

 167

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

Parallel Computing of Fractional Integral Operators
 [1]

 Sameer S. Chikane,
[2]

 Mukesh D. Patil,
[3]

 Vishwesh A. Vyawahare
 [1][3]

Department of Electronics Engineering,
[2]

Department of Electronics and Telecommunication Engineering
[1][2][3]

 Ramrao Adik Institute of Technology, Nerul, Navi-Mumbai

Abstract - Fractional calculus a field dealing with mathematical analysis has its applications in various domains such as power

transmission units, image processing, financial system design, automobiles and various control system. There are many advantages

of fractional calculus in analytical world. But, the computational cost accompanied with it has prevented software implementations

to achieve real-time performance for large and complex computations. This paper exhibits the parallel computing power of the

Graphics Processing Unit (GPU) in the area of fractional-order integration. Numerical methods for implementing different

fractional-order derivatives and integrations are available. By using MATLAB Parallel Computing Toolbox, GPU computational

power can be easily accessed with minimum knowledge of GPU architecture and MATLAB code can be executed on the GPU. The

fractional-order integration by Trapezoidal formula using NVIDIA GPU with support of MATLAB Parallel Computing Toolbox is

implemented in order to achieve faster execution. Performance comparison of the algorithm for sequential implementation on CPU

and parallel implementation on GPU is carried out. This new algorithm produces significant speedup in the computations of

fractional-order integration and provide required result in much less time as compared to execution on CPU.

Index Terms— fractional calculus, fractional derivatives, fractional integrals, Graphics Processing Unit.

INTRODUCTION

On commencement of learning calculus, one starts with

defining the differentiation and integration of a function

followed by calculating the derivatives and integrals.

Subsequently one extends the ideas to higher

derivatives and multiple integrals. In addition, one

questions how to define and compute differentiation

and integration in higher dimensions. Moreover, in

calculus one is limited to the concept of taking

derivatives and integrals of integer order. It is trivial, at

this point when studying mathematics, to ruminate

generalizing derivatives and integrals to a greater

extent. Nevertheless one may ponder that „Can we

generalize the concept of differentation and integration

to a more comprehensive idea than what has been

elaborated in calculus ?‟[1] Rather than defining

derivatives and integrals to merely integer order, can

one specify derivatives and integrals to arbitrary order

and yet be consistent with the traditional integer order

derivatives and integrals that we have been habituate to

see in calculus? This is a very interesting question that

many people have come across with over time: Can we

stretch the idea to make it more generalised and

interlock it with what has been formulated till this

point? The origin of fractional calculus is dated back to

the Lebnitz‟s letter to L‟Hopital in the year 1695, where

the notation for derivative of non integer order ⁄ is

deliberated. In addition to it Lebnitz writes : “Thus it

follows that

 ⁄ will be equal to √

. This an

apparent paradox from which, one day useful

consequences will be drawn.”[2]

The study of fractional calculus has blossomed in the

past two decades, and a lot of advancement has been

accomplished in the theory and analysis of fractional-

order systems. The generalization of fractional

derivatives and integrals is not simply a mathematical

curiosity, but it has pioneered applications in diverse

fields of physical sciences, also it caters to various

engineering problems. Fractional-order derivatives and

integrals are necessary for solving most of the

differential, integral and difference equations. The

computations of these fractional order derivatives and

integrals are nowadays widely governed in academia

and research centers but they demand huge amount of

computer time. Recent drastic progress in hardware and

software computing have promoted the computation of

these mathematical equations. Parallel computing has

been noteworthy among these advancements [3]. Large-

scale engineering problems can be simulated

extensively with the help of parallel computers. The

advancement in hardware such as multicore processors

have further boosted the performance speed of each

compute node in the network. This has facilitated

multiplicative increases in the computing speed without

the necessity to make similar gains in the individual

chip speed. Other paradigm in scientific computing that

is emerging is the use of multi-threaded Graphics

Processing Units (GPUs), which act as co-processors

for Central Processing Units (CPUs). Recently, driven

by the necessity for fast graphics and games, GPU‟s

have become quite powerful, as well becoming notably

cheaper than CPU‟s of same computing power. GPUs

with the capacity to conduct one teraflop i.e. one trillion

floating point operations per second have been

developed in the past few years. Simultaneously

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 168

MATLAB (matrix laboratory) is multi-paradigm

numerical computing environment developed by

MathWorks, allows implementation of algorithms on

GPUs easier [4].

The benefit of using GPU for general purpose

computation is the execution speedup that can be

obtained due to the parallel architecture of GPU [5].

