
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 194

An Advanced Architecture with low Complexity of
Partially Parallel Polar Encoder

[1]

 U.Mahendra Narasimha Raj
 [2]

E.V.Narayana

[1]

 PG Student
[2]

Assistant Professor

[1][2]
 Department of ECE, UCEK, JNTUK, KAKINADA

Abstract: -- Due to the channel achieving property, the polar code has become one of the most favorable error-correcting codes. As

the polar code achieves the property asymptotically, however, it should be long enough to have a good error-correcting perfor-

mance. Although the previous fully parallel encoder is intuitive and easy to implement, it is not suitable for long polar codes be-

cause of the huge hardware complexity required. In this brief, we analyze the encoding process in the viewpoint of very-large-scale

integration implementation and propose a new efficient encoder architecture that is adequate for long polar codes and effective in

alleviating the hardware complexity. As the proposed encoder allows high-throughput encoding with small hardware complexity, it

can be systematically applied to the design of any polar code and to any level of parallelism.

Index Terms—Polar codes, polar encoder, very-large-scale integration (VLSI) optimization

I. INTRODUCTION

Polar Code is a new class of error-correcting codes that

provably achieves the capacity of the underlying channels. In

addition, concrete algorithms for constructing, encoding, and

decoding the code are all developed [1]–[5]. Due to the

channel capacity achieving property, the polar code is now

considered as a major breakthrough in coding theory, and the

applicability of the polar code is being investigated in many

applications, including data storage devices [6], [7].

Although the polar code achieves the underlying

channel capacity, the property is asymptotical since a good

error- correcting performance is obtained when the code

length is sufficiently long. To be close to the channel

capacity, the code length should be at least 220 bits, and

many literature works [7] – [9] Introduced polar codes

ranging from 210 to 215 to achieve good error-correcting

performances in practice. In addition, the size of a message

protected by an error-correcting code in storage systems is

normally 4096 bytes, i.e., 32 768 bits, and is expected to be

lengthened to 8192 bytes or 16 384 bytes in the near future.

Although the polar code has been regarded as being

associated with low complexity, such a long polar code

suffers from severe hardware complexity and long latency.

Therefore, an architecture that can efficiently deal with long

polar codes is necessary to make the very-large-scale

integration (VLSI) implementation feasible.

Various theoretic aspects of the polar code,

including Code construction and decoding algorithms, have

been investigated in previous works [1]–[5], and efficient

decoding structures have been studied. Successive

cancelation (SC) decoding has been traditionally used in [9]–

[11], and advanced decoding algorithms such as belief

propagation decoding [12], list de- coding [13], and implied

SC [7], [14] have been recently employed.

On the other hand, hardware architectures for polar

encoding have rarely been discussed. Among a few

manuscripts dealing with hardware implementation, [1]

presented a straight- forward encoding architecture that

processes all the message bits in a fully parallel manner. The

fully parallel architecture is intuitive and easy to implement,

but it is not suitable for long polar codes due to excessive

hardware complexity. In addition, the partial sum network

(PSN) for an SC decoder [7], [8], [11] is regarded as a polar

encoder. Due to the nature of successive decoding, however,

the number of inputs is severely restricted in the PSN, 1 or 2

bits at a time. Since a polar encoder usually takes the inputs

from a buffer or memory of which bit width is much larger,

the PSN is not appropriate for designing a general polar

encoding architecture. For the first time, this brief analyzes

the encoding process in the viewpoint of VLSI

implementation and proposes a partially parallel architecture.

The proposed encoder is highly attractive in implementing a

long polar encoder as it can achieve a high throughput with\

small hardware complexity.

II. POLAR E NCODING

The polar code utilizes the channel polarization

phenomenon that each channel approaches either a perfectly

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 195

reliable or a completely noisy channel as the code length

goes to infinity over a combined channel constructed with a

set of N identical subchannels [1]. As the reliability of each

subchannel is known a priori, K most reliable subchannels

are used to transmit information, and the remaining

subchannels are set to predetermined values to construct a

polar (N , K) code. Since the polar code belongs to the class

of linear block codes, the encoding process can be

characterized by the generator matrix. The generator matrix

GN for code length N or 2n is obtained by applying the nth

Kronecker power to the kernel matrix F. Given the generator

matrix, the codeword is computed by x = uGN , where u and

x represent information and codeword vectors, respectively.

