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Abstract: -- Due to the channel achieving property, the polar code has become one of the most favorable error-correcting codes. As 

the polar code achieves the property asymptotically, however, it should be long enough to have a good error-correcting perfor- 

mance. Although the previous fully parallel encoder is intuitive and easy to implement, it is not suitable for long polar codes be- 

cause of the huge hardware complexity required. In this brief, we analyze the encoding process in the viewpoint of very-large-scale 

integration implementation and propose a new efficient encoder architecture that is adequate for long polar codes and effective in 

alleviating the hardware complexity. As the proposed encoder allows high-throughput encoding with small hardware complexity, it 

can be systematically applied to the design of any polar code and to any level of parallelism. 

 

Index Terms—Polar codes, polar encoder, very-large-scale integration (VLSI) optimization 

 

 
I. INTRODUCTION 

Polar Code is a new class of error-correcting codes that 

provably achieves the capacity of the underlying channels. In 

addition, concrete algorithms for constructing, encoding, and 

decoding the code are all developed [1]–[5]. Due to the 

channel capacity achieving property, the polar code is now 

considered as a major breakthrough in coding theory, and the 

applicability of the polar code is being investigated in many 

applications, including data storage devices [6], [7]. 

 

Although the polar code achieves the underlying 

channel capacity, the property is asymptotical since a good 

error- correcting performance is obtained when the code 

length is sufficiently long. To be close to the channel 

capacity, the code length should be at least 220 bits, and 

many literature works [7] – [9] Introduced polar codes 

ranging from 210 to 215 to achieve good error-correcting 

performances in practice. In addition, the size of a message 

protected by an error-correcting code in storage systems is 

normally 4096 bytes, i.e., 32 768 bits, and is expected to be 

lengthened to 8192 bytes or 16 384 bytes in the near future. 

Although the polar code has been regarded as being 

associated with low complexity, such a long polar code 

suffers from severe hardware complexity and long latency. 

Therefore, an architecture that can efficiently deal with long 

polar codes is necessary to make the very-large-scale 

integration (VLSI) implementation feasible. 

 

Various theoretic aspects of the polar code, 

including  Code construction and decoding algorithms, have 

been investigated in previous works [1]–[5], and efficient 

decoding structures have been studied. Successive 

cancelation (SC) decoding has been traditionally used in [9]–

[11], and advanced decoding algorithms such as belief 

propagation decoding [12], list de- coding [13], and implied 

SC [7], [14] have been recently employed. 

 

On the other hand, hardware architectures for polar 

encoding have rarely been discussed. Among a few 

manuscripts dealing with hardware implementation, [1] 

presented a straight- forward encoding architecture that 

processes all the message bits in a fully parallel manner. The 

fully parallel architecture is intuitive and easy to implement, 

but it is not suitable for long polar codes due to excessive 

hardware complexity. In addition, the partial sum network 

(PSN) for an SC decoder [7], [8], [11] is regarded as a polar 

encoder. Due to the nature of successive decoding, however, 

the number of inputs is severely restricted in the PSN, 1 or 2 

bits at a time. Since a polar encoder usually takes the inputs 

from a buffer or memory of which bit width is much larger, 

the PSN is not appropriate for designing a general polar 

encoding architecture. For the first time, this brief analyzes 

the encoding process in the viewpoint of VLSI 

implementation and proposes a partially parallel architecture. 

The proposed encoder is highly attractive in implementing a 

long polar encoder as it can achieve a high throughput with\ 

small hardware complexity. 

 

II. POLAR E NCODING 

 

The polar code utilizes the channel polarization 

phenomenon that each channel approaches either a perfectly 
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reliable or a completely noisy channel as the code length 

goes to infinity over a combined channel constructed with a 

set of N identical subchannels [1]. As the reliability of each 

subchannel is known a priori, K most reliable subchannels 

are used to transmit information, and the remaining 

subchannels are set to predetermined values to construct a 

polar (N , K ) code. Since the polar code belongs to the class 

of linear block codes, the encoding process can be 

characterized by the generator matrix. The generator matrix 

GN for code length N or 2n is obtained by applying the nth 

Kronecker power to the kernel matrix F. Given the generator 

matrix, the codeword is computed by x = uGN , where u and 

x represent information and codeword vectors, respectively. 

