

 119

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 11, November 2017

Unstructured Text to DBPEDIA RDF Triples –

Entity Extraction

[1]
 Monika S G,

[2]
 Chiranjeevi S,

[3]
 Harshitha A,

[4]
 Harshitha M,

[5]
 V K Tivari,

[6]
 Raghevendra Rao

[1 – 5]
 Department of Electronics and Communication Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru.

[5]
 Assistant Professor, Department of Electronic and Communication Engineering, Sri Sairam College of Engineering,

Anekal, Bengaluru.
[6]

.Assistant Professor, Department of Computer Science and Engineering, Sri Sairam College of Engineering, Anekal,

Bengaluru

Abstract:- In the means of current technologies Use of data, information has grown significantly over the last few years. The

information processing facing an issue like where the data is originating from multiple sources in an uncontrolled environment.

The reason for the uncontrolled environment is the data gathered beyond the organization and generated by many people working

outside the organization. The intent of this paper is delving into this unformatted information and build the framework in such a

way that the information becomes more managed and used in the organization. Case and point for resume submitted for particular

positions should become searchable. In this framework, we try and solve the problem and provide suggestions on how to solve

other similar problem. In this paper, we describe an end-to-end system that automatically extracts RDF triples describing entity

relations and properties from unstructured text. This system is based on a pipeline of text processing modules that includes an

asemantic parser and a co-reference solver. By using co-reference chains, we group entity actions and properties described in

different sentences and convert them into entity triples. We applied our system to over 114,000 Wikipedia articles and we could

extract more than 1,000,000 triples. Using an ontology-mapping system that we bootstrapped using existing DBpedia triples, we

mapped 189,000extracted triples onto the DBpedia namespace. These extracted entities are available online in the N-Triple format.

Index Terms — Framework, Knowledge base, TST, Inverted Index.

I. INTRODUCTION

By using the structured and semi-structured information

from Wikipedia, DBpedia [1] has created very large

amounts of linked data and is one the most significant

achievements of the Semantic Web initiative. Datasets from

DBpedia are used in a wide range of applications such as

faceted search, model training for information extraction,

etc. DBpedia focuses on extracting structured information

from Wikipedia articles, such as info box templates and

categorization information. However, the unstructured text

of the articles is left unprocessed. Some recent projects

have attempted to use this text content to extend the

DBpedia triple base. Examples include iPopulator [2] that

populates in complete info boxes with attribute values it

identifies from the article text, while two recent systems,

LODifier [3] and Knowledge Store [4], extract semantic

information from the text. LODifier creates RDF triples

based on Word Net URIs while Knowledge-Store uses its

own ontology. Nonetheless, these systems show limitations

in the form of preexisting info box templates or data

structures that are not fully compliant with the DBpedia

name space.In this paper, we introduce a frame work to

carry out an end-to-end extraction ofDBpedia triples from

unstructured text. Similarly to LODifier and Knowledge

Store, our framework is based on entities and identifies

predicate–argument structures usinga generic semantic

processing pipeline. However, instead of recreating new

semantic structures, we integrate the DBpedia property

ontology and therefore make the reuse and extension of the

DBpedia dataset much easier. Starting from the DBpedia

dataset, we link the triples we extract from the text to the

exis ting DBpedia ontology, while going beyond the existing

info box templates. Applications already using DBpedia

would then benefit from a richer triple store. Related Work.

The extraction of relational facts from plain text has long

been of interest in information extraction research. The key

issue in relation extraction is to balance the trade-off

between high precision, recall, and scalability. With the

emergence of the Semantic Web and numerous ontologies,

data integration has become an additional challenge. There

has been a considerable amount of research on semi-

supervised [5–7] methods using bootstrapping techniques

together with initial seed relations to create extraction

patterns. Unsupervised approaches [8, 9] have contributed

further improvements by not requiring hand-labeled data.

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 11, November 2017

 120

These approaches have successfully answered scalability

and precision factors, when applied on web-scale corpora.