Throughout this brief, we assume that information vector u is

arranged in a natural order, whereas codeword vector x is

arranged in a bit-reversed order to simplify the explanation

on the encoding process. A straightforward fully parallel

encoding architec- ture was presented in [1], which has

encoding complexity of O(N log N) for a polar code of

length N and takes n stages when N = 2n . For example, a

polar code with a length of 16 is implemented with 32 XOR

gates and processed with four stages, as depicted in Fig. 1. In

the fully parallel encoder, the whole encoding process is

completed in a cycle.

Fig. 1. Fully parallel architecture for encoding a 16-bit

polar code

The fully parallel encoder is intuitively designed

based on the generator matrix, but implementing such an

encoder becomes a significant burden when a long polar code

is used to achieve a good error correcting performance. In

practical implementations, the memory size and the number

of XOR gates increase as the code length increases. None of

the previous works has deeply studied how to encode the

polar code efficiently, although various tradeoffs are possible

between the latency and the hardware complexity.

III. P ROPOSED POLAR E NCODER

In this section, we propose a partially parallel

structure to encode long polar codes efficiently. To clearly

show the proposed approach and how to transform the

architecture, a 4-parallel encoding architecture for the 16-bit

polar code is exemplified in depth. The fully parallel

encoding architecture is first transformed to a folded form

[15], [18], and then the lifetime analysis [16] and register

allocation [17] are applied to the folded architecture. Lastly,

the proposed parallel architecture for long polar codes is

described

Fig. 3. Original delay requirements D(wij) and

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 196

Recalculated delay require- MENTS D (WIJ)

Fig. 4. Linear lifetime chart for w2j and w3j .

A. Folding Transformation

The folding transformation [15], [18] is widely used to

save hardware resources by time-multiplexing several

operations on a functional unit. A data flow graph (DFG)

corresponding to the fully parallel encoding process for 16-

bit polar codes is shown in Fig. 2, where a node represents

the kernel matrix operation F , and wij denotes the j th edge

at the ith stage. Note that the DFG of the fully parallel polar

encoder is similar to that of the fast Fourier transform [18],

[19] except that the polar encoder employs the kernel matrix

instead of the butterfly operation. Given the 16-bit DFG, the

4-parallel folded architecture that processes 4 bits at a time

can be realized with placing two functional units in each

stage since the functional unit computes 2 bits at a time. In

the folding transformation, determining a folding set, which

represents the order of operations to be executed in a

functional unit, is the most important design factor [15]. To

construct efficient folding sets, all operations in the fully

parallel encoding are first classified as separate folding sets.

Since the input is in a natural order, it is reasonable to

alternatively distribute the operations in the consecutive

order.

Thus, each stage consists of two folding sets, each of

which contains only odd or even operations to be performed

by a separate unit. Considering the four-parallel input

sequence in a natural order, stage 1 has two folding sets of

{A0, A2, A4, A6} and {A1, A3, A5, A7}. Each folding set

contains four elements, and the position of an element

represents the operational order in the corresponding

functional unit. Two functional units for stage 1 execute A0

and A1 simultaneously at the beginning and A2 and

Fig. 5. Register allocation table for w2j and w3j .

Fig. 6. Proposed 4-parallel folded architecture for encoding

the polar (16, K) codes.

A3 at the next cycle, and so forth. The folding sets

of stage 2 have the same order as those of stage 1, i.e., {B 0,

B 2, B 4, B 6} and {B 1, B 3, B 5, B 7}, since the four-parallel

input sequence of stage 2 is equal to that of stage 1.

