
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

Implementing a Performance Improved Controller

for SoC
[1]

 Vellampati Harathi
[1][2][3][4]

Department of Electronics and Communication Engineering, R R Institute of Technology, Chikkabanavara,
Bengaluru-560090

Abstract— With increasing various complexities of semiconductor devices due to growing performance, functionality

requirements and with diminished time to market, the semiconductor firms try to develop null defect products in very less

development time [1]. In SoC control unit plays a vital role and it is responsible for data transfers between blocks of the system,

initialization and configuration, programming, power management etc. The processor present in the control unit executes the

firmware from non-volatile memory (ROM). Replacement of the firmware might be required if there are defects in the pre-

loaded code or if the additional feature is need to be implemented but replacing the firmware is very tedious and time consuming

task and also it requires additional fabrication steps which could prove costly. Due this reason for the incorrect functions present

in the firmware can be corrected with the expected functionality in Private Non Volatile Memory (PNVM) as a separate patch.

This paper discusses the PNVM patch implementation.

Index terms— less time to market, Low cost, G5 SoC, G5 Controller, patch creation.

I. INTRODUCTION

Integrated circuits have undergone dramatic changes

with increasing the complexity of electronic devices.

Due to increase in the complexity and cost, design

engineers came up with novel design methodologies.

System on chip technology is one of the new

technologies. The difficulties present in the other

technologies like system on boards and system in

package can be eliminated in the system on chip

technology and the system on chip technology gives

increase system complexity along with good flexibility

[2]. The present semiconductor industry is adopting the

system on chip integrated circuits to implement highly

complicated systems due to its small size, less cost and

less power consumption.

The key to victorious adoption of system on chip

technology as a global standard is the reduction of

development cycle time of the system. As already

mentioned above the main reason for the reduction of

system development time is due to the reusability of pre

designed and pre verified intellectual property blocks

and these blocks will be combined on the single

semiconductor [3]. In any electronic system

development process most of the time will be spent for

verification process only, hence the time required for the

verification process will be reduced due to the usage of

pre verified intellectual property blocks.

In any system controller place a crucial role and the

efficiency of the system can be determined based on the

controller’s performance. A controller is nothing but a

processor (example microprocessor) built with electronic

techniques. Depending on the number of inputs and

outputs the system may contain more than one control

unit. The controller plays major role in the operation of

the system. The control unit performs device

initialization and configuration, power management,

providing proper clocking support to the reset of the

parts of the system. The controller is responsible for the

data movements among the different components of the

system. The processor executes the firmware from the

read only memory. Once the firmware is designed, it

 360

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

may be rarely replaced because changing the firmware of

device needs the complete device replacement.

In the previous system on chip designs (G4), if any bugs

were present in firmware or to add any additional

features, the designers used to replace the firmware of

the design. Hence replacing the firmware of the design

needs extra fabrication steps. To avoid all the pitfalls in

the present system on chip designs (G5) a separate patch

will be provided for incorrect functionalities and

additional features without replacing the actual firmware

of the design. The firmware execution will start from

ROM (read only memory) and jump to private non-

volatile memory (PNVM) where patch will be present

and again execution will be returned to original flow.

This minimizes the system development cycle time and

cost.

This paper contains the fundamentals of G5 System on

chip, PNVM patch, PVNM memory read and writes,

patch creation and patch verification.

II. FUNDAMENTALS OF G5 SoC

The basic details of G5 system on chip are narrated by

outlining the functionality of all the sub modules present

in it. G5CONTROL and PNVM modules are explained

broadly because these are the major blocks in the current

project.

Fig [1]: The Block Diagram of G5 SoC

Fabric is the core of the G5 Full chip device, where the

end user can implement their design. In the G5 SoC the

fabric block is a field programmable gate array (FPGA)

and remaining blocks are application specific integrated

circuits (ASIC) [4]. The SoC’s are replacement to the

bulky and high power consumed systems built by

discrete components.

FPGA Fabric

 The FPGA fabric is a non-volatile (Sonos-based)

custo block, which facilitates the implementation of

programmable user logic. The major blocks of the fabric

are: 1.LSRAM (Large SRAM), 2.USRAM (micro

SRAM), 3.UPROM (Micro PROM), 4.MATH 5.PG

(Pulse Generator).

SERDES

 There may be multiple instances of the

SERDES PHYon a G5 device, some of which are

standalone (GPSS) and connect straight to the fabric,

whilst others are tightly coupled to a dual PCIe

controller block (PCIESS).

G5CONTROL

G5CONTROL is the control block of G5 and

implements the following functionality:

o Initialization and configuration

o Programming

o Power management

o User debug

o Security

- Initialization and configuration: Device

initialization (reset and configuration) is

 361

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

- required at both at power-up (cold reset) and

warm reset events. At power-up, there are three

of stages of device initialization, which are: 1.

Power on Reset, 2. Boot, 3.UIC Script

Execution.

