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Abstract:- In the means of current technologies Use of data, information has grown significantly over the last few years. The 

information processing facing an issue like where the data is originating from multiple sources in an uncontrolled environment. 

The reason for the uncontrolled environment is the data gathered beyond the organization and generated by many people working 

outside the organization. The intent of this paper is delving into this unformatted information and build the framework in such a 

way that the information becomes more managed and used in the organization. Case and point for resume submitted for particular 

positions should become searchable. In this framework, we try and solve the problem and provide suggestions on how to solve 

other similar problem. In this paper, we describe an end-to-end system that automatically extracts RDF triples describing entity 

relations and properties from unstructured text. This system is based on a pipeline of text processing modules that includes an 

asemantic parser and a co-reference solver. By using co-reference chains, we group entity actions and properties described in 

different sentences and convert them into entity triples. We applied our system to over 114,000 Wikipedia articles and we could 

extract more than 1,000,000 triples. Using an ontology-mapping system that we bootstrapped using existing DBpedia triples, we 

mapped 189,000extracted triples onto the DBpedia namespace. These extracted entities are available online in the N-Triple format. 

 

Index Terms — Framework, Knowledge base, TST, Inverted Index. 

 

I. INTRODUCTION    

  

By using the structured and semi-structured information 

from Wikipedia, DBpedia [1] has created very large 

amounts of linked data and is one the most significant 

achievements of the Semantic Web initiative. Datasets from 

DBpedia are used in a wide range of applications such as 

faceted search, model training for information extraction, 

etc. DBpedia focuses on extracting structured information 

from Wikipedia articles, such as info box templates and 

categorization information. However, the unstructured text 

of the articles is left unprocessed. Some recent projects 

have attempted to use this text content to extend the 

DBpedia triple base. Examples include iPopulator [2] that 

populates in complete info boxes with attribute values it 

identifies from the article text, while two recent systems, 

LODifier [3] and Knowledge Store [4], extract semantic 

information from the text. LODifier creates RDF triples 

based on Word Net URIs while Knowledge-Store uses its 

own ontology. Nonetheless, these systems show limitations 

in the form of preexisting info box templates or data 

structures that are not fully compliant with the DBpedia 

name space.In this paper, we introduce a frame work to 

carry out an end-to-end extraction ofDBpedia triples from 

unstructured text. Similarly to LODifier and Knowledge 

Store, our framework is based on entities and identifies 

predicate–argument structures usinga generic semantic 

processing pipeline. However, instead of recreating new 

semantic structures, we integrate the DBpedia property 

ontology and therefore make the reuse and extension of the 

DBpedia dataset much easier. Starting from the DBpedia 

dataset, we link the triples we extract from the text to the 

exis ting DBpedia ontology, while going beyond the existing 

info box templates. Applications already using DBpedia 

would then benefit from a richer triple store. Related  Work. 

The extraction of relational facts from plain text has long 

been of interest in information extraction research. The key 

issue in relation extraction is to balance the trade-off 

between high precision, recall, and scalability. With the 

emergence of the Semantic Web and numerous ontologies, 

data integration has become an additional challenge. There 

has been a considerable amount of research on semi-

supervised [5–7] methods using bootstrapping techniques 

together with initial seed relations to create extraction 

patterns. Unsupervised approaches [8, 9] have contributed 

further improvements by not requiring hand-labeled data. 
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These approaches have successfully answered scalability 

and precision factors, when applied on web-scale corpora. 

The challenge of ontology and data integration has been 

addressed by [10].Due to concerns on scaling, the use of 

syntactic or semantic relation extraction techniques in 

relation extraction has been relatively sparse. Few systems 

carry out a complete analysis of the source documents 

using co-reference resolution or discourse analysis to 

extract all statements. Exceptions include LODifier [3] and 

Knowledge-Store [4], that have extracted semantic 

information and applied co reference resolution. However, 

the entities extracted by these systems have not been 

integrated to a single homogenous ontology. In contrast to 

these approaches, we suggest an end-to-end system, that 

extracts all the entity relations from plain text and attempts 

to map the entities onto the DBpedia name space. We 

balance precision and recall by employing a combination of 

NLP tools, including semantic parsing, co reference 

resolution, and named entity linking. Scalability issues are 

handled by parallelizing the tasks on a cluster of computers. 

Furthermore, we propose an ontology mapping method that 

bootstraps learning from existing triples from the DBpedia 

dataset. 

