

 40

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

Implementation and Testing of PCI Express IP Core

using SpartaN 6 FPGA
[1]

 Megha B. Kumbar,
[2]

 Sukesh Rao M.
[1][2]

Department of E&C,

N.M.A.M. Institute of Technology, Nitte, Karkala,

Udupi, Karnataka, India

[1]
kumbarmegha1993@gmail.com,

[2]
sukesh@nitte.edu.in

Abstract- The motherboards nowadays come with PCI Express (PCIe) expansion slots in order to communicate with the external

world. The data which is going to be received by the system is the radar data which will be in the form of Serial Front Panel Data

Port (Serial FPDP) frame format. But the processors of the system can only understand the information in the form of PCI Express

frame format. Thus the data has to get converted into PCI Express frame format. Therefore PCI Express IP core is used for the

formation of PCI Express frame format. Once the data in the form Serial FPDP frame is received then data will be extracted and

will be stored in buffer memory. Then the PCI Express IP core receives the data from memory and frames the data into PCI

Express frame format and will be sent over PCI Express expansion bus to the processor. Thus in order to understand whether the

PCI Express IP core works properly or not a loopback test needs to be done. Thus the PCI Express IP core is implemented on

Spartan 6 FPGA along with the Bus Master DMA. In this paper the implementation and loopback testing of PCI Express IP core is

mentioned.

Keywords:---PCI Express frame format, PCI Express IP core, loopback test, Spartan 6 FPGA, Bus Master DMA

I. INTRODUCTION

 The PCI Express (PCIe) is the third generation

high performance I/O bus used to interconnect peripheral

devices in applications such as computing and

communication platforms. The ISA, EISA, VESA, Micro

Channel buses are the first generation buses and the PCI,

AGP and PCI-X are the second generation buses. It has

applications in mobile, desktop, workstation, server,

embedded computing and communication platforms [1].

Today’s processors come with PCI Express interface,

which is a point-to-point connection, i.e., it connects only

two devices, no other device can share this connection. The

PCI Express protocol is a layered architecture where each

layer adds its own information to the original data; frames

it and sends it over PCI Express link to the destination

device. This protocol is in the form of IP core in Xilinx.

Thus this IP core needs to be tested in order to check

whether the protocol works properly or not. This is done

by doing a loopback test. The loopback test is the one

where the transmitted information is looped back to itself

in order to receive the same data as transmitted one.

II. BASIC CONCEPT

 The data which is going to be received by the

system is the radar data which will be in the form of Serial

Front Panel Data Port (Serial FPDP) frame format. But the

processors of the system can only understand the

information in the form of PCI Express frame format. Thus

the data has to get converted into PCI Express frame

format. The conversion can be done by implementing both

PCI Express IP core and Serial FPDP core on FPGA. As

shown in the Fig. 1, the radar data in the form of Serial

FPDP frame format will be received by Serial FPDP core.

Then the conversion happens by extracting only the data

from SFPDP frame structure and storing it in buffer

memory and then data will be framed into PCI Express

frame structure by using PCI Express IP core.

Fig. 1: Block diagram for Serial FPDP to PCIe

conversion

 Therefore the whole idea of conversion initially

needs to test both PCI Express IP core and Serial FPDP

core separately before implementing both on same FPGA

for conversion. Therefore in this paper implementing and

testing of only PCI Express IP core is shown.

III. PCI EXPRESS PROTOCOL

 PCI Express is a high speed, low voltage,

differential serial pathway for two devices to communicate

with each other. It uses a protocol that allows devices to

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

 41

communicate simultaneously by implementing dual

unidirectional paths between two devices as shown in

Fig.2.

Fig. 2: Dual Unidirectional Path Concept

 PCI Express is a serial, point-to-point interface

i.e., devices no longer need to arbitrate for the right to be

the bus driver prior to sending out a transaction. A PCI

Express device is always the driver for its transmission

pair(s) and is always the target for its receiver pair(s). The

difference from parallel busses such as PCI; is the transmit

pair of one device be the receiver pair for the other device.

They must be point-to-point, one device to a second device

[2]. TX of one is RX of the other and vice versa as shown

in Fig. 3.

Fig. 3: Point-to-Point Connection between Two PCI

Express Devices

3.1 Links, Lanes and Ports

A link is the connection between two PCI Express devices.

A link consists of a number of lanes. Lane is a single set of

differential transmits and receive pairs which can be seen

in Fig. 3. A lane contains four signals, a differential pair

for unidirectional transmission in both directions (dual

unidirectional). The link shown in Fig. 4 is a four lane

wide. The collection of transmission and receiver pairs that

are associated with a link at the device is referred to as a

port. Currently PCI Express defines the following

configuration of serial links: x1, x2, x4, x8, x12, x16, and

x32. This helps in scaling the bandwidth [2].