Throughout this brief, we assume that information vector u is 

arranged in a natural order, whereas codeword vector x is 

arranged in a bit-reversed order to simplify the explanation 

on the encoding process. A straightforward fully parallel 

encoding architec- ture was presented in [1], which has 

encoding complexity of O(N log N ) for a polar code of 

length N and takes n stages when N = 2n . For example, a 

polar code with a length of 16 is implemented with 32 XOR 

gates and processed with four stages, as depicted in Fig. 1. In 

the fully parallel encoder, the whole encoding process is 

completed in a cycle. 

 

 
 

Fig. 1. Fully parallel architecture for encoding a 16-bit 

polar code 

 
 

The fully parallel encoder is intuitively designed 

based on the generator matrix, but implementing such an 

encoder becomes a significant burden when a long polar code 

is used to achieve a good error correcting performance. In 

practical implementations, the memory size and the number 

of XOR gates increase as the code length increases. None of 

the previous works has deeply studied how to encode the 

polar code efficiently, although various tradeoffs are possible 

between the latency and the hardware complexity. 

 

III. P ROPOSED POLAR E NCODER 

 

In this section, we propose a partially parallel 

structure to encode long polar codes efficiently. To clearly 

show the proposed approach and how to transform the 

architecture, a 4-parallel encoding architecture for the 16-bit 

polar code is exemplified in depth. The fully parallel 

encoding architecture is first transformed to a folded form 

[15], [18], and then the lifetime analysis [16] and register 

allocation [17] are applied to the folded architecture. Lastly, 

the proposed parallel architecture for long polar codes is 

described 

 

 
Fig. 3. Original delay requirements D(wij ) and 
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Recalculated delay require- MENTS D (WIJ ) 

 

 
 

Fig. 4. Linear lifetime chart for w2j and w3j . 

 

A. Folding Transformation 

The folding transformation [15], [18] is widely used to 

save hardware resources by time-multiplexing several 

operations on a functional unit. A data flow graph (DFG) 

corresponding to the fully parallel encoding process for 16-

bit polar codes is shown in Fig. 2, where a node represents 

the kernel matrix operation F , and wij denotes the j th edge 

at the ith stage. Note that the DFG of the fully parallel polar 

encoder is similar to that of the fast Fourier transform [18], 

[19] except that the polar encoder employs the kernel matrix 

instead of the butterfly operation. Given the 16-bit DFG, the 

4-parallel folded architecture that processes 4 bits at a time 

can be realized with placing two functional units in each 

stage since the functional unit computes 2 bits at a time. In 

the folding transformation, determining a folding set, which 

represents the order of operations to be executed in a 

functional unit, is the most important design factor [15]. To 

construct efficient folding sets, all operations in the fully 

parallel encoding are first classified as separate folding sets. 

Since the input is in a natural order, it is reasonable to 

alternatively distribute the operations in the consecutive 

order. 

 

Thus, each stage consists of two folding sets, each of 

which contains only odd or even operations to be performed 

by a separate unit. Considering the four-parallel input 

sequence in a natural order, stage 1 has two folding sets of 

{A0, A2, A4, A6} and {A1, A3, A5, A7}. Each folding set 

contains four elements, and the position of an element 

represents the operational order in the corresponding 

functional unit. Two functional units for stage 1 execute A0 

and A1 simultaneously at the beginning and A2 and 

 

 
Fig. 5. Register allocation table for w2j and w3j . 

 
Fig. 6. Proposed 4-parallel folded architecture for encoding 

the polar (16, K ) codes. 

 

A3 at the next cycle, and so forth. The folding sets 

of stage 2 have the same order as those of stage 1, i.e., {B 0, 

B 2, B 4, B 6} and {B 1, B 3, B 5, B 7}, since the four-parallel 

input sequence of stage 2 is equal to that of stage 1. 

