
International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 424

Basic March-C Algorithm based BIST for

Embedded Memories in FPGA

[1]
Hema G D,

[2]
DivyaPrabha,

[3]
M.Z. Kurian

PG Student (VLSI and ES) Dept. of ECE, Sri Siddhartha Institute of Technology,Tumakuru, Karnataka, India.

Associate Professor, Dept. of ECE, Sri Siddhartha Institute of Technology,Tumakuru, Karnataka, India.

HOD, Dept. of ECE, Sri Siddhartha Institute of Technology,Tumakuru, Karnataka, India.

d.hema71@gmail.com, dpssit@gmail.com

Abstract— Built in Self Test is one of the widely used methods for memory testing and it is the cost effective method. The fault in the memory

is due to the complexity of the design rules. For complex applications, the memories without faults are necessary. There are many test

algorithms for testing of memories, march based tests are the dominant testing algorithms due to simplicity and ability to test the faults.

Because of this, march tests are implemented in most modern memories BIST. In this project, by considering optimized march-c algorithm

to test the faults. This algorithm uses the concurrent technique. Because of concurrency the testing time is reduced compared to basic march

c algorithm. This technique is applied to 256x8 memories it can be extended to any size. For the effectiveness of this algorithm, Built-in self-

test technique is considered to test embedded memory of the FPGA.

Key Words: BIST, March-C, Optimized March-C, FPGA.

I. INTRODUCTION

Several Field Programmable Gate Array (FGPA)

vendors have complicated memories within their devices.

Xilinx, the Alter a and AT40k vendors are the examples of

FPGAs. These memories are highly programmable.

Because of a complexity of design, there is a chance of

occurring manufacturing faults, because of this testing of

the memory is required. The FPGA without fault is

important for all applications. In FPGAs, the chances of

occurring faults include memory resources, logic blocks, or

inter-connects. These defects can be modeled as single and

multi-cell memory faults. The dominant use of embedded

memory cores along with emerging new architectures and

technologies make providing a low cost test solution for

these on chip memories a very challenging task.

Built in self-test is considered in the algorithm for

testing of embedded memory. The memory is modelled in

equivalent gate-level and run usingISIM simulation tool.

Further, the FPGA implementation is done as well.

The usage of embedded memories is increased

day by day; different memories are available in different

sizes. To reduce the Size of the memory, by using complex

designs. Hence, the manufacturing difficulty in producing

the memory also increases. This requires the testing

methods to test memories during manufacturing. The

difficult task for design architect is to test memory. There

are many methods are available for testing, march tests are

the one of the main testing algorithm in use. The main

faults occurs in the memory are stuck at fault and transition

fault. The idea behind testing is that writing some set of

data to the particular memory location and read back the

value from the same location. If the written data and data

obtained after testing are same then that indicates there is

no fault in memory, if both are different there is a fault in

memory.

Most of the memory testing works uses the basic

March-c algorithm. But this method is not suitable for

large memories. Disadvantages in existing system is time

of testing is more, and separate BIST is required for each

subgroup of memory.

The objective is to create both basic march-c

algorithm architecture and optimized March-c algorithm

based BIST architecture to test the memory inside the

FPGA and comparing both in terms of time, area and

speed. Finally, finding the capable architecture which tests

the memory in less time.

This system proposes the architecture to test the

memories using optimized March-c algorithm. It requires

less time to test the memory compared to other

architectures. Advantages of the proposed system is, it uses

concurrency in testingand applicable for large memories.

Single BIST is sufficient for a group of memories.

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 425

II. GENERIC BIST ARCHITECTURE

Test Pattern Generators (TPGs)-generates test pattern to

the circuit under test.

Output Response Analyzer (ORAs)- evaluate the result of

cut and required result.

Circuit Under Test (CUT) is the device used to test for

faults (Memory).

Distribution system (DIST)-sends the data between TPGs

to CUT and CUT to ORAs.

Interconnections (wires), busses, multiplexers and scan

paths.

BIST controller is used in testing mode to control the

BIST circuitry and CUT.

