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Abstract— Compressive Sensing (CS) signal reconstruction can be implemented using convex relaxation, non-convex, or local 

optimization algorithms. Though the re- construction using convex optimization, such as the Iterative Hard Thresholding 

algorithm is more accurate than matching pursuit algorithms, most researchers focus on matching pursuit algorithms because they 

are less computationally complex. Orthogonal Matching Pursuit (OMP) is a greedy algorithm, which solves the problem by 

choosing the most significant variable to reduce the least square error. Simultaneous OMP is an extension of OMP algorithm which 

contain multiple measurement vector (MMV). In this paper, we present an  architecture by using VHDL for the reconstruction of 

compressively sensed signal using the orthogonal matching pursuit (OMP) and simultaneous OMP. 

Index Terms—Cholesky decomposition, Compressive sensing, Orthogonal matching pursuit, Simultaneous OMP 

 
 

I. INTRODUCTION 

 

   Conventional approaches to sampling signals or 

images follow Shannons sampling theorem: the sampling 

rate must be at least twice the maximum frequency present 

in the signal (the so called Nyquist rate). In fact, this 

principle underlies nearly all signal acquisition protocols 

used in consumer audio and visual electronics, medical 

imaging devices, radio receivers, and so on. For some 

signals, such as images that are not naturally band limited, 

the sampling rate is dictated not by the Shannon theorem but 

by the desired temporal or spatial resolution. However, it is 

common in such systems to use an antialiasing low-pass 

filter to band limit the signal before sampling, and so the 

Shannon theorem plays an implicit role. In the field of data 

conversion, for example, standard analog to digital 

converter (ADC) technology implements the usual 

quantized Shannon representation; the signal is uniformly 

sampled at or above the Nyquist rate. 

 

 Compressive sensing technique is a data sampling 

and compression approach, used by acquiring a compressed 

signal representation of length M (M<N) for a signal of 

length N. It is a powerful technique to represent signals at a 

sub- Nyquist sampling rate, provided the signal is known to 

be sparse in some domain. It retains the capacity of perfect 

(or near perfect) reconstruction of the signal from fewer 

samples than provided by Nyquist rate sampling. CS 

technique has attracted considerable attention from across a 

wide array of fields like applied mathematics, statistics and  

engineering including signal processing areas like MR 

imaging, speech processing,  analog to digital conversion 

etc. Sparse Model for signals, which represents signals in 

sparse form in some representation basis. All natural images 

have sparse representation in certain basis like Wavelets, 

DCT, Curvelets etc. 

 

Compressive sensing is generally performed by 

multiplying the original signal with a measurement matrix 

𝚽 ∈ 𝐑𝐊𝐗𝐍. 

   𝐲 = 𝚽𝐱                 (1)  

 

To reconstruct the original signal from compressively 

sampled signal  𝐲 ∈ 𝐑𝐊 requires the knowledge of the 

measurement matrix  𝛷.The reconstruction process lie in 

finding most effective solution to an underdetermined 

system of linear equation  𝐲 = 𝚽𝐱, where measurement 

matrix  𝚽 and measured signal y are known. 

  

II. CURRENT STATE OF ART 

 

Various algorithms have been proposed for the 

reconstruction of signals from the compressively sensed 

samples. Matching pursuit (MP) [1] is a common approach 

for sparse signal reconstruction, which greedily computes an 

approximation to the original signal. MP algorithm 

iteratively identifies the column of measurement matrix that 

is most correlated to a current signal estimate, followed by a 

simple update that computes an improved signal estimate. 

While each iteration of MP requires very low computational 

effort, the number of iterations heavily depends on the 
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sparsity level ’m’, and consequently, MP is more suitable 

for signals with high sparsity degrees[1]. Orthogonal 

Matching Pursuit (OMP) proposed in [2] is a more complex 

algorithm that incorporates a least- squares (LS) step to 

compute a signal estimate. In OMP, the LS step signicantly 

reduces the number of required iterations compared with 

MP, but it results in a high computational complexity per 

iteration [3]. This complexity is mainly due to the large 

number of inner-product computation (IPC), several 

comparison operations, and matrix inversion. Therefore, the 

high computational complexity of OMP algorithm is a major 

concern for its implementation to achieve real-time 

reconstruction of compressively sensed signals. Several 

software implementations on general purpose computer and 

graphic processor unit (GPU) have been proposed in the 

literature. It is observed that the acceleration achieved by the 

GPU-based implementation is signicantly better than CPU-

based implementation [4]. However, the GPU-based 

implementation has a major problem of intermittent memory 

bandwidth between the main memory and the GPU [9], 

which does not facilitate regular flow of data 

communication with the host [4]. Several schemes have 

been proposed to accelerate individual computing stages of 

OMP algorithm in the hard- ware solutions presented in [6]. 