Fig. 4: Links, Lanes and Ports [3]

3.2 PCI Express Protocol Build Layers

 The transformation of information between two

PCI Express devices is based on the transaction between

them. It uses a split transaction protocol. That is it has two

transaction phases; request and completion. The

transaction initiator is the requester and the intended target

for request is the completer. The requester sends out the

request packet. The completer sends back a completion

packet to the requester. The transaction between two

devices is built by three layers. They are the Transaction

layer, the Data Link layer and the Physical layer as shown

in Fig. 5.

 The Transaction layer receives request or

completion data from device core and turns it into PCI

Express transactions. The Data Link layer is to ensure that

the transactions are received properly across the link.

Fig. 5: The three architectural build layers

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

 42

 The Physical layer is for actual transmitting and

receiving of data across the PCI Express link [2].

3.3 Packet formation:
 The three architectural layers build the packets.

As shown in Fig. 6, at the time of transmission the

Transaction Layer adds a header and an optional ECRC

(end-to-end CRC) to the data payload. The Data Link

Layer adds the sequence number and LCRC (link CRC).

The Physical Layer frames it for proper transmission to the

other device.

Fig. 6: Transaction buildup through architectural layers

 At the time of reception the Physical Layer

decodes the framing and passes along the sequence

number, header, data, ECRC, and LCRC to its Data Link

Layer. The Data Link Layer checks out the sequence

number and LCRC, and then passes the header, data, and

ECRC on to the Transaction Layer. The Transaction Layer

decodes the header and passes the appropriate data on to its

device core [3].

IV. LOOPBACK TESTING OF PCI EXPRESS IP

CORE
 The loopback testing means the data which is sent

by the communication device is returned back to itself to

determine whether the device under test is working

properly or not. The PCI Express core is checked by doing

a loop back test. This is done by making communication

between the PCI Express core and the system. This

communication takes place in PCI Express topological

order as shown in Fig. 7. It includes a Root Complex, a

PCI Express switch device, multiple Endpoint block for

PCI Express and a PCI Express to PCI/PCI-X bridge.

Fig. 7: PCI Express Fabric Topology [3]

A Root Complex (RC) is the root of an I/O hierarchy. It

may have one or more PCI Express ports. It connects the

CPU/memory subsystem to the I/O device. The Root

complex may connect to Endpoint device directly or

through a switch[4]. In this communication, the system is

considered as Root Complex and the hardware connected

to the PCI Express slot of the motherboard is considered as

PCI Express Endpoint device. Here the PCI Express

Endpoint device is the SP605 Evaluation kit where the

implementation of PCI Express IP core is done on the

Spartan 6 FPGA. This PCI Express IP core contains Bus

Master DMA which helps in lower CPU utilization and

large transfer of data. The communication between the

system and the PCI Express core is checked by write and

read operations.

During the write operation, the data is written by the Root

Complex device to the Endpoint device and during read

operation the data is read by the Root complex device from

the Endpoint device i.e., the data is transferred from

Endpoint device to the Root Complex device. This is a

loop back test where the data read by the Root Complex

device is same as the data which was written by it to the

Endpoint device during the write operation.

The Table 1, shows the hardware and software tool

required for the loopback testing.

Table 1: Hardware and the tool used

 A xapp1052.zip file is used which is provided by

the Xilinx. This contains top-level ISE project directory

named dma_performance_demo. This directory contains

the original BMD design files [5].

 In order to have the communication between the

Root complex and the Endpoint devices certain steps need

to be taken. These are as follows:

 Making the kit as a PCI Express Endpoint device.

 Connecting the kit to the system and driver

installation for the same.

 Performing read and write operation between

Root complex and PCI Express Endpoint device

 These steps are explained in detail in the

following sections.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

 43

Fig. 8: SP605 Evaluation Board [6]

4.1 Step 1: PCI Express Endpoint IP core generation
 In order to make the SP605 evaluation kit as a

PCI Express Endpoint device first step is to generate a PCI

Express Endpoint IP core. The steps for generating the IP

Core Using ISE Design Suite:

 Start the CORE Generator tool and create a new

project. Next selecting appropriate device xc6slx45t

and family as Spartan6 as shown in Fig. 9.

Fig. 9: Selecting proper FPGA device

 Customizing and generating the “Spartan6

Integrated Endpoint Block for PCI Express” for the

targeted device from the taxonomy tree as shown in

Fig.10.

Fig. 10: Customizing the PCI Express IP core

 In the customization GUI giving the name for the

core to be generated and appropriate vendor ID

and host ID.

 Since it is a Gen1 x1 PCI Express, specifying the

link width as 1 lane and maximum speed of data

transmission is 2.5GT/s as shown in Fig. 11.

Fig. 11: PCI Express link width and speed

 The required target board is the SP605 board which

needs to be selected the option and then generate the

core.

4.2 Step 2: Implementing the Bus Master Design and

generating bit file
 Once the IP core is generated merge the BMD

design files along with IP core files to generate the bit file.

The steps are as follows.

 To implement Bus Master Design inside PCI

Express Endpoint device, the BMD files which

are located in the dma_performance_demo folder

are merged with the generated IP core files.

