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Abstract:   Brain-computer interface technology is the one in which the user’s mental intentions are captured and used as control 

signals for external devices. BCI researches are becoming more popular as it can be used as a means of communication for people 

with severe disability. The efficiency of a BCI system depends on its signal processing stages. The signal processing stages include 

the signal acquisition, feature extraction and classification. In this paper, a brief review of one of the feature extraction methods 

called spatial pattern algorithms for BCI is provided.  

 

Index Terms- brain computer interfaces, common spatial pattern, feature extraction. 

 

 
I. INTRODUCTION 

 
Brain computer interfaces is also called as Brain 

machine interfaces (BMI). Researches focus on this 

technology in the hope that it will be helpful for people 

with motor disability. Wolpaw et al. [1] have defined BCI 

as “A BCI is a communication system in which messages 

or commands that an individual sends to the external world 

do not pass through the brain’s normal output pathways of 

peripheral nerves and muscles”. Wolpaw [2] describes that 

the proper objective of BCI development is to find the 

signals that the users can control, maximize that control, 

and translate it into action reliably and accurately. BCI 

technology has various applications other than assisting 

disabled people, like environment control [3], 

entertainment [4], etc. A BCI can be seen as a pattern 

recognition system.BCI system consists of various stages 

as signal acquisition, preprocessing, feature extraction and 

classification. The BCI technology can be classified into 

different types: according to nature of input signals used it 

can be classified into exogenous (external stimuli are used) 

and endogenous (based on the self regulation of brain 

signals without external stimuli); according to the data 

processing technique it can be classified into synchronous 

(brain signals are analyzed in a pre-defined window) and 

asynchronous (brain signals are analyzed continuously) 

[5]. Wolpaw et al. [1] have classified BCI into dependant 

(does not use brain’s normal output pathways to carry the 

message but the activity in these pathways are used to 

generate brain activity that carries it) and independent 

(does not depend on any way on the normal output 

pathways). 

II. BCI TECHNOLOGY 

 

BCI has various stages mainly a signal acquisition 

part, preprocessing, feature extraction and the classification 

stage [6].  The brain activity can be measured using 

various recording methods like EEG, fMRI, ECoG, MEG, 

PET [7]. These methods are of two types namely, invasive 

(electrodes are implanted inside the brain) and noninvasive 

(include hap tic controllers and EEG scanners) [5]. In BCI 

applications the various brain signal types that are used 

includes the event-related potentials, mu and beta rhythms, 

event related synchronization/ desynchronization, visual