Test Response Analysis (TRA): It analyses the value

sequence on PO and compares it with the expected output,

based on the value compacted signature is also stored for

future reference.

Fig. 1. Generic BIST Architecture

III. TEST ALGORITHMS

Name Algorithm

MATS {↕(w0);↕(r0,w1);↕(r1)}

MATS+ {↕(w0);↑ (r0,w1);↓(r1,w0)}

MATS++ { ↕ (w0);↑ (r0,w1); ↓ (r1,w0, r0)}

MARCH X { ↕ (w0);↑ (r0,w1); ↓ (r1,w0);↕(r0)}

MARCH A { ↕ (w0); ↑(r0,w1,w0,w1); ↑(r1

,w0,w1);↕(r1,w0,w1,w0); ↑ (r0,w1,w0)}

MARCH Y { ↕ (w0); ↑ (r0,w1, r1); ↓ (r1,w0, r0);↕(r0)}

MARCH B { ↕ (w0);↑ (r0,w1, r1,w0, r0,w1); ↑

(r1,w0,w1); ↓ (r1,w0,w1,w0);↓ (r0,w1,w0)}

Fig.2., Test Algorithms

A test algorithm is a finite sequence of test elements.

A test element contains a number of memory operations,

data pattern specified for the read operation, address

specified for the read and write operations. We divided

these test algorithms into two groups: Traditional tests and

March-based tests. The following are the well known

traditional tests: zero one, checkerboard, GALPAT and

walking 1/0, sliding diagonal and butterfly. These are

either simple, fast but have poor fault coverage or have

good fault coverage but complex and slow. Due to these

imbalanced conflicting traits, the popularity of these

algorithms is decreasing. A March-based test algorithm is a

finite sequence of March elements. A March element is

specified by an address order and a number of reads and

writes. The different types of march based tests are MATS,

MATS+, March C-, March Y, March A, March B, and etc.

Since March-based tests are all simple and flexible to

possess good fault coverage, and they are dominant test

algorithms implemented in most of the modern memory

BIST.

A. MARCH C Algorithm

March test algorithm is a finite sequence of March

elements. March element is specified by an address order

and number of read/write operations. This section

discusses March tests that are of O(N) complexity. March

tests are named so, because starting with the first memory

location a 1 (or a 0) is written while locations previous to

that keep their written 1 (or 0) values. So it appears like 1s

(or 0s) are marching in from location 0 to the last location

in the memory. This notation unambiguously specifies the

testing procedure, and the number of reads and writes are

easily seen that determine the order of a test procedure.

The March C algorithm is shown in below.

March C:{↕(w0);↑ (r0,w1);↑(r1,w0);↓ (r0,w1);↓ (r1,w0);

↕(r0)}.

Steps in March C- Test:

 In any order write 0s to all cells. (M0: ↕ (w0)).

 Read from the lowest address (expected read value is

0)repeat until the highest address is reached, and write

a 1 at this address. (M1: ↑ (r0, w1)).

 Read from the lowest address (expected read value is

1), write a 0 at this address and repeat until the highest

address is reached (M2: ↑ (r1, w0)).

 Read from the highest address (expected read value is

0), write a 1 at this address, and repeat until the lowest

address is reached (M3: ↓ (r0, w1)).

 Read from the highest address (expected read value is

1), write a 0 at this address, and repeat until the lowest

address is reached (M4: ↓ (r1, w0)).

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 426

 In any order (expected read value is 0) read from all

the cell. (M5: ↕ (r0)).

This is the pseudo code for basic march c algorithm

always@(posedge clock)

begin

 if(reset) addra<= 0;

 else if(rst_addr_cntr) addra<= 0;

 else if(en_addr_cntr) addra<= addra + 1;

 elseaddra<= addra;

end

always@(posedge clock)

begin

 if(reset) dina<= 0;

 else if(rst_data_cntr) dina<= 0;

 else if(en_data_cntr) dina<= dina + 1;

 else dina<= dina;

end

B. Optimized March C Algorithm

The proposed Optimized March C algorithm almost similar

to March C but it follows concurrency in testing the

sequences. The steps for following the concurrency are as

follows:

 Group entire memory into subgroups.