 

II. SYSTEM ARCHITECTURE 

 

The architecture of our system is a pipeline that takes the 

Wikipedia articles as input and produces entities in the 

form of DBpedia RDF triples. As main features, the system 

includes a generic semantic processing component base on 

a semantic role labeler (SRL) to discover relations in text, 

an automatic learning of ontology mappings to link the 

extracted triples to the DBpedia namespace, and an 

algorithm to rank named entity 

 
 

links (NEL) found in coreference chains in order to 

discover representative mentions. 

In total, the end-to-end processing of Wikipedia article text 

consists of seven modules 

(Figure 1): 

1. A WikiMarkup filtering module that removes 

theWikimedia markup, providing the plain text of the 

articles to the subsequent modules; 

2. A Wikipedia link extractor that extracts Wikipedia links 

from the articles; 

3. A semantic parsing module, Athena [11], a framework for 

large-scale semantic parsing of text written in natural 

language; 

4. A coreference resolution module that detects and links 

coreferring mentions in text; 

5. A mention-to-entity linking module that links mentions to 

a corresponding DBpediaURI; 

6. An information aligning and entity extracting module that 

aligns the output from top-level modules and extracted 

entities in the form of triples. 

7. An ontology mapping module that carries out the final 

mapping of predicates from thePropbank nomenclature onto 

the DBpedia namespace. 

4 Processing of Wikipedia Article Text WikiMarkup 

Filtering. Prior to any analysis, the text must be filtered. This 

is an essential step that seeks to remove annotations and 

markups without affecting the running text. 

 

 

Without this step, subsequent modules would fail in their 

analysis and lead to erroneous extractions. Wikipedia 

articles are composed of text written in natural language 

annotated with a special markup called wikitext or wiki 

markup. It is a simple markup language that allows among 

other things the annotation of categories, templates, and 

hyper linking to other Wikipedia articles. Wikipedia also 

allows the use of common HTML tags. By 

filteringWikipedia text, weaim at removing all annotations, 

sections that contain only links and references, and keeping 

only the running text. This process is difficult since the 

HTML syntax is often invalid. The most common errors are 

tags that are leftunclosed or are incorrectly nested.  

 

Wikipedia Link Extraction: 

During the Wikipedia link extraction, we extract and 

preserve the original links along with their corresponding 

mentions in the article. In addition to extracting the links 

annotated by the article authors, we make the assumption 

that the first noun phrase in the first sentence corresponds to 

the article link. The rationale behind it is that the longest 

coreference chain in the article often starts with this first 

mention.The direct correspondence between Wikipedia 

articles and DBpedia resources allowsus to map Wikipedia 

links onto their corresponding DBpedia URI by simply 

adding the DBpedia name space. Semantic Parsing.Frame 
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semantics [12] is a linguistic theory that assumes that the 

meaning of a sentence is represented by a set of predicates 

and arguments. The Proposition Bank [13] is a project that 

applied this theory to annotate corpora with predicate 

argument structures. For each predicate, Propbank 

identifies up to six possible core arguments denoted A0, 

A1, ..., and A5 that go beyond the traditional annotation of 

subjects and objects. Propbank also includes modifiers of 

predicates, such as temporal and location adjuncts. These 

roles are instrumental in performing the extraction of 

entities as they allow the identification of properties 

containing temporal and locational data with high 

precision. We use the Athena framework created for 

parallel semantic parsing of unstructuredtext. At its core, 

the system uses a high-performance multilingual semantic 

role labeler that obtained top scores in the CONLL-2009 

shared task [14, 15]. Coreference Resolution. A coreference 

resolver creates chains of coreferring mentions by 

discovering and linking anaphoric phrases to their 

antecedents. We used a co reference solver, included in the 

Stanford CoreNLP package [16, 17], to link mentions of 

entities in the different parts of text. This allows us to group 

entity actions and properties described in different 

sentences. CoreNLP uses a pipeline of tokenizers, partof- 

speech tagger, named entity recognizer, syntactic parser, 

and coreference solver to annotate unstructured text. In 

addition to co reference annotation, we store the named 

entity classification created by the pipeline. The named 

entity classes are used to filter named entity links having a 

conflicting ontology classification. 