The challenge of ontology and data integration has been

addressed by [10].Due to concerns on scaling, the use of

syntactic or semantic relation extraction techniques in

relation extraction has been relatively sparse. Few systems

carry out a complete analysis of the source documents

using co-reference resolution or discourse analysis to

extract all statements. Exceptions include LODifier [3] and

Knowledge-Store [4], that have extracted semantic

information and applied co reference resolution. However,

the entities extracted by these systems have not been

integrated to a single homogenous ontology. In contrast to

these approaches, we suggest an end-to-end system, that

extracts all the entity relations from plain text and attempts

to map the entities onto the DBpedia name space. We

balance precision and recall by employing a combination of

NLP tools, including semantic parsing, co reference

resolution, and named entity linking. Scalability issues are

handled by parallelizing the tasks on a cluster of computers.

Furthermore, we propose an ontology mapping method that

bootstraps learning from existing triples from the DBpedia

dataset.

II. SYSTEM ARCHITECTURE

The architecture of our system is a pipeline that takes the

Wikipedia articles as input and produces entities in the

form of DBpedia RDF triples. As main features, the system

includes a generic semantic processing component base on

a semantic role labeler (SRL) to discover relations in text,

an automatic learning of ontology mappings to link the

extracted triples to the DBpedia namespace, and an

algorithm to rank named entity

links (NEL) found in coreference chains in order to

discover representative mentions.

In total, the end-to-end processing of Wikipedia article text

consists of seven modules

(Figure 1):

1. A WikiMarkup filtering module that removes

theWikimedia markup, providing the plain text of the

articles to the subsequent modules;

2. A Wikipedia link extractor that extracts Wikipedia links

from the articles;

3. A semantic parsing module, Athena [11], a framework for

large-scale semantic parsing of text written in natural

language;

4. A coreference resolution module that detects and links

coreferring mentions in text;

5. A mention-to-entity linking module that links mentions to

a corresponding DBpediaURI;

6. An information aligning and entity extracting module that

aligns the output from top-level modules and extracted

entities in the form of triples.

7. An ontology mapping module that carries out the final

mapping of predicates from thePropbank nomenclature onto

the DBpedia namespace.

4 Processing of Wikipedia Article Text WikiMarkup

Filtering. Prior to any analysis, the text must be filtered. This

is an essential step that seeks to remove annotations and

markups without affecting the running text.

Without this step, subsequent modules would fail in their

analysis and lead to erroneous extractions. Wikipedia

articles are composed of text written in natural language

annotated with a special markup called wikitext or wiki

markup. It is a simple markup language that allows among

other things the annotation of categories, templates, and

hyper linking to other Wikipedia articles. Wikipedia also

allows the use of common HTML tags. By

filteringWikipedia text, weaim at removing all annotations,

sections that contain only links and references, and keeping

only the running text. This process is difficult since the

HTML syntax is often invalid. The most common errors are

tags that are leftunclosed or are incorrectly nested.

Wikipedia Link Extraction:

During the Wikipedia link extraction, we extract and

preserve the original links along with their corresponding

mentions in the article. In addition to extracting the links

annotated by the article authors, we make the assumption

that the first noun phrase in the first sentence corresponds to

the article link. The rationale behind it is that the longest

coreference chain in the article often starts with this first

mention.The direct correspondence between Wikipedia

articles and DBpedia resources allowsus to map Wikipedia

links onto their corresponding DBpedia URI by simply

adding the DBpedia name space. Semantic Parsing.Frame

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 11, November 2017

 121

semantics [12] is a linguistic theory that assumes that the

meaning of a sentence is represented by a set of predicates

and arguments. The Proposition Bank [13] is a project that

applied this theory to annotate corpora with predicate

argument structures. For each predicate, Propbank

identifies up to six possible core arguments denoted A0,

A1, ..., and A5 that go beyond the traditional annotation of

subjects and objects. Propbank also includes modifiers of

predicates, such as temporal and location adjuncts. These

roles are instrumental in performing the extraction of

entities as they allow the identification of properties

containing temporal and locational data with high

precision. We use the Athena framework created for

parallel semantic parsing of unstructuredtext. At its core,

the system uses a high-performance multilingual semantic

role labeler that obtained top scores in the CONLL-2009

shared task [14, 15]. Coreference Resolution. A coreference

resolver creates chains of coreferring mentions by

discovering and linking anaphoric phrases to their

antecedents. We used a co reference solver, included in the

Stanford CoreNLP package [16, 17], to link mentions of

entities in the different parts of text. This allows us to group

entity actions and properties described in different

sentences. CoreNLP uses a pipeline of tokenizers, partof-

speech tagger, named entity recognizer, syntactic parser,

and coreference solver to annotate unstructured text. In

addition to co reference annotation, we store the named

entity classification created by the pipeline. The named

entity classes are used to filter named entity links having a

conflicting ontology classification.

Named Entity Linking:

An important step in entity extraction is the grounding of

named entities to unique identifiers. In most articles, only

the first mention of a named entity is annotated with a

corresponding Wikipedia link; subsequent mentions are

often left unannotated. Wikifier [18] is a named entity

linking system that annotates unstructured text with

Wikipedia links. By applying Wikifier, we can link

unannotated namedentities in the Wikipedia articles to a

corresponding DBpedia URI. Ontology Mapping. During

semantic parsing, the sentences are annotated with

predicate–argument structures called rolesets. As

dictionary, the parser uses PropBank that defines more than

7,000 rolesets. Propbank associates each predicate with a

set of senses, for instance bear has six senses denoted

bear.01, bear.02, ..., bear.06. Finally, each predicate-sense

has a set of core arguments that differ with each roleset. For

example, bear.02 has two core arguments: A0, the mother,

and A1, the child. Considering only the core roles, this

amounts to more than 20,000 roles. The objective of

ontology mapping is to map the predicate and argument

roles from PropBank onto DBpedia properties. We perform

this final step to create the DBpedia RDF triples. Figure 2

shows an example of end-to-end processing to DBpedia

RDF triples of the sentences: Luc Besson (born 18 March

1959) is a French film director, writer and producer. Besson

was born in Paris to parents who were both Club Medscuba

diving instructors.

Entity Extraction

The arguments created during semantic parsing are searched

in order to find namedentity links corresponding to RDF

subjects and objects. This process uses the mentions

discovered by the co reference solver, Wikipedia links

predicted by Wikifier, and Wikipedia links extracted from

the article. In order to keep the task tractable, we have

limited the entities to those found in DBpedia and we do not

introduce new named entities to the DBpedia ontology. RDF

Subjects. PropBank uses the A0 label as the argument

describing agents, causers, or experiencers, while arguments

labeled as A1 describe entities undergoing a state of change

or being affected by an action. In both cases, arguments

labeled A0 or A1 can be considered containing RDF

subjects and are consequently searched for named entity

links. Arguments labeled A0 are searched first, arguments

labeled A1 are only searched if a named entity link wasn’t

discovered in the preceding arguments. RDF Objects.

Following the subject extraction, the remaining arguments

are examined to discover potential objects. The core

arguments and two auxiliary arguments, temporal AM-TMP

and location AM-LOC, are searched. The extracted data

types can be categorized as following: Named entity links

expressed as DBpedia URIs, dates andyears, integers, and

strings. We search date expressions in the temporal

arguments AMTMP using regular expressions. By using

seven common date patterns, we are able to extract a large

amount of date and year expressions. We associate the

location arguments AM-LOC to named entity links

representing places. These links are extracted only if they

are classified as dbpedia-owl:Placeby the DBpedia ontology.

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 11, November 2017

 122

Named Entity Link Ranking and Selection. During the

search of RDF subject and

objects, we search and select candidate named entity links

in the following order:

1. Wikipedia links, converted to DBpedia URIs. We

consider named entity links extracted

from the article as being most trustworthy.