We found only a few proposed designs for the complete 

implementation of OMP algorithm in hardware. Recently, 

Septimus and Steinberg [4] and Stanislaus and Mohsenin [7] 

have presented a field programmable gate array (FPGA) 

implementation of OMP algorithm. However, a close 

examination of the algorithm and the proposed architectures 

reveals that those are from MP implementation rather than 

OMP, as stated by the authors. Septimus and Steinberg [4] 

have proposed an FPGA based design that involves 

signicantly higher cycle pe- riod due to a large size inner 

product (IP) in the critical path. Stanislaus and Mohsenin [7] 

have also proposed an FPGA implementation of MP 

algorithm based on QR-decomposition scheme for matrix 

inversion to reduce the computation complexity. Blach et 

al.[8] have presented FPGA implementations of 

reconstruction algorithms based on OMP. In the design 

presented in [8], the matrix inversion is based on CORDIC 

divider with high latency and a sequential execution of 

several parts of matrix multiplication. 

 

III. METHODS FOR COMPRESSIVE SENSING 

CONVEX RELAXATION 

 

It replaces the l0 norm by l1 norm to reduce the 

problem to a convex problem. Three main directions under 

this category, namely the basis pursuit (BP),the basis pursuit 

denoising (BPDN) and the least absolute shrinkage and 

selection operator (LASSO). The BP problem can be solved 

by standard polynomial time algorithms of linear 

programming (LP) methods. The exact K-sparse signal re- 

construction by BP algorithm based on RIP. The BPDN and 

LASSO problems can be solved by efficient quadratic 

programming (QP) like primal dual interior method. 

However, the regularization parameters λ and φ play a 

crucial role in the performance of these algorithms 

 

IV. GREEDY PURSUITS 

 

This approach recovers the K-sparse signal by iteratively 

constructing the support set of the sparse signal (index of 

non-zero elements in the sparse vector). At each iteration, it 

updates its support set by appending the index of one or 

more columns (called atoms) of the matrix φ (often called 

dictionary) by some greedy principles based on the 

correlation between current residual of observation vector 

and the atoms. Few examples of greedy algorithms are 

Orthogonal Matching Pursuit (OMP) [6], Compressive 

Sampling Matching Pursuit (CoSaMP), Subspace Pursuit 

(SP), Iterative Hard Thresholding (IHT), Generalized 

Orthogonal Match- ing Pursuit (gOMP). MP is a class of 

iterative algorithm that decomposes a signal into linear 

expansion functions that form a dictionary. At each iteration 

it choose dictionary elements in a greedy fashion that best 

approximate the signal.OMP reconstructs the K-sparse 

signal in K steps by selecting one atom in each iteration. 

CoSaMP and SP select a indexed number of atoms (2K in 

CoSaMP and K in SP, for K-sparse signal) in each iteration 

while keeping the provision of rejecting a previously 

selected atom. IHT uses gradient descent followed by a hard 

thresholding that sets all but the K largest (in magnitude) 

elements in a vector to zero. 

 

V.  PROPOSED SYSTEM 

 

CS is based on the fact that the information from a 

signal may be captured by a small set of nonadaptive linear 

measurements when the signal is sparse in some basis [1]. 
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An m-sparse signal vector consists of at most m nonzero 

scalar components. A signal vector  𝑥 ∈ 𝑅𝑁  acquired via 

linear measurements is given by 

 

𝑦 = ф𝑥 + 𝑛  (2) 

 

where ф ∈ 𝑅𝐾𝑋𝑁 is a rectangular sampling matrix modeling 

the sampling system,𝑦 ∈ 𝑅𝐾is the measurement vector, and 

n is a K-point vector that represents the measurement error 

or noise. The columns of matrix φ denoted 

(ф
1

,ф
2

, …… . .ф
𝑛

) are K-point vectors (K< N), also called 

atoms. The length of measurements vector y is in general 

assumed to be much smaller than the length of signal vector 

x. 