 

Named Entity Linking: 

An important step in entity extraction is the grounding of 

named entities to unique identifiers. In most articles, only 

the first mention of a named entity is annotated with a 

corresponding Wikipedia link; subsequent mentions are 

often left unannotated. Wikifier [18] is a named entity 

linking system that annotates unstructured text with 

Wikipedia links. By applying Wikifier, we can link 

unannotated namedentities in the Wikipedia articles to a 

corresponding DBpedia URI. Ontology Mapping. During 

semantic parsing, the sentences are annotated with 

predicate–argument structures called rolesets. As 

dictionary, the parser uses PropBank that defines more than 

7,000 rolesets. Propbank associates each predicate with a 

set of senses, for instance bear has six senses denoted 

bear.01, bear.02, ..., bear.06. Finally, each predicate-sense 

has a set of core arguments that differ with each roleset. For 

example, bear.02 has two core arguments: A0, the mother, 

and A1, the child. Considering only the core roles, this 

amounts to more than 20,000 roles. The objective of 

ontology mapping is to map the predicate and argument 

roles from PropBank onto DBpedia properties. We perform 

this final step to create the DBpedia RDF triples. Figure 2 

shows an example of end-to-end processing to DBpedia 

RDF triples of the sentences: Luc Besson (born 18 March 

1959) is a French film director, writer and producer. Besson 

was born in Paris to parents who were both Club Medscuba 

diving instructors. 

 
 

Entity Extraction 

The arguments created during semantic parsing are searched 

in order to find namedentity links corresponding to RDF 

subjects and objects. This process uses the mentions 

discovered by the co reference solver, Wikipedia links 

predicted by Wikifier, and Wikipedia links extracted from 

the article. In order to keep the task tractable, we have 

limited the entities to those found in DBpedia and we do not 

introduce new named entities to the DBpedia ontology. RDF 

Subjects. PropBank uses the A0 label as the argument 

describing agents, causers, or experiencers, while arguments 

labeled as A1 describe entities undergoing a state of change 

or being affected by an action. In both cases, arguments 

labeled A0 or A1 can be considered containing RDF 

subjects and are consequently searched for named entity 

links. Arguments labeled A0 are searched first, arguments 

labeled A1 are only searched if a named entity link wasn’t 

discovered in the preceding arguments. RDF Objects. 

Following the subject extraction, the remaining arguments 

are examined to discover potential objects. The core 

arguments and two auxiliary arguments, temporal AM-TMP 

and location AM-LOC, are searched. The extracted data 

types can be categorized as following: Named entity links 

expressed as DBpedia URIs, dates andyears, integers, and 

strings. We search date expressions in the temporal 

arguments AMTMP using regular expressions. By using 

seven common date patterns, we are able to extract a large 

amount of date and year expressions. We associate the 

location arguments AM-LOC to named entity links 

representing places. These links are extracted only if they 

are classified as dbpedia-owl:Placeby the DBpedia ontology.  
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Named Entity Link Ranking and Selection. During the 

search of RDF subject and 

objects, we search and select candidate named entity links 

in the following order: 

1. Wikipedia links, converted to DBpedia URIs. We 

consider named entity links extracted 

from the article as being most trustworthy. 

2. Wikifier-predicted Wikipedia links, converted to 

DBpedia URIs, and having a DBpedia ontology class 

matching the predicted named entity class. A predicted 

named entity link is chosen only in the case when an 

extracted Wikipedia link isn’t given. Furthermore, 

predicted links are pruned if their DBpedia ontology class 

doesn’t match the named entity class predicted by the 

Stanford co reference solver. 

3. Co reference mentions; the most representative named 

entity link (according to the score described in section 

Using Co reference Chains) in the co reference chain is 

selected. We consider named entities inferred through co 

reference chains as the least trustworthy and select them 

only if an extracted or predicted named entity link is not 

given. A mention placed in the wrong co reference chain 

will be considered as an incorrect named entity link; a 

situation which Wikifier can rectify with higher precision. 

Using Co reference Chains. Co reference chains are used to 

propagate  named entity links to arguments having neither 

an extracted nor a predicted named entity link. This 

situation arises most commonly for arguments consisting of 

a single pronoun. Before propagation takes place, we 

determine the most representative named entity link in the 

Co reference chain using a ranking and scoring system: – 

Extracted named entity links are always selected over 

predicted links. – A score of +2 is given to a named entity 

link if it has a DBpedia ontology class matching the 

predicted named entity class. 

– The score is increased by the number of tokens of the 

named entity minus 1. 

– If a tie is given between equally scoring named entity 

links, the link closest to the top of the chain is selected. 