One of the most promising General Purpose GPU

(GPGPU) technologies called CUDA SDK, which is

developed by NVIDIA. But it is not viable to expect the

average programmer to cope with all the complexity

applicable in CUDA programming. MATLAB GPU

toolbox is available for programming now, and we can

grasp the rapid prototyping convenience of MATLAB

for GPU computing of programs. With the help of

MATLAB GPU toolbox [6], GPU computational power

can be easily acheived from MATLAB with minimal

GPU knowledge and MATLAB programs can be

executed on the GPU [7].

The structure of this paper is as follows.- Section II

gives information about GPU computing using

MATLAB. The Section III describes the overview of

GPU toolboxes for MATLAB. Section IV states the

algorithm for fractional Trapezoidal formula. This is

followed by Section V which gives information about

specifications of the hardware used and the design

methodology. In Section VI we presents the results for

the Fractional Trapezoidal formula for interation and

Section VII concludes the work.

II. GPU COMPUTING USING MATLAB

Multicore machines and hyper-threading technology

have enabled scientists, engineers, and financial

analysts to speed up computationally intensive

applications in a variety of disciplines. Today, another

type of hardware promises even higher computational

performance: the Graphics Processing Unit (GPU).

Although GPUs have been traditionally used only for

computer graphics, a recent technique called General

purpose computing on graphics processing units

(GPGPU) allows the GPUs to perform numerical

computations usually handled by CPU. The advantage

of using GPU for general purpose computation is the

performance speedup that can be achieved due to the

parallel architecture of GPU [8]. Unlike a traditional

CPU, which includes no more than a handful of cores, a

GPU has a massively parallel array of integer and

floating-point processors, as well as dedicated, high-

speed memory.

Figure 1. Architecture difference of CPU and GPU

[9]

One of the most promising GPGPU technologies is

called CUDA SDK, developed by NVIDIA. But it is

not realistic to expect the average programmer to deal

with all this complexity introduced by CUDA

programming. Fortunately, some toolboxes of

MATLAB for GPU programming are available now,

and you can leverage the rapid prototyping benefits of

MATLAB for GPU Programming. With the help of

MATLAB and those toolboxes, GPU computational

power can be easily accessed with minimum GPU

knowledge and MATLAB code can executed on the

GPU. Existing MATLAB code can be ported and

executed on GPUs with few modifications. And now,

there are three toolboxes that are extensively in use, i.e.

Jacket, GPUmat, and Parallel Computing Toolbox of

MATLAB [6].

GPU is a good choice, because of its high parallel

architecture. And there are also some common

principles for utilizing GPU more efficient in

MATLAB code. More specifically, the GPU is

especially well-suited to address problems that can be

expressed as data-parallel computations where the same

program is executed on many data elements in parallel.

Because the same program is executed for each data

element, there is a lower requirement for sophisticated

flow control; and because it is executed on many data

elements and has high arithmetic intensity, the memory

access latency can be hidden with calculations instead

of big data caches. The architecture of GPU is showed

in Fig.1, in which the most area of the chip is used for

ALU, and only little of it is used for control unit and

memory. Therefore, GPU is good at parallel computing

and MATLAB is good at matrix operation. There are

lots of same command for every elements of a matrix.

To take the add operation for example, it is add

corresponding elements of two matrices. It is very

suitable for computing on GPU which is SIMD

architecture [8].

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 169

III. OVERVIEW OF GPU TOOLBOXES FOR

MATLAB

The following is an overview of three toolboxes-

Jacket, GPUmat and MATLAB Parallel Computing

Toolbox.

1) Jacket toolbox

Jacket toolbox was developed by Accelereye [10]. This

toolbox requires the code written in CUDA to

accelerate calculations on the NVIDIA GPUs. It is very

similar to the NVIDIA CUDA plug-in that allows the

writing of MATLAB MEX files using CUDA to

implement acceleration. The benefit of Jacket is that the

existing functions can be used like any other MATLAB

function. The variables and the data for a function

should be of Jacket defined GPU data type. Thus the

calculations are done on the GPU transparently since

the variables used are of GPU type. There is currently a

limited set of functions that have been fully ported to

the GPU and most of these use the exact same function

call as the regular CPU variant.

2) GPUMat toolbox

GPUmat toolbox is developed by GPyou Group [11].

It is fully free under GNU license. The GPyou Group

offers support on developing GPU-based software on

demand, as well as to customize our already existing

products in function of the user requests. GPUmat

allows standard MATLAB code to run on GPUs. The

execution is transparent to the user. When the data is

GPU type, the code will automatically execute on GPU

if the operation is supported. In their latest version,

there are 57 MATLAB Numerical functions are

supported. But the mixed operation is not supported.

GPUmat also include a low level Application

Programming Interface that are not the standard

MATLAB function.