Furthermore, to determine the folding sets of another stage s, 

the property that the functional unit processes a pair of inputs 

whose indices differ by 2s−1 is exploited. In the case of stage 

3, two data whose indices differ by 4 are processed together, 

which implies that the operational distance of the 

corresponding data is two as the kernel functional unit 

computes two data at a time. For instance, w2,0 and w2,4 that 

come from B 0 and B 2 are used as the inputs to C 0. Since 

both inputs should be valid to be processed in a functional 

unit, the operations in stage 3 are aligned to the late input 

data. Cyclic shifting the folding sets right by one, which can 

be realized by inserting a delay of one time unit, is to enable 

full utilization of the functional units by overlapping adjacent 

iterations. As a result, the folding sets of stage 3 are 

determined to {C 6, C 0, C 2, C 4} and {C 7, C 1, C 3, C 5}, 

where C 6 in the current iteration is overlapped with A0 and 

B 0 in the next iteration. In the same manner, the property 

that the functional unit processes a pair of inputs whose 

indices differ by 8 is exploited in stage 4. The folding sets of 

stage 4 are {D2, D4, D6, D0} and {D3, D5, D7, D1}, which 

are obtained by cyclic shifting the previous folding sets of 

stage 3 by two. Generally speaking, a stage whose index s is 

less than or equal to log2 P, where P is the level of 
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parallelism, has the same folding sets determined by evenly 

interleaving the operations in the consecutive order, and 

another stage whose index s is larger than log2 P has the 

folding sets obtained by cyclic shifting the previous folding 

sets of stage s − 1 right by s − log2 P . 

 

Now, let us consider the delay elements required in 

the folded architecture more precisely. When an edge wij 

from functional unit S to functional unit T has a delay of d, 

the delay requirements for wij in the F -folded architecture 

can be calculated as 

 

TABLE I 

COMPARISON OF POLAR (N, K) ENCODERS 

WITH VARIOUS PARALLELISM 

 
 

D(wij ) = F d + t – s (1) where t and s denote the 

position in the folding set corresponding to T and S , 

respectively. Note that (1) is a simplified delay equation [15] 

derived with assuming that the kernel functional unit is not 

pipelined. The delay requirements of the 4-folded 

architecture, i.e., D(wij ) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15, are 

summarized in Fig. 3. For instance, w2,0 from B 0 to C 0 

demands one delay since d = 0, t = 1, and s = 0. Note that 

some edges indicated by circles have negative delays. For the 

folded architecture to be feasible, the delay requirements 

must be larger than or equal to zero for all the edges. 

Pipelining or retiming techniques can be applied to the fully 

parallel DFG in order to ensure that its folded hardware has 

nonnegative delays. 

 

Every edge with a negative delay should be 

compensated by inserting at least one delay element to make 

the value of (1) not negative. We have to make sure that the 

two inputs of an operation pass through the same number of 

delay elements from the starting points. If they are different, 

additional delay 

 

 

 

 

TABLE II 

SYNTHESIS RESULTS OF POLAR (8192, K ) 

ENCODERS 

 

 

 

 

 

 

TABLE III 

GATE COUNTS OF POLAR (N , K ) ENCODERS 

 

Elements are inserted to make the paths have the 

same delay elements. In Fig. 3, for example, four edges with 

zero delays are specially marked with negative zeros since 

additional delays are necessary due to the mismatch of the 

number of delay elements. The DFG is pipelined by inserting 

delay elements, as shown in Fig. 2, where the dashed line 

indicates the pipeline cut set associated with 12 delay 

elements. The delay requirements of the pipelined DFG D 

(wij ) are recalculated based on (1) and shown at the bottom 

of Fig. 3. As a result, 8 functional units and 48 delay 

elements in total are enough to implement the 4-parallel 4-

folded encoding architecture based on the folding sets. 

 

B. Lifetime Analysis and Register Allocation 

Although a folded architecture for 16-bit polar 

encoding is presented in the previous section, there is room 

for minimizing the number of delay elements. The lifetime 

analysis [16] is employed to find the minimum number of 

delay elements required in implementing the folded 

architecture. The lifetime of every variable is graphically 

represented in the linear lifetime chart illustrated in Fig. 4. 

Since all the edges starting from stage 1 demand no delay 

elements, only w2j and w3j are presented in Fig. 4. For 

instance, w3,0 is alive for two cycles as it is produced at 

cycle 1 and consumed at cycle 3. The number of variables 

alive in each cycle is presented at the right side of the chart. 

Note that the number of live variables at the fourth or later 

clock cycles takes into account the next iteration overlapped 

with the current iteration. Consequently, the maximum 

number of live variables is 12, which means that the folded 
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architecture can be implemented with 12 delay elements 

instead of 48. Once the minimum number of delay elements 

has been determined, each variable is allocated to a register. 