 

A. OMP ALGORITHM 

It takes the measurement matrix Φ and the 

measured vector y as inputs and provides an estimate  𝑥  of 

the original signal x. This algorithm is iterative. During each 

iteration, it chooses one of the columns of Φ, which is most 

strongly correlated with the residual of measurements y, and 

then it removes the contribution of this column to compute a 

new residual. It also computes a new estimate of the original 

signal; after m iterations, the algorithm will generate the 

final estimate of the original signal.  

 

 
Figure 1: Block diagram of OMP algorithm 

 

The OMP algorithm proposed in [7] is given in Algorithm1. 

     

   Algorithm 1:OMP Reconstruction Algorithm 

 

Inputs: 𝛷 ∈ 𝑅𝐾𝑋𝑁      :  The sampling matrix 

𝑦 ∈ 𝑅𝐾               :  The measurement 

vector 

 m                        :  The sparsity level of 

the signal 

Output: 𝑥 ∈ 𝑅𝑁             :  The estimate of the 

original signal 

Procedure: 

1. Initialize  𝑟0 = 𝑦, index set Ʌ0  = {∅}, set 

iteration counter i=1. 

2. Find index:  𝜆𝑖 = max⁡| < 𝑟𝑖−1, 𝛷𝑗 > |. 

3. Update index set:  Ʌ𝑖=Ʌ𝑖−1 ∪ {𝜆𝑖}. 

4. Update ф:  ф 
𝑖

= [ф 
𝑖−𝑖

ф
𝜆𝑖

]. 

5. Solve the Least Square Problem for new 

estimate 𝑥   for the original signal x: 

 𝑥 𝑖 = min⁡||𝑦 − ф 
𝑖
𝑥|| 

6. Calculate new residual  𝑟𝑖 = 𝑦 − ф 
𝑖
𝑥 𝑖  

7. Increment the counter and return to step 2 

if i ˂ m. 

8. Retrieve the final estimate 𝑥   
 

The optimization problem of step 2 of Algorithm 1 is solved 

by calculating correlation vector w as follows: 

𝑤 = ф
𝑇𝑟𝑖−1                                    

 (3) 
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Figure 2:Flow graph of one iteration of OMP algorithm 

 

where 𝑟𝑖−1 is the residual vector of  (𝑖 − 1)𝑡ℎ iteration. The 

index  𝜆𝑖  of the component of  w having maximum  absolute 

value is identified, and the corresponding column is 

extracted from ф to constitute matrix ф  of such extracted 

columns. Ac- cording to step 4 of Algorithm 1, an estimate 

of the reconstructed signal 𝑥 𝑖  is obtained by solving the 

following 

𝑦 = ф 𝑥                          (4) 

 

Where ф  a (K > m) rectangular matrix with K > m. The 

solution of  (3) is obtained by solving the following: 

 

𝑤 = 𝐶 𝑥    (5) 

Where 𝐶 = ф ф 
𝑇
 is a symmetric matrix ∈  𝑅𝑚×𝑚 . Equation 

(4) can be solved by matrix inversion or by forward / 

backward  substitution . 

 

Various methods can be used to find the inverse of 

a matrix, such as Cholesky factorization, LU, and QR 

decomposition methods. We have used the modified 

Cholesky factorization method  for matrix inversion since it 

does not require square root operations. Based on the 

modified Cholesky factorization [10],  matrix C can be 

expressed as the product of three matrices as 

  

𝐶 = 𝐿𝐷𝐿𝑇   (6) 

 

The lower triangular matrix L and diagonal matrix D are 

computed using the following relations:  

𝐿𝑖,𝑗 =
1

𝐷𝑖 ,𝑗

 𝐶𝑖,𝑗 − (𝐿𝑖,𝑘 , 𝐿𝑗 ,𝑘 , 𝐷𝑘,𝑘)
𝑗−1

𝑘=1
                  (7) 