3) Parallel Computing Toolbox (PCT)

PCT is the product of Mathworks which by default

comes with MATLAB. From version R2010b all

versions of MATLAB support GPU computing. We are

using MATLAB 2015a in which we have used this

toolbox for converting our MATLAB code to run on

GPU. How the GPU computing power of the toolbox

can be utilized to run the MATLAB code more

efficiently on GPU is discussed in next section.

IV. ALGORITHM FOR FRACTIONAL

TRAPEZOIDAL FORMULA

If () is approximated on each subinterval
 by following piecewise polynomial with degree of

order one [12]

 () |[]

 ()

 ()

we obtain the fractional trapezoidal formula as follows

 ()

 ()

 ()
∑ ∫ (

) (

 ()

 () ∑ ()

Where

This can be written in simple form as follows

The above algorithm is helpful for finding fractional

integration of a function by Fractional Trapezoidal

Formula.

V. DESIGN METHODOLOGY

The Trapezoidal Formula for integration is evaluated on

GPU and compared its performance with CPU at

Leopard Cluster IIT Bombay. The specifications of

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 170

GPU are listed in Table I and CPU are listed in the

Table II.

Table I

GPU SPECIFICATIONS

Model NVIDIA Tesla K40

Total Graphics Memory 12 GB

No. of cores 2880

Clock Rate 745 MHz

Table II

CPU SPECIFICATIONS

Model Intel(R) Xenon(R) E5-2620

RAM 32 GB

No. of cores 24

Clock Rate 2.0 GHz

For the GPU implementation of numerical methods for

fractional-order integration using MATLAB, the

following

steps were followed:

Step 1: Writing the sequential codes for implementing

the algorithm on CPU.

eg.:Write a sequential code in MATLAB to square

every element of the vector.

for i =1:4

a(i) = a(i)^2;

end

Step 2:Writing vectorized code for implementation of

algorithm on CPU.

eg.: Vectorized code for above example:

a = [1 2 3 4];

a = a:^2;

This code will work on all the four elements at the same

time. Thus, as a result the vectorized codes are more

faster and less time consuming than sequential codes.

 Step 3: Finally the vectorized code is transfered on

GPU.

eg.: GPU code for above example:

a = gpuArray([1 2 3 4]);

a = a:^2;

Step 4: Analyze the code by comparing of time of

execution and speedup.

Profiler: To find the part of code which takes

maximum time, we use the Run and Time feature of

Matlab. This opens up a Profiler which gives us the

analysis of the time taken by each line of the code. The

part of the code which takes maximum time can be

vectorized for speedup.

Profile Summary Report: The Profile Summary report

presents the overall execution time taken by the

function and provides summary statistics for each

function called. The following Fig.2 shows the Profile

Summary report for the Fractional Trapezoidal

integration.

Figure 2. Profile Summary Report

Profile Detail Report: The Profile Detail report shows

profiling results for a function that MATLAB called

while profiling. The Fig. 3 shows the part which takes

maximum time for the execution.

Figure 3. Profile Detail Report

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 171

The following functions are considered for fractional

order integration and the results are elaborated in the

next section. The functions used are

 () (1)

 () (2)

 () () (3)

 () (4)

 () () (5)

 √ (6)

 (√

) (()) (7)

VI. RESULTS FOR FRACTIONAL ORDER

INTEGRATION BY TRAPEZOIDAL FORMULA

The parameters considered for the integration by

Trapezoidal Formula for the eq. 1-7 are as follows:

α = 0:5

step size = h (0.0001, 0.00001, 0.000001)

t = 0 : h : 32

A. y = sin (t)

The CPU and GPU performance comparison of

fractionalorder integration of y = sin (t) by Trapezoidal

formula is given in table III

Table III

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ.1

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.1640 0.0360 4.5555

0.00001 1.2600 0.2133 5.9071

0.000001 10.3935 1.8363 5.9573

The speedup of around 5.9071 to 5.9573 are obtained.

B. ()

The CPU and GPU performance comparison of

fractionalorder integration of () by

Trapezoidal formula is given in table IV

Table IV

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 2

Step Size Time(sec) Speedup

h Vectorized GPU Vec/GPU

0.0001 0.1543 0.0361 4.2742

0.00001 1.4061 0.2162 6.5037

0.000001 11.9100 1.8804 6.8337

The speedup of around 6.5037 to 6.8337 are obtained.

C. () ()
The CPU and GPU performance comparison of

fractionalorder integration of ()
 () by Trapezoidal formula is given in table V

Table V

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 3

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.1700 0.0346 4.9132

0.00001 1.4315 0.1975 7.2481

0.000001 13.7167 1.8534 7.4008

The speedup of around 7.2481 to 7.4008 are obtained.