- Programming: In G5 SoC two programming

modes are available, which are: 1. JTAG

Programming, 2.SPI Slave Programming.

JTAG Programming: JTAG programming mode

uses the JTAG interface to receive JTAG

programming instructions from an external

JTAG master.

SPI Slave Programming: SPI Slave

programming mode uses the G5CONTROL SPI

in slave mode. Programming commands are

received from an external SPI master.

- Power management: G5 contains functionality

to support both design-time and run-time

management of both static and dynamic power

in the user’s system.

- User debug: It is required that in some cases the

user have the ability to interactively peek and

poke the internal values in an uSRAM or an

LSRAM whilst the user’s system continues to

operate. But the debug accesses require access

to the SRAM via the FCB, which is not

allowable at the same time as the user is

accessing the SRAM. A handshake is required

between the user and the FCB in order to allow

the two to share an SRAM interactively.

- Security: The System Controller has direct

access to all onboard storage elements, which

- offers a powerful system for analyzing and

manipulating the state of the FPGA for system

debug. However, this is of equal value to an

attacker and thus must be protected. The

System Controller has direct access to all

onboard storage elements, which offers a

powerful system for analyzing and

manipulating the state of the FPGA for system

debug. However, this is of equal value to an

attacker and thus must be protected.

 IO Clock Bridge (ICB)

 Every side of G5 device contains either one or

two IO Clock Bridges, which allow multiplexing of

clocks from various sources and provide an entry point

into the clock resources of the FPGA fabric [4]. The east

and west side always have one ICB, although the ICB on

the east side may be slightly different to the others, as it

is associated with SERDES clocks.

IO Gearing (IOG)

 Each of the General Purpose IO (GPIO) and

High Speed IO (HSIO) banks in the device has

associated IO gearing functionality. This logic handles

gearing of multiple FPGA fabric data bits to/from a

single device IO, to accompany a division of clock

frequency between the IO and the fabric. It also handles

potential sharing of each IO cell with a dedicated logic

function other than the FPGA fabric and the boundary

scan functionality of the IO.

Corner

 The base corner block contains two PLLs and

two DLLs, two configurable delay lines, the associated

clock routing multiplexors to route signals to and from

the PLLs and DLLs, and the IO bank power-on detect

circuits used to control the adjacent IO banks and one

 362

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

clock calibration block used to test the PLLs and DLLs

in each corner. Most of the control signals for the PLLs,

DLLs, Delay Lines and Multiplexors come from the

integrated corner register map. All others come from the

EIP interface from FPGA routing signals.

III. PVNM PATCH

PNVM

Connected to the G5C Controller is 1Mbit

(128K Byte) PNVM (Private Non Volatile Memory) that

allows the device firmware to be updated without a new

mask set being created. This is only directly accessible

by G5CONTROL, but sections of it may be used

indirectly by the user for storage of user data, such as

keys.

To support these multiple uses the PNVM is split into

four independent segments that can be erased and

programmed independently with no chance off

disturbance.

Table [1]: PNVM Sectors

Sector Size

0 56 K Bytes

1 56 K Bytes

2 8 K Bytes

3 8 K Bytes

Fig [2]: PNVM Controller

The PNVM controller in G5C implements an AHB

interface to the PNVM R and C interfaces [5]. The C-

Bus (32-bit) is used for programming operations and the

R-Bus (64-bit) for read operations. The system registers

allow the sleep and power controls of the NVM to be

controlled, and also configure the PNVM controller.

R BUS Operation

 Normal read operation includes setting up valid

addresses and issuing the read clock. The R_bus is used

to perform read operation on the flash memory. It uses

the following signals to communicate a valid read

operation: 1.r_valid, 2.r_grant, 3.r_q[63:0],

4.r_addr[14:0].

Fig [2]: R_Bus Read Cycles

C BUS Operation

The C bus is used to read and write to the entire register

map as well as write to the page latches. These registers

are addressed using a 9 bit address signal called

c_addr[8:0]. The signals used by the c_bus to perform

any operation are:

1.c_size[1:0],2.c_addr[8:0],3.c_d[31:0],4.c_valid,5.c_gra

 363

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

nt,6.c_grant,6.c_write,7.c_q[31:0],8.c_q_valid,9.c_clk_r

eq,10.c_irq.

Fig [3]: C_Bus Read Cycles waveform

The write operation also performed in the same way.

PNVM Operations

 The pNVM may be used to install a patch at

boot of a non-virgin device. For maximum flexibility

the patch acts as its own boot-loader allowing it to

execute directly from pNVM or it may copy itself to

RAM for faster execution. One of the likely scenarios for

requiring a patch is to modify the device boot sequence.