 

𝐷𝑖 ,𝑖 = 𝐶𝑖,𝑗 −  𝐿𝑖,𝑘
2𝐷𝑘,𝑘                                (8)

𝑗−1

𝑘=1

 

 

 

The inverse of matrix C is obtained as follows: 

 

𝐶−1 =  𝐿−1 𝑇𝐷−1𝐿−1                                 (9) 

The inversion of matrix D is obtained by taking inversion of 

its diagonal components, while the inversion of matrix L is 

performed iteratively using the relation for i > j. In step 6 of 

Algorithm 1, the residue vector ′𝑟′ is updated for the next 

iteration using the relation 

                   𝑟𝑖 = 𝑦 − ф 𝑥                                (10) 

 

B. SIMULTANEOUS ORTHOGONAL MATCHING 

PURSUIT 

 

 In Simultaneous OMP, the signal model is [2]:  

1. K sparse signals 𝑥𝑘 ∈ 𝑅𝑁 to be recovered (1≤ k≤ K).  

2. A common linear measurement process described by the 

matrix ф ∈ 𝑅𝑀×𝑁. 
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3. K measurement vectors  𝑦𝑘 ∈ 𝑅𝑀gathering the 

observations of each sparse signal when acquired through ф 

: 

𝑦𝑘 = ф𝑥𝑘  

 

To simplify the signal model, we introduce Equation (11) to 

summarize the K equations  𝑦𝑘 = ф𝑥𝑘  into a single one:  

𝑌 = ф𝑋                                     (11) 

 

 where Y = (𝑦1 … . . 𝑦𝐾) ∈𝑅𝑀×𝐾  and X = (𝑥1 … . . 𝑥𝐾) 

∈𝑅𝑁×𝐾 . 

Using this formulation, the support of X, denoted 

by supp(X) is equal to the joint support 𝑆 ≔∪𝑘∈𝐾 supp(𝑥𝑘 ). 

When a model involves one measurement vector, it is 

referred to as a single measurement vector (SMV) model 

while models incorporating K > 1 measurement vectors are 

multiple measurement vector (MMV) models. The columns 

of ф are often referred to as the atoms. This terminology 

being typically associated with dictionaries, it is worth 

emphasizing that the problem of recovering a s-sparse 

vector x on the basis of the measurement vector 𝑦 = ф𝑥 is 

equivalent to finding s columns (or atoms) of the 

(dictionary) matrix ф that fully express y when using the 

proper linear combination. 

 

 The simultaneous orthogonal matching pursuit 

(SOMP) algorithm, which is described in Algorithm 2, is an 

extension of OMP to the MMV case and performs a joint 

support recovery.  

 

Algorithm 2: SOMP Algorithm for Signal Recovery 

Require:  𝑌 ∈ 𝑅𝑀×𝐾 ,ф ∈ 𝑅𝑀×𝑁 , 𝑠 ≥ 1 

1. Initialization: 𝑅(0) ← 𝑌 𝑎𝑛𝑑 𝑆0 ← ∅ 

2. 𝑡 ← 0 

3. While t < s do 

4. Determine the atom of ф to be included in the 

support :   𝑗𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 ∈ 𝑁 (‖((𝑅
𝑡)𝑇)ф

𝑗
‖)1 

5. Update the support: 𝑆𝑡+1 ← 𝑆𝑡 ∪ 𝑗𝑡  
6. Projection of each measurement vector onto span  

 (ф
𝑆𝑡+1

) : 

𝑌𝑡+1 ← ф
𝑆𝑡+1  

ф
𝑇
𝑆𝑡+1

𝑌 

7. Projection of each measurement vector onto span  

 ф
𝑆𝑡+1

 
𝑇

: 

𝑅(𝑡+1) ← 𝑌 − 𝑌(𝑡+1) 

8. 𝑡 ← 𝑡 + 1 

9. end while 

10. return Ss Support at last step 

 