 Then to build the design, implement_dma.pl file is

used and is done by executing a command “xilperl

implement_dma.pl” in the ISE Design Suite

command prompt as shown in Fig. 12.

Fig. 12: Executing the command “xilperl

implement_dma.pl”

 The perl script will present a series a prompts

requesting user input as shown in Fig. 13. Based

on the user input, the script will grab the

necessary files to synthesize and build the design.

 In the first prompt, selecting the type board to

which the design is targeted i.e., PCI Express

development boardSP605 is a default

development platform. In the next prompt select

the core which is generated. In the next prompt it

will ask for the board which is targeted.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

 44

 After synthesizing and building the design,

the bit file will get generated. Information

about the generated bit file is displayed in the

ISE design Suite command prompt as shown

in Fig. 14.

Fig. 13: Giving appropriate inputs

Fig. 14: Generation of bit file and completion of BMD

implementation

4.3 Step 3: Programming the Spartan 6 FPGA
 The Spartan 6 FPGA will be programmed through

JTAG interface using the Xilinx ISE iMPACT tool. After

dumping the bit file, the SP605 Evaluation kit becomes a

PCI Express Endpoint device.

4.4 Step 4: Connecting SP605 Evaluation kit and PC

Fig. 15: SP605 Evaluation kit is connected to PCI

Express slot of the motherboard

 This Endpoint device is connected to the PCI

Express slot of the Root Complex (PC) using a PCI

Express cable as shown in the Fig. 15. Since it is new

device connected to the system, the system will ask for the

driver installation.

4.5 Step 5: Using DMA Driver for Windows XP
 After installing the driver for PCI Express

Endpoint the newly installed driver appears under device

manger of the system and then selecting the newly

installed driver for the PCI Express Endpoint device.

4.6 Step 6: Data transfer between PCI Express Endpoint

device and PC
 The GUI is launched by selecting “Performance

Demo for PCIe” from the Windows start menu.

Fig. 16: Performance Demo Application GUI

 If the software is installed correctly, the

application GUI appears as shown in Fig. 16, and provides

a description of the interface. This GUI helps in

transferring data between Root Complex and Endpoint

device. The write and read operation helps in

understanding the functionality of the PCI Express core.

V. PCI EXPRESS IP CORE TESTING RESULT

 In performing a DMA test first step is to specify

the direction data transfer i.e., read or write. Next is to

select the TLP size and number of TLPs to be transferred,

data pattern to be transferred.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 5, May 2017

 45

Fig (a): write operation Fig (b): Read operation

Fig. 17: BMD performance demonstrations by a loop

back test i.e., write and read operation

 During write operation, test mode in the

application GUI is selected as write, and the data is written

by the Root complex device to Endpoint device. The data

is written by sending TLP of size 32 bit. The data is

FEEDBEEF s shown in Fig. 17. Similarly during read

operation, test mode is selected as read in the GUI and the

data is read by the Root Complex device from the Endpoint

device. i.e., the data is transferred from Endpoint device to

the Root Complex device. The status box changes to Mbps

and shows the calculated throughput if the test becomes

successful. The test terminates and “FAIL” appears in the

status field if the test is unsuccessful. It is observed that the

same data is read by the Root Complex device which was

sent by it to the Endpoint device during the write

operation. Thus the loop back test is done.

VI. CONCLUSION

 An application level loopback test is done for PCI

Express protocol where the communication between the

Root Complex and PCI Express Endpoint device is done.

The Root Complex device is the PC and the Endpoint

device is the SP605 Evaluation kit where the PCI Express

IP core is implemented along with the Bus Master DMA

(BMD) on Spartan 6 FPGA. The communication between

the Root Complex device and the Endpoint device is done

by performing write and read operation, where the data

received by the Root Complex device from the Endpoint

device during the read operation is same as the data which

was sent by Root Complex device to the Endpoint device

during the write operation. This completes the loopback

testing.

Acknowledgment
 We would like to thank our guide Ms. Suja Susan

George, CPG group, BEL Bengaluru for their continuous

support. And we would like to thank our college N.M.A.M.

Institute of technology.

REFERENCES

[1] Ravi Budruk, Don Anderson, Tom Shanley “PCI

Express System Architecture”, PC System Architecture

Series, pp. 9-39.

[2] Adam Wilen, Justin P. Schade, Ron Thornburg,

“Introduction to PCI Express – A hardware and software

guide”, Intel Press 2002.

[3] Satish K. Dhawan, “Introduction to PCI Express –A

New High Speed Serial Data Bus” USA, IEEE Nuclear

Science Symposium Conference Record, 2005, N14-140.

[4] PCI Express Base Specification Revision 3.0

November 10, 2010

[5] Jason Lawley, “Bus Master Performance

Demonstration Reference Design for the Xilinx Endpoint

PCI Express Solutions”, Xilinx document, 2015.

[6] Getting Started with the Xilinx Spartan-6 FPGA SP605

Evaluation Kit, Xilinx document, 2011.