2. Wikifier-predicted Wikipedia links, converted to

DBpedia URIs, and having a DBpedia ontology class

matching the predicted named entity class. A predicted

named entity link is chosen only in the case when an

extracted Wikipedia link isn’t given. Furthermore,

predicted links are pruned if their DBpedia ontology class

doesn’t match the named entity class predicted by the

Stanford co reference solver.

3. Co reference mentions; the most representative named

entity link (according to the score described in section

Using Co reference Chains) in the co reference chain is

selected. We consider named entities inferred through co

reference chains as the least trustworthy and select them

only if an extracted or predicted named entity link is not

given. A mention placed in the wrong co reference chain

will be considered as an incorrect named entity link; a

situation which Wikifier can rectify with higher precision.

Using Co reference Chains. Co reference chains are used to

propagate named entity links to arguments having neither

an extracted nor a predicted named entity link. This

situation arises most commonly for arguments consisting of

a single pronoun. Before propagation takes place, we

determine the most representative named entity link in the

Co reference chain using a ranking and scoring system: –

Extracted named entity links are always selected over

predicted links. – A score of +2 is given to a named entity

link if it has a DBpedia ontology class matching the

predicted named entity class.

– The score is increased by the number of tokens of the

named entity minus 1.

– If a tie is given between equally scoring named entity

links, the link closest to the top of the chain is selected.

We derived the set of scoring rules by performing an

empirical examination of coreference

chains. We observed that coreference chains representing

people, often started with a mention containing the full

name, followed by single-token mentions having only the

first or last name. The named entity links of single-token

mentions, as predicted by Wikifier, often incorrectly

pointed to either a place or a family. By rewarding named

entity links having multiple tokens and matching ontology

classes, we filtered these incorrect links. Table 1 shows an

example, where the mention Robert Alton, a person name,

is given the highest score due to matching entity classes

and token length. Although the mention Alton refers to the

same entity and belongs to the co reference chain, an

incorrect named entity link to a city (Alton, Illinois) has

been predicted. Given our previous rules, the predicted

named entity link is discarded due to a mismatch with the

predicted named entity class. The correct named entity link

is thus resolved by propagating the link through the co

reference chain. Unmapped Triple Generation. Given a set

of extracted RDF subjects and objects, we create binary

relations from n-ary predicate–argument relations by a

combinatorial generation. We discover negative relations by

searching the argument roles for AMNEG; these are then

discarded.

III. CONCLUSIONS

The framework for unstructured data processing and

example case study of resume management system yielded

some learning’s. We attempt to list some of them here, not

in order of importance.

A. Generic Pre-Observations

•Intelligent classification of unstructured data types yields to

better processing techniques.

•Common techniques can be exploited for greater benefit if

we know in advance as to what kind of information we

would be looking at.

•Application building around unstructured data is complex

and time consuming task

B. Specific Post Conclusions

•The understanding of data set improves the design quite

significantly and yields to better database design. In this

particular resume processing was better done because of

indexing technique.

•Solutions that work on unstructured data fit in today’s web

architecture and in very rare cases may need modification to

n-tier mode.

•The custom needs to such application can be folded into

business logic of web applications.

•XML formatting is important tool that aids for unstructured

custom reporting.

•The maximum task in entire work was sent inpresentation

logic, which will remain pain point and will need custom

work every time.