Furthermore, to determine the folding sets of another stage s,

the property that the functional unit processes a pair of inputs

whose indices differ by 2s−1 is exploited. In the case of stage

3, two data whose indices differ by 4 are processed together,

which implies that the operational distance of the

corresponding data is two as the kernel functional unit

computes two data at a time. For instance, w2,0 and w2,4 that

come from B 0 and B 2 are used as the inputs to C 0. Since

both inputs should be valid to be processed in a functional

unit, the operations in stage 3 are aligned to the late input

data. Cyclic shifting the folding sets right by one, which can

be realized by inserting a delay of one time unit, is to enable

full utilization of the functional units by overlapping adjacent

iterations. As a result, the folding sets of stage 3 are

determined to {C 6, C 0, C 2, C 4} and {C 7, C 1, C 3, C 5},

where C 6 in the current iteration is overlapped with A0 and

B 0 in the next iteration. In the same manner, the property

that the functional unit processes a pair of inputs whose

indices differ by 8 is exploited in stage 4. The folding sets of

stage 4 are {D2, D4, D6, D0} and {D3, D5, D7, D1}, which

are obtained by cyclic shifting the previous folding sets of

stage 3 by two. Generally speaking, a stage whose index s is

less than or equal to log2 P, where P is the level of

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 197

parallelism, has the same folding sets determined by evenly

interleaving the operations in the consecutive order, and

another stage whose index s is larger than log2 P has the

folding sets obtained by cyclic shifting the previous folding

sets of stage s − 1 right by s − log2 P .

Now, let us consider the delay elements required in

the folded architecture more precisely. When an edge wij

from functional unit S to functional unit T has a delay of d,

the delay requirements for wij in the F -folded architecture

can be calculated as

TABLE I

COMPARISON OF POLAR (N, K) ENCODERS

WITH VARIOUS PARALLELISM

D(wij) = F d + t – s (1) where t and s denote the

position in the folding set corresponding to T and S ,

respectively. Note that (1) is a simplified delay equation [15]

derived with assuming that the kernel functional unit is not

pipelined. The delay requirements of the 4-folded

architecture, i.e., D(wij) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15, are

summarized in Fig. 3. For instance, w2,0 from B 0 to C 0

demands one delay since d = 0, t = 1, and s = 0. Note that

some edges indicated by circles have negative delays. For the

folded architecture to be feasible, the delay requirements

must be larger than or equal to zero for all the edges.

Pipelining or retiming techniques can be applied to the fully

parallel DFG in order to ensure that its folded hardware has

nonnegative delays.

Every edge with a negative delay should be

compensated by inserting at least one delay element to make

the value of (1) not negative. We have to make sure that the

two inputs of an operation pass through the same number of

delay elements from the starting points. If they are different,

additional delay

TABLE II

SYNTHESIS RESULTS OF POLAR (8192, K)

ENCODERS

TABLE III

GATE COUNTS OF POLAR (N , K) ENCODERS

Elements are inserted to make the paths have the

same delay elements. In Fig. 3, for example, four edges with

zero delays are specially marked with negative zeros since

additional delays are necessary due to the mismatch of the

number of delay elements. The DFG is pipelined by inserting

delay elements, as shown in Fig. 2, where the dashed line

indicates the pipeline cut set associated with 12 delay

elements. The delay requirements of the pipelined DFG D

(wij) are recalculated based on (1) and shown at the bottom

of Fig. 3. As a result, 8 functional units and 48 delay

elements in total are enough to implement the 4-parallel 4-

folded encoding architecture based on the folding sets.

B. Lifetime Analysis and Register Allocation

Although a folded architecture for 16-bit polar

encoding is presented in the previous section, there is room

for minimizing the number of delay elements. The lifetime

analysis [16] is employed to find the minimum number of

delay elements required in implementing the folded

architecture. The lifetime of every variable is graphically

represented in the linear lifetime chart illustrated in Fig. 4.

Since all the edges starting from stage 1 demand no delay

elements, only w2j and w3j are presented in Fig. 4. For

instance, w3,0 is alive for two cycles as it is produced at

cycle 1 and consumed at cycle 3. The number of variables

alive in each cycle is presented at the right side of the chart.