For the above example, the register allocation is tabularized 

in Fig. 5. In the register allocation table [17], all the 12 

registers are shown at the first row, and every row describes 

how the registers are allocated at the corresponding cycle. 

With taking into account the 4-parallel processing, variables 

are carefully allocated to registers in a forward manner. In 

Fig. 5, an arrow dictates that a variable stored in a register is 

migrated to another register, and a circle indicates that the 

variable is consumed at the cycle. For example, w2,0 and 

w2,4 are consumed in a functional unit to execute operation 

C 0 that generates w3,0 and w3,4 . At the same time, w2,1 

and w2,5 are consumed in another functional unit to execute 

operation C 1 that produces w3,1 and w3,5 . The migration of 

the other variables can be traced by following the register 

allocation table. 

 

Finally, the resulting 4-parallel pipelined structure 

proposed to encode the 16-bit polar code is illustrated in Fig. 

6, which consists of 8 functional units and 12 delay elements. 

A pair of two functional units takes in charge of one stage, 

and the delay elements are to store variables according to the 

register allocation table. The hardware structures for stages 1 

and 2 can be straightforwardly realized as no delay elements 

are necessary in those stages, whereas for stages 3 and 4, 

several multiplexers are placed in front of some functional 

units to configure the inputs of the functional units. The 

proposed architecture continuously processes four samples 

per cycle according to the folding sets and the register 

allocation table. Note that the proposed encoder takes a pair 

of inputs in a natural order and generates a pair of outputs in 

a bit-reversed order, as shown in Fig. 2. As the functional 

unit in the proposed architecture processes a pair of 2 bits at a 

time, the proposed architecture maintains the consecutive 

order at the input side and the bitreversed order at the output 

side if a pair of consecutive bits is regarded as a single entity. 

 

IV. A NALYSIS AND C OMPARISON 

 

In the proposed architecture, the number of functional 

units required in the implementation depends on the code 

length N and the level of parallelism P . Since a functional 

unit representing the kernel matrix F processes two bits at a 

time, each stage necessitates P/2 functional units and the 

whole structure requires P/2 log2 N functional units in total. 

Moreover, the minimal number of delay elements required in 

the proposed architecture is N − P , as explained below. The 

stages whose indices s are larger than log2 P require P delay 

blocks of length 2s−log2 P −1, whereas the other stages can 

be implemented with no delay elements. In other words, the 

total number of delay elements is log2 N 

 

P (2s−log2 P −1) = P (1 + 2 + s=log2 P +1 + 2log2 N −log2 

P −1) = P (2log2 N −log2 P − 1) = N − P. (2) 

 

Given the hardware resources, the proposed partially parallel 

architecture can encode P bits per cycle. To sum up, Table I 

shows how the hardware complexity and the throughput are 

dependent on the level of parallelism Furthermore, Table II 

demonstrates the proposed (8192, K ) encoder architecture 

synthesized in a 130-nm CMOS technology for various 

parallelism. As the level of parallelism increases, the 

hardware complexity measured in terms of the gate count is 

significantly deteriorated due to the complex logic part, 

whereas the register part in all encoder architectures 

maintains similar complexity if we take into account a P -bit 

input buffer needed to hold the data to be read from the 

memory. On the other hand, the higher parallel architecture 

has advantages of small latency and high encoding 

throughput. Therefore, the relationship shown in Table II can 

be applied to derive the most efficient partially parallel 

encoder architecture for a given requirement. The throughput 

per gate is proportional to the level of parallelism as the 

complexity of the register part is almost independent of the 

parallelism. Moreover, Table III shows how much the 

partially parallel encoders save the hardware complexity 

compared with the fully parallel architecture [1] for various 

code lengths. For fair comparison, all the encoders designed 

for the code lengths ranging from 210 to 214 are constrained 

by a working frequency of 200 MHz to assure a decoding 

performance over 6.4 Gb/s even for the 32-parallel ar- 

chitecture. Note that the percentage in the parenthesis 

indicates the ratio of the proposed encoder to the fully 

parallel encoder. Compared with the fully parallel encoder, 

the proposed encoder saves the hardware by up to 73%. can 

save the hardware by up to 73%  

 

V. CONCLUSION 

 

This brief has presented a new partially parallel 

encoder architecture developed for long polar codes. Many 

optimization techniques have been applied to derive the 

proposed architecture. Experimental results show that the 

proposed architecture fully parallel architecture. Finally, the 
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relationship between the hardware complexity and the 

throughputs is analyzed to select the most suitable 

architecture for a given application. There- fore, the proposed 

architecture provides a practical solution for encoding a long 

polar code. 