Experimental Results

The aim of the evaluation is to answer the question of how

much information in the form of entity relation triples can be

extracted from sentences.We also wish to evaluate the

quality of the extracted triples. Since there is no gold

standard annotation of entities found in the main text of

Wikipedia articles, we performed the evaluation by

manually analyzing 200 randomly sampled sentences from

different articles. Sampled sentences are examined for

relevant subject-predicate-object triples and compared to the

correspondingretrieved triples. We computed the precision,

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 11, November 2017

 123

recall, and F1 scores, and in the occurrence of an extraction

error, we made a note of the originating source. We

evaluated the attributes of each triple in a strict sense: Each

extracted attribute must exactly match the corresponding

attribute in the sentence. For instance, in evaluating the

birthplace of a person, if a sentence states a city as the

location, we only consideran extracted DBpedia link to the

city as correct. In contrast, if the extracted link refers to a

more generalized toponym, such as region or country, we

mark the extracted object

as erroneous. In total, we processed 114,895 randomly

selected articles amounting to 2,156,574 sentences. The

articles were processed in approximately 5 days on a

cluster of 10 machines.

Table 3, left, shows the number of processed articles

categorized by DBpedia

Ontology classes. From the processed articles, we extracted

a total of 1,023,316 triples, of which 189,610 triples were

mapped to the DBpedia ontology. The unmapped triples

differ in having the predicate localized to the Propbank

namespace. In Table 3, right, we can see that from the

189,610 extracted triples, 15,067 triples already exist in the

DBpedia dataset. This means that our framework

introduced 174,543 new triples to the DBpedia namespace.

Almost 3% of the extracted triples are duplicates, the

majority of these are triples repeated only once. Since a

statement with the same meaning can occur in more than

one article, we consider these occurrences natural. In

comparing the number of extracted triples to the number of

processed sentences, we find that roughly every second

sentence yields one extracted triple. In comparison to the

number of processed articles, we extracted nearly 9 triples

per article. The extracted mapped triples reached a F1 score

of 66.3%, a precision of 74.3%, and a recall of 59.9%. The

largest source of errors came from predicates, 46.4%,

followed by subjects, 27.2%, and objects, 26.4%. Based on

post-mortem analysis of the evaluated triples, we find that

reasons for the extraction errors can be attributed to the

following causes:

– An incorrect mapping from the Propbank predicate-

argument roles to the DBpedia ontology properties.

– A new entity is detected, that has previously not been

introduced to the DBpedia datasets and therefore lacks a

corresponding DBpedia URI.

– The wrong URI is predicted for an entity and cannot be

resolved or corrected by the scoring algorithm.

– A mention is placed in the incorrect coreference chain by

the coreference solver.

REFERENCES

[1] Robert Sadgewick “Algorithms IN C” 3rd ed 1976

[2] Brian W. Kernighan & Dennis M. Ritchie “The C

Programming Language”, Second Edition Prentice Hall

1988

[3] K. N. King W.W. Norton & Company “C Programming:

A Modern Approach” 1996

[4] David Megginson “Structuring XML

Documents”Publisher: Prentice

Hall April, 1998

[5]. Agichtein, E., Gravano, L.: Snowball: extracting

relations from large plain-text collections. In: Proceedings of

DL ’00, New York, ACM (2000) 85–94

[6]. Etzioni, O., Cafarella, M., Downey, D., Kok, S.,

Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S.,

Yates, A.: Web-scale information extraction in knowitall. In:

Proceedings of WWW ’04, New York, ACM (2004) 100–

110

[7]. Carlson, A., Betteridge, J., Kisiel, B., Settles, B.,

Hruschka, E.R., Mitchell, T.M.: Toward an architecture for

never-ending language learning. In: Proceedings of AAAI-

10. (2010) 1306–1313

[8]. Banko, M., Etzioni, O.: Strategies for lifelong

knowledge extraction from the web. In: Proceedings of K-

CAP ’07, New York, ACM (2007) 95–102

[9]. Fader, A., Soderland, S., Etzioni, O.: Identifying

relations for open information extraction. In: Proc. of

EMNLP ’11. (2011) 1535–1545

[10]. Suchanek, F.M., Sozio, M.,Weikum, G.: Sofie: A self-

organizing framework for information extraction. In:

Proceedings of WWW ’2009, New York (2009) 631–640

[11]. Exner, P., Nugues, P.: Constructing large proposition

databases. In: Proc. of LREC’12, Istanbul (2012)