We derived the set of scoring rules by performing an 

empirical examination of coreference 

chains. We observed that coreference chains representing 

people, often started with a mention containing the full 

name, followed by single-token mentions having only the 

first or last name. The named entity links of single-token 

mentions, as predicted by Wikifier, often incorrectly 

pointed to either a place or a family. By rewarding named 

entity links having multiple tokens and matching ontology 

classes, we filtered these incorrect links. Table 1 shows an 

example, where the mention Robert Alton, a person name, 

is given the highest score due to matching entity classes 

and token length. Although the mention Alton refers to the 

same entity and belongs to the co reference chain, an 

incorrect named entity link to a city (Alton, Illinois) has 

been predicted. Given our previous rules, the predicted 

named entity link is discarded due to a mismatch with the 

predicted named entity class. The correct named entity link 

is thus resolved by propagating the link through the co 

reference chain. Unmapped Triple Generation. Given a set 

of extracted RDF subjects and objects, we create binary 

relations from n-ary predicate–argument relations by a 

combinatorial generation. We discover negative relations by 

searching the argument roles for AMNEG; these are then 

discarded. 

 

III. CONCLUSIONS 

 

The framework for unstructured data processing and 

example case study of resume management system yielded 

some learning’s. We attempt to list some of them here, not 

in order of importance. 

A. Generic Pre-Observations 

•Intelligent classification of unstructured data types yields to 

better processing techniques. 

•Common techniques can be exploited for greater benefit if 

we know in advance as to what kind of information we 

would be looking at. 

•Application building around unstructured data is complex 

and time consuming task 

B. Specific Post Conclusions 

•The understanding of data set improves the design quite 

significantly and yields to better database design. In this 

particular resume processing was better done because of 

indexing technique. 

•Solutions that work on unstructured data fit in today’s web 

architecture and in very rare cases may need modification to 

n-tier mode. 

•The custom needs to such application can be folded into 

business logic of web applications. 

•XML formatting is important tool that aids for unstructured 

custom reporting. 

•The maximum task in entire work was sent inpresentation 

logic, which will remain pain point and will need custom 

work every time. 

 

Experimental Results 

The aim of the evaluation is to answer the question of how 

much information in the form of entity relation triples can be 

extracted from sentences.We also wish to evaluate the 

quality of the extracted triples. Since there is no gold 

standard annotation of entities found in the main text of 

Wikipedia articles, we performed the evaluation by 

manually analyzing 200 randomly sampled sentences from 

different articles. Sampled sentences are examined for 

relevant subject-predicate-object triples and compared to the 

correspondingretrieved triples. We computed the precision, 
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recall, and F1 scores, and in the occurrence of an extraction 

error, we made a note of the originating source. We 

evaluated the attributes of each triple in a strict sense: Each 

extracted attribute must exactly match the corresponding 

attribute in the sentence. For instance, in evaluating the 

birthplace of a person, if a sentence states a city as the 

location, we only consideran extracted  DBpedia link to the 

city as correct. In contrast, if the extracted link refers to a 

more generalized toponym, such as region or country, we 

mark the extracted object 

as erroneous. In total, we processed 114,895 randomly 

selected articles amounting to 2,156,574 sentences. The 

articles were processed in approximately 5 days on a 

cluster of 10 machines. 

 

 
Table 3, left, shows the number of processed articles 

categorized by DBpedia 

 

Ontology classes. From the processed articles, we extracted 

a total of 1,023,316 triples, of which 189,610 triples were 

mapped to the DBpedia ontology. The unmapped triples 

differ in having the predicate localized to the Propbank 

namespace. In Table 3, right, we can see that from the 

189,610 extracted triples, 15,067 triples already exist in the 

DBpedia dataset. This means that our framework 

introduced 174,543 new triples to the DBpedia namespace. 

Almost 3% of the extracted triples are duplicates, the 

majority of these are triples repeated only once. Since a 

statement with the same meaning can occur in more than 

one article, we consider these occurrences natural. In 

comparing the number of extracted triples to the number of 

processed sentences, we find that roughly every second 

sentence yields one extracted triple. In comparison to the 

number of processed articles, we extracted nearly 9 triples 

per article. The extracted mapped triples reached a F1 score 

of 66.3%, a precision of 74.3%, and a recall of 59.9%. The 

largest source of errors came from predicates, 46.4%, 

followed by subjects, 27.2%, and objects, 26.4%. Based on 

post-mortem analysis of the evaluated triples, we find that 

reasons for the extraction errors can be attributed to the 

following causes: 

– An incorrect mapping from the Propbank predicate-

argument roles to the DBpedia ontology properties. 

– A new entity is detected, that has previously not been 

introduced to the DBpedia datasets and therefore lacks a 

corresponding DBpedia URI. 

– The wrong URI is predicted for an entity and cannot be 

resolved or corrected by the scoring algorithm. 

– A mention is placed in the incorrect coreference chain by 

the coreference solver. 
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