However, a patch may not be installed until the pNVM

has been enabled. Thus a patch cannot be used to

modify behavior of earlier parts of the boot sequence. To

indicate the presence of a patch, a 32-bit marker is

placed in the pNVM. If this marker is present then the

patch is assumed to be present and control is transferred

to the patch.

o PNVM Initialization: The initialization routine

will read out the parameters necessary for

programming the PNVM and store them into

SRAM. It uses parameters necessary to read the

PNVM which are stored in the UFS user factory

segment.

o PNVM Load Page Latch: This operation loads

data to be programmed from SRAM into the

PNVM block programming latches.

o PNVM Program Page: This is the top level

program operation of the PNVM. It will write

the data that was previously loaded into the

page latches into the selected sector and page.

It will perform a pre-program, erase and

program cycle to write to the PNVM. After the

programming cycle is complete a verify

operation is performed either at 0 or at

beginning of life limits.

o PNVM Sector Erase: This operation applies an

erase pulse to the selected sector. This operation

is used during zeroization only.

o PNVM Sub Sector Erase: This operation

applies an erase pulse to the selected sub sector.

The PNVM can select 8 pages at a time to

erase. This is what is referred to as a sub

sector. This operation is used during zeroization

only.

o PNVM Sector Program: This operation applies

a program pulse to the selected sector. This

operation is used during zeroization only.

o PNVM Program Row: This operation applies a

program pulse to the selected sector and

selected page. It is performed only on one page.

 364

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

IV. PATCH CREATION AND VERIFICATION

Step 1: Basic Cortex M3 boot from ROM.

Booting of Cortex M3 can be checked by generating a

TXEV pulse using assembly code and check if that pulse

is getting triggered.

Fig [4]: Code to verify Cortex M3 boot

Step 2: Access PNVM control space and check all the

registers in it. The PNVM has 19 control registers to

store the data required for configuration. All the registers

are 32 bit in size. The control registers can be read and

written through c Bus.

Power on Reset (POR) values of PNVM control

registers:

Fig [5]: Reading POR values of control registers

TIMER_CFG_ADDR: This register is used to configure

and start the timer. Its POR value is h38000000.

Fig [6]: Power on Reset values of control registers

Registers contents written with user defined values.

Fig [7]: Write/Read values of control registers

Fig [8]: Written values of control registers

Step 3: PNVM memory access.

 365

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

The memory can be written through c bus and read can

be done through R bus. Here we are writing some

random values to memory. The memory values can be

observed on AHB signals.

Fig [9]: PNVM Memory read/write

Fig [10]: PNVM Memory writes

Fig [11]: PNVM Memory reads

Step 4: Patch creation.

Patch is nothing but a specific function written in C. It

will be placed in the PNVM memory. Status indicator

tells the patch presence. Using the IAR tool we will

create .hex file of the patch and it will be placed in the

specific location. The booting will be initiated in the

ROM and it will jump to PNVM and executes particular

function which is placed in the PNVM memory and

comes back to original boot flow.

Patch installation:

Fig [12]: Functions and their address

Fig [13]: Patch installation

 366

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 4, Issue 6, June 2017

Fig [14]: Firmware execution without patch

Fig [15]: Firmware execution with patch

V. CONCLUSION

The incorporation of patch in the present

system on chip devices is novel approach. It plays a

crucial role in reducing the time to market of the device.

In many of the system designs once the firmware is

designed it can’t be changed because replacing the

firmware is tedious job. By providing the separate patch

for the incorrect and additional functionalities of the

firmware can eliminate the firmware redesign. Due to

the elimination of the extra fabrication steps the cost of

the device will be reduced and time to market of SoC

will less.

VI. REFERENCES

[1] Rohit Srivastava, Nandini Mudgil, Gaurav

Gupta “SoC Time to Market Improvement through

Device Driver Reuse: An Industrial Experience”,

Electronic System Design (ISED), 2012 International

Symposium ,year:2012.

[2]http://eecs.wsu.edu/~pande/Journal_Papers/Paper_IE

EE_Proceedi ngs.pdf.

[3]http://www.semiconductorstore.com/blog/2015/Syste

m-on-Chip-vs-Single-Board-Computer-A-Comparison-

Guide/689.

[4]http://www.microsemi.com/products/fpga

SoC/fpga/igloo2-design-resources-archive.

[5]J. R. Cricchi; D. A. Barth; H. G. Oehler; R. C.

Lyman; J.M. Shipley; B. Ahlport “Radiation Hardened

CMNOS/SOS Mask Programmable ROM and General

Processor Unit”, IEEE Transactions on Nuclear Science,

Year:1977,Volume:24, Issue:6 Pages:2236-2243.

 Vellampati Harathi

Received her B.Tech degree in Electronics &

Communication Engineering from Jawaharlal Nehru

Technological University Pulivendula, kadapa Dist., A

P., India in 2014 and is shortly finishing her M Tech

degree in VLSI Design & Embedded Systems from R.V.

College of Engineering (VTU, Belgaum), Bangalore,

Karnataka, India. Her interest areas are VLSI Design,

digital electronic.

 367