 

REFERENCES 

 

[1] E. Arikan, “Channel polarization: A method for 

constructing capacity achieving codes for symmetric binary-

input memoryless channels,” IEEE Trans. Inf. Theory, vol. 

55, no. 7, pp. 3051–3073, Jul. 2009. 

 

[2] R. Mori and T. Tanaka, “Performance of polar codes with 

the construction using density evolution,” IEEE Commun. 

Lett., vol. 13, no. 7, pp. 519– 521, Jul. 2009. 

 

[3] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: 

Characterization of exponent, bounds, constructions,” IEEE 

Trans. Inf. Theory, vol. 56, no. 12, pp. 6253–6264, Dec. 

2010. 

 

[4] I. Tal and A. Vardy, “List decoding of polar codes,” in 

Proc. IEEE ISIT ,2011, pp. 1–5. 

 

[5] K. Chen, K. Niu, and J. Lin, “Improved successive 

cancellation decoding of polar codes,” IEEE Trans. 

Commun., vol. 61, no. 8, pp. 3100–3107, Aug. 2013 

 

[6] G. Sarkis and W. J. Gross, “Polar codes for data storage 

applications,” in Proc. ICNC, 2013, pp. 840–844. 

 

[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. 

Gross, “Fast polar decoders: Algorithm and 

implementation,” IEEE J. Sel. Areas Commun., vol. 32, no. 

5, pp. 946–957, May 2014. 

 

[8] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial 

sums generation architecture for successive cancellation 

decoding of polar codes,” in Proc. IEEE Workshop SiPS, 

Oct. 2013, pp. 407–412. 

 

[9] B. Yuan and K. K. Parhi, “Low-latency successive-

cancellation polar decoder architectures using 2-bit 

decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 

61, no. 4, pp. 1241–1254, Apr. 2014. 

 

[10] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, 

“A semi-parallel successive-cancellation decoder for polar 

codes,” IEEE Trans. Signal Process. vol. 61, no. 2, pp. 289–

299, Jan. 2013. 

 

[11] A. J. Raymond and W. J. Gross, “Scalable successive-

cancellation hard- ware decoder for polar codes,” in Proc. 

IEEE GlobalSIP, Dec. 2013, pp. 1282–1285. 

 

[12] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-

output decoding of polar codes,” IEEE J. Sel. Areas 

Commun., vol. 32, no. 5, pp. 958–966, May 2014. 

 

[13] B. Yuan and K. K. Parhi, “Low-latency successive-

cancellation list decoders for polar codes with multibit 

decision,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 

DOI: 10.1109/TVLSI.2014.2359793, to b published. 

 

[14] C. Zhang and K. K. Parhi, “Latency analysis and 

architecture design of simplified SC polar decoders,” IEEE 

Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 2, pp. 115–

119, Feb. 2014. 

 

[15] K. K. Parhi, VLSI Digital Signal Processing Systems: 

Design and Implementation. Hoboken, NJ, USA: Wiley, 

1999. 

 

[16] K. K. Parhi, “Calculation of minimum number of 

registers in arbitrary life time chart,” IEEE Trans. Circuits 

Syst. II, Analog Digit. Signal Process., vol. 41, no. 6, pp. 

434–436, Jun. 1995. 

 

[17] C. Wang and K. K. Parhi, “High-level DSP synthesis 

using concurrent transformations, scheduling, allocation,” 

IEEE Trans. Comput.Aided Design Integr. Circuits Syst., vol. 

14, no. 3, pp. 274–295 Mar. 1995. 

 

[18] M. Ayinala, M. J. Brown, and K. K. Parhi, “Pipelined 

parallel FFT architectures via folding transformation,” IEEE 

Trans. Very Large Scale Integr.(VLSI) Syst., vol. 20, no. 6, 

pp. 1068–1081, Jun. 2012. 

 

[19] C. Y. Wang, “MARS: A high-level synthesis tool for 

digital signal processing architecture design,” M.S. thesis, 

Dept. Elect. Eng., University of Minnesota, Minneapolis, 

MN, USA, 1992. 

 

 