Note that the number of live variables at the fourth or later

clock cycles takes into account the next iteration overlapped

with the current iteration. Consequently, the maximum

number of live variables is 12, which means that the folded

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 198

architecture can be implemented with 12 delay elements

instead of 48. Once the minimum number of delay elements

has been determined, each variable is allocated to a register.

For the above example, the register allocation is tabularized

in Fig. 5. In the register allocation table [17], all the 12

registers are shown at the first row, and every row describes

how the registers are allocated at the corresponding cycle.

With taking into account the 4-parallel processing, variables

are carefully allocated to registers in a forward manner. In

Fig. 5, an arrow dictates that a variable stored in a register is

migrated to another register, and a circle indicates that the

variable is consumed at the cycle. For example, w2,0 and

w2,4 are consumed in a functional unit to execute operation

C 0 that generates w3,0 and w3,4 . At the same time, w2,1

and w2,5 are consumed in another functional unit to execute

operation C 1 that produces w3,1 and w3,5 . The migration of

the other variables can be traced by following the register

allocation table.

Finally, the resulting 4-parallel pipelined structure

proposed to encode the 16-bit polar code is illustrated in Fig.

6, which consists of 8 functional units and 12 delay elements.

A pair of two functional units takes in charge of one stage,

and the delay elements are to store variables according to the

register allocation table. The hardware structures for stages 1

and 2 can be straightforwardly realized as no delay elements

are necessary in those stages, whereas for stages 3 and 4,

several multiplexers are placed in front of some functional

units to configure the inputs of the functional units. The

proposed architecture continuously processes four samples

per cycle according to the folding sets and the register

allocation table. Note that the proposed encoder takes a pair

of inputs in a natural order and generates a pair of outputs in

a bit-reversed order, as shown in Fig. 2. As the functional

unit in the proposed architecture processes a pair of 2 bits at a

time, the proposed architecture maintains the consecutive

order at the input side and the bitreversed order at the output

side if a pair of consecutive bits is regarded as a single entity.

IV. A NALYSIS AND C OMPARISON

In the proposed architecture, the number of functional

units required in the implementation depends on the code

length N and the level of parallelism P . Since a functional

unit representing the kernel matrix F processes two bits at a

time, each stage necessitates P/2 functional units and the

whole structure requires P/2 log2 N functional units in total.

Moreover, the minimal number of delay elements required in

the proposed architecture is N − P , as explained below. The

stages whose indices s are larger than log2 P require P delay

blocks of length 2s−log2 P −1, whereas the other stages can

be implemented with no delay elements. In other words, the

total number of delay elements is log2 N

P (2s−log2 P −1) = P (1 + 2 + s=log2 P +1 + 2log2 N −log2

P −1) = P (2log2 N −log2 P − 1) = N − P. (2)

Given the hardware resources, the proposed partially parallel

architecture can encode P bits per cycle. To sum up, Table I

shows how the hardware complexity and the throughput are

dependent on the level of parallelism Furthermore, Table II

demonstrates the proposed (8192, K) encoder architecture

synthesized in a 130-nm CMOS technology for various

parallelism. As the level of parallelism increases, the

hardware complexity measured in terms of the gate count is

significantly deteriorated due to the complex logic part,

whereas the register part in all encoder architectures

maintains similar complexity if we take into account a P -bit

input buffer needed to hold the data to be read from the

memory. On the other hand, the higher parallel architecture

has advantages of small latency and high encoding

throughput. Therefore, the relationship shown in Table II can

be applied to derive the most efficient partially parallel

encoder architecture for a given requirement. The throughput

per gate is proportional to the level of parallelism as the

complexity of the register part is almost independent of the

parallelism. Moreover, Table III shows how much the

partially parallel encoders save the hardware complexity

compared with the fully parallel architecture [1] for various

code lengths. For fair comparison, all the encoders designed

for the code lengths ranging from 210 to 214 are constrained

by a working frequency of 200 MHz to assure a decoding

performance over 6.4 Gb/s even for the 32-parallel ar-

chitecture. Note that the percentage in the parenthesis

indicates the ratio of the proposed encoder to the fully

parallel encoder. Compared with the fully parallel encoder,

the proposed encoder saves the hardware by up to 73%. can

save the hardware by up to 73%

V. CONCLUSION

This brief has presented a new partially parallel

encoder architecture developed for long polar codes. Many

optimization techniques have been applied to derive the

proposed architecture. Experimental results show that the

proposed architecture fully parallel architecture. Finally, the

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 199

relationship between the hardware complexity and the

throughputs is analyzed to select the most suitable

architecture for a given application. There- fore, the proposed

architecture provides a practical solution for encoding a long

polar code.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for

constructing capacity achieving codes for symmetric binary-

input memoryless channels,” IEEE Trans. Inf. Theory, vol.