 For each subgroup, generate all test vectors for the

first fault in the group.

 Simulate all faults in the subgroup to select one vector

that detects most faults in that subgroup. If more

vectors than one detect the same number of faults

within the group, then select the vector that detects

most faults outside the group as well.

 Apply the final test vectors to all subgroups

concurrently

The following are the elements in Optimized March C

algorithm.

M1:{↑(w0);↑(r0,w1);↑(r1);↓(w0);↓(r0,w1);↓(r1);

M2:{↑(w1);↑(r1,w0);↑(r0);↓(w1);↓(r1,w0);↓(r0);

The number of March elements is same as

traditional March c and is 6 but because of concurrency the

complexity is reduced.

According to Optimized March C- elements,

when 0s are written in one memory group, 1s will be

written in another group concurrently. So the test sequence

can be taken through an inverter hence true form will goes

to one block of memory and complement form will goes to

another block of memory. Hence the test sequence

generator requires additionally one inverter in order to

perform test concurrently. The method directly reduces the

time required to write and read the bit concurrently. This

reduces the test time and test costs also. Finally, there may

be additional design cost in terms of inverter only which

need to generate complement test sequence to other part of

the memory block.

IV. HDL SYNTHESIS REPORT March C

ALGORITHM

Counters : 3

32-bit up counter : 1

8-bit up counter : 2

Registers : 6

1-bit register : 2

4-bit register : 1

8-bit register : 3

Comparators : 1

Device utilization summary

Fig. 3., Synthesis report of basic march c algorithm

Timing Summary:

Speed Grade: -5

Minimum period: 4.455ns (Maximum Frequency:

224.459MHz)

Minimum input arrival time before clock: 3.215ns

Maximum output required time after clock: No path found

Maximum combinational path delay: No path found

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 427

Fig.4., stuck-at 1 fault for basic march c algorithm

V. CONCLUSIONS

As the weight of embedded memory in aggressive System-

on-Chips (SoCs) gradually increases, the importance of

testing embedded memory in SoC increases. The most

prevalent method of testing embedded memory is Built-in

Self-test (BIST). BIST is the best solution for testing

embedded memories within SOCs. It offers a simple and

low cost means without significantly impacting

performance. Here by considering the march C algorithm

we find the time required for finding the faults. In further

implementation by considering optimized march C

algorithm has to prove the test length is minimal as well as

the time required to test SAF also minimum when

compared with traditional march c algorithm.

REFERENCES

[1] Modified March C - Algorithm for Embedded

Memory Testing by muddapu parvathi, N.vasantha,

K.Satya Parasad International Journal of Electrical and

Computer Engineering (IJECE) Vol. 2, No.5, October

2012, pp. 571~576ISSN: 2088-8708.

[2] Der-Cheng Huang; Wen-Ben Jone, "A parallel built-in

self-diagnostic method for embedded memory arrays,"

in Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on , vol.21, no.4, pp.449-

465, Apr 2002.

[3] Design of Built-in Self-Test Core for SRAM by Reeja

J. and Anusree L. S. International Journal of

Engineering Research & Technology (IJERT) ISSN:

2278-0181 Vol. 3 Issue 3, March – 2014.

[4] A Failure Testing System with March C-Algorithm for

SingleEvent Upset by Peng Wang, ZhenLi,

Chengxiang Jiang, Wei Shao and Qiannan Xue

International Journal of Hybrid Information

Technology Vol.7, No.2 (2014), pp.95-102.

[5] Design of Improved Built-In-Self-Test Algorithm (8n)

for Single Port Memory by Manoj Vishnoi, Arun

Kumar, Minakshi Sanadhya International Journal of

Soft Computing and Engineering (IJSCE) ISSN: 2231-

2307, Volume-2, Issue-5, November 2012.

[6] J.vande Goor.Testing Semiconductor Memories:

Theory and Practice. A.J.vande Goor, 1998.

[7] Testing of Embedded System Version 2 EE IIT,

Kharagpur Lesson 40 Built-In-Self-Test (BIST) for

Embedded Systems.