D. ()
The CPU and GPU performance comparison of

fractionalorder integration of
 () by Trapezoidal formula is given in table VI

Table VI

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 4

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.1752 0.0339 5.1681

0.00001 1.4974 0.2145 6.9517

0.000001 12.7360 1.9640 6.9847

The speedup of around 6.9517 to 6.9847 are obtained.

E. () ()
The CPU and GPU performance comparison of

fractionalorder integration of ()
 () by

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 172

Trapezoidal formula is given in table VII

Table VII

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 5

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.1913 0.0332 5.7620

0.00001 1.6067 0.2209 7.2734

0.000001 15.7230 2.0007 7.8587

The speedup of around 7.2734 to 7.8587 are obtained.

F. √
The CPU and GPU performance comparison of

fractionalorder integration of √ by

Trapezoidal formula is given in table VIII

Table VIII

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 6

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.1744 0.0357 4.8851

0.00001 1.4529 0.2211 6.5712

0.000001 12.2545 1.6670 7.3512

The speedup of around 6.5712 to 7.3512 are obtained.

G. (√

) (())

The CPU and GPU performance comparison of

fractional order integration of

 (√

) (()) by Trapezoidal

 formula is given in table IX

Table IX

GPU AND CPU PERFORMANCE FOR

TRAPEZOIDAL FORMULA ON EQ. 7

Step Size Time (sec) Speed Up

h Vectorized GPU Vec/GPU

0.0001 0.2026 0.0346 5.8554

0.00001 1.6238 0.2118 7.6666

0.000001 14.1317 1.9973 7.8754

The speedup of around 7.6666 to 7.8754 are obtained.

VII. CONCLUSION

GPU is a hardware which is very much befitting for

parallel applications. The fractional-order derivatives

and integrals demand a huge execution time thus they

are an excellent nominee to be executed on GPU. The

execution or processing time of any function can be

reduced by vectorizing it and running it on the GPU

cores. Overall performance of the system improved by

vectorization of code and reducing CPU load by using

GPU. Parallel Computing Toolbox of MATLAB is very

useful for modifying your code to run on GPU. From

the results, we can conclude that for Trapezoidal

integration method as the number of computation

increases i.e. number of iteration increases, the GPU

speeds up the execution. As step size(h) decreases, the

number of computations increases then significant

speedup is obtained.

REFERENCES

[1] Keith Oldham and Jerome Spanier. The fractional

calculus theory and applications of differentiation and

integration to arbitrary order, volume 111. Elsevier,

1974.

[2] Igor Podlubny. Fractional differential equations: an

introduction to fractional derivatives, fractional

differential equations, to methods of their solution and

some of their applications, volume 198. Academic

press, 1998.

[3] Cristobal A Navarro, Nancy Hitschfeld-Kahler, and

Luis Mateu. A survey on parallel computing and its

applications in data-parallel problems using gpu

architectures. Communications in Computational

Physics, 15(02):285– 329, 2014.

[4] Ian Buck, Tim Foley, Daniel Horn, Jeremy

Sugerman, Kayvon Fatahalian, Mike Houston, and Pat

Hanrahan. Brook for gpus: stream computing on

graphics hardware. In ACM Transactions on Graphics

(TOG), volume 23, pages 777–786. ACM, 2004.

[5] Wei Zhang and Xing Cai. Efficient implementations

of the adams-bashforth-moulton method for solving

fractional differential equations. Proceedings of

FDA12, 2012.

[6] Parallel computation toolbox. URL

https://in.mathworks. com/help/distcomp/.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 173

[7] Karsten Ahnert, Denis Demidov, and Mario

Mulansky. Solving ordinary differential equations on

gpus. In Numerical Computations with GPUs, pages

125–157. Springer, 2014.

[8] Baida Zhang, Shuai Xu, Feng Zhang, Yuan Bi, and

Linqi Huang. Accelerating matlab code using gpu: A

review of tools and strategies. In Artificial Intelligence,

Management Science and Electronic Commerce

(AIMSEC), 2011 2nd International Conference on,

pages 1875–1878. IEEE, 2011.

[9] CPU versus GPU architecture. accessed 15 July,

2017. URL http://854320174.r.lightningbase-cdn.com/

wp-content/uploads/2013/03/gputech f2.png.

[10] Jacket - the gpu acceleration engine for matlab,

2017. URL http://www.omatrix.com/jacket.html.

 [11] Peter Messmer, Paul J Mullowney, and Brian E

Granger. Gpulib: Gpu computing in high-level

languages. Computing in Science & Engineering,

10(5):70–73, 2008.

[12] Changpin Li and Fanhai Zeng. Numerical methods

for fractional calculus, volume 24. CRC Press, 2015.