55, no. 7, pp. 3051–3073, Jul. 2009.

[2] R. Mori and T. Tanaka, “Performance of polar codes with

the construction using density evolution,” IEEE Commun.

Lett., vol. 13, no. 7, pp. 519– 521, Jul. 2009.

[3] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes:

Characterization of exponent, bounds, constructions,” IEEE

Trans. Inf. Theory, vol. 56, no. 12, pp. 6253–6264, Dec.

2010.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” in

Proc. IEEE ISIT ,2011, pp. 1–5.

[5] K. Chen, K. Niu, and J. Lin, “Improved successive

cancellation decoding of polar codes,” IEEE Trans.

Commun., vol. 61, no. 8, pp. 3100–3107, Aug. 2013

[6] G. Sarkis and W. J. Gross, “Polar codes for data storage

applications,” in Proc. ICNC, 2013, pp. 840–844.

[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J.

Gross, “Fast polar decoders: Algorithm and

implementation,” IEEE J. Sel. Areas Commun., vol. 32, no.

5, pp. 946–957, May 2014.

[8] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial

sums generation architecture for successive cancellation

decoding of polar codes,” in Proc. IEEE Workshop SiPS,

Oct. 2013, pp. 407–412.

[9] B. Yuan and K. K. Parhi, “Low-latency successive-

cancellation polar decoder architectures using 2-bit

decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.

61, no. 4, pp. 1241–1254, Apr. 2014.

[10] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross,

“A semi-parallel successive-cancellation decoder for polar

codes,” IEEE Trans. Signal Process. vol. 61, no. 2, pp. 289–

299, Jan. 2013.

[11] A. J. Raymond and W. J. Gross, “Scalable successive-

cancellation hard- ware decoder for polar codes,” in Proc.

IEEE GlobalSIP, Dec. 2013, pp. 1282–1285.

[12] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-

output decoding of polar codes,” IEEE J. Sel. Areas

Commun., vol. 32, no. 5, pp. 958–966, May 2014.

[13] B. Yuan and K. K. Parhi, “Low-latency successive-

cancellation list decoders for polar codes with multibit

decision,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

DOI: 10.1109/TVLSI.2014.2359793, to b published.

[14] C. Zhang and K. K. Parhi, “Latency analysis and

architecture design of simplified SC polar decoders,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 2, pp. 115–

119, Feb. 2014.

[15] K. K. Parhi, VLSI Digital Signal Processing Systems:

Design and Implementation. Hoboken, NJ, USA: Wiley,

1999.

[16] K. K. Parhi, “Calculation of minimum number of

registers in arbitrary life time chart,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process., vol. 41, no. 6, pp.

434–436, Jun. 1995.

[17] C. Wang and K. K. Parhi, “High-level DSP synthesis

using concurrent transformations, scheduling, allocation,”

IEEE Trans. Comput.Aided Design Integr. Circuits Syst., vol.

14, no. 3, pp. 274–295 Mar. 1995.

[18] M. Ayinala, M. J. Brown, and K. K. Parhi, “Pipelined

parallel FFT architectures via folding transformation,” IEEE

Trans. Very Large Scale Integr.(VLSI) Syst., vol. 20, no. 6,

pp. 1068–1081, Jun. 2012.

[19] C. Y. Wang, “MARS: A high-level synthesis tool for

digital signal processing architecture design,” M.S. thesis,

Dept. Elect. Eng., University of Minnesota, Minneapolis,

MN, USA, 1992.