As shown in Algorithm 2, at each iteration t , SOMP 

adds to the estimated support the index 𝑗𝑡  of the atom ф
𝑗𝑡

 

maximizing the metric ‖ 𝑅𝑡 
𝑇ф

𝑗
‖1 =  | < ф

𝑗
, 𝑟𝑘

 𝑡 >𝐾
𝑘=1

|(steps4and5)where r(t) k denotes the 𝑘𝑡ℎcolumn of the 

residual matrix R(t) . Each measurement vector is then 

projected onto the orthogonal complement of  span  (ф
𝑆𝑡+1

), 

denoted by span  ф
𝑆𝑡+1

 
𝑇

, during steps 6 and 7. The 

algorithm terminates when the prescribed number of 

iterations s has been reached. It is worth noticing that an 

atom cannot be picked twice as, once chosen, the projection 

onto span  ф
𝑆𝑡+1

 
𝑇

ensures that  

< ф, 𝑟𝑘
𝑡+1 > = 0  if  ф ∈ 𝑆𝑡 . 

V. RESULT AND DISCUSSIONS 

In this system, simulation of OMP algorithm and SOMP 

algorithm for compressive sensing reconstruction is 

performed using MATLAB R2013a and Modelsim SE 6.1f. 

 A. OMP Algorithm in MATLAB 

OMP algorithm is first simulated using MATLAB R2013 

a. 

 

Table 1:Signals and their size used in OMP algorithm 
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Figure 3: Result of CS reconstruction using OMP 

 

B. Simulation result of OMP Algorithm 

 

OMP Algorithm is simulation is one using 

Modelsim. The MSE and PSNR is computed using Matlab. 

 

 
Figure 4Simulation resuly of OMP algorithm 

 

The mean square error is 1.9271e-08 and PSNR (in dB) is 

84.7 dB. 

 

C. SOMP Algorithm in MATLAB 

Three signals (speech signal) are simultaneously 

transmitted and recovered using SOMP algorithm. SOMP 

algorithm is an extension of OMP algorithm, that is, single 

measurement vector (SMV) to multiple measurement vector 

(MMV). Figure 5. shows the simulation result of SOMP 

algorithm with frame size 512. 

 
Figure 5:Result of CS reconstruction using SOM 

Table 2:PSNR and MSE for different frame rate of speech 

signal with SOMP algorithm 

 
 

D. SOMP Algorithm simulation results 

The simulation of SOMP algorithm is done in 

Modelsim SE. Two random signals (1024×2) are used. 

 

 
Figure 6:Simulation result of SOMP algorithm 

 

The mean square error and PSNR is computed 

using Matlab.The mean square error of the signal is 

4.6656e−05 and the PSNR (in dB) is 51.18dB. 

 

VI. APPLICATIONS 

The fact that a compressible signal can be captured 
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efficiently using a number of incoherent measurements that 

is proportional to its information level which has 

implications that are far reaching and concern a number of 

possible applications: 

Data compression: In some situations, the sparse 

basis may be unknown at the encoder or impractical to 

implement for data compression. In random sensing, 

however, a randomly designed φ can be considered a 

universal encoding strategy, as it need not be designed with 

regards to the structure of sparse basis. This universality 

may be particularly helpful for distributed source coding in 

multi signal settings such as sensor networks. 

Channel coding: CS principles (sparsity, 

randomness, and convex optimization) can be turned around 

and applied to design fast error correcting codes over the 

reals to protect from errors during transmission. 

Data acquisition: In some important situations the 

full collection of n discrete time samples of an analog signal 

may be difficult to obtain (and possibly difficult to 

subsequently compress). Here, it could be helpful to design 

physical sampling devices that directly record discrete, low 

rate incoherent measurements of the incident analog signal. 

 

VII. CONCLUSION 

There are different recovery algorithms for the 

reconstruction of sparse signal. This paper describes the 

reconstruction using OMP algorithm. In OMP, a single 

measurement vector (SMV) model signal is used. It is 

modeled using Matlab and simulation is done by using 

Modelsim. The quality of reconstructed data is evaluated by 

computing PSNR for different data precision. Then this 

algorithm is extended to multiple measurement vector 

(MMV) model signal, that is, simultaneous orthogonal 

matching pursuit (SOMP). This algorithm is analyzed and 

verified in Matlab by using speech signals. Somp algorithm 

simulation is modeled using Modelsim and computed the 

PSNR.  
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