.S.ShastI, Anuja Agnihotri, Divya Kachhwaha,

Jayasmita Singh and Dr.M.S.Sutaone, “A Combinational

Logic implementation of S-box of AES”, 54th International

Midwest Symposium on Circuit and Systems, 2011.

[4] Bhoopal Rao Gangadari and Shaik Rafi Ahamed,

“FPGA Implementation of Compact S-Box for AES

algorithm using Composite field arithmetic”.

[5] Vincent Rijmen, “Efficient Implementation of the

Rijndael S-Box.”, Katholieke Universities Leuven, Dept.

ESAT. Belgium.

[6] Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji

Munetoh, “A Compact Rijndael Hardware Architecture with

S-Box Optimization.” Springer-Verilog Berlin Heidelberg,

2001.

[7] S.SrideviSathya Priya, N.M.SivaMangai “Multiplexer

based High Throughput S-box for AES Application”

Karunya University, ICECS 2015

[8] “Advanced Encryption Standard (AES)” Federal

Information Processing Standards Publication 197, 26th

November 2001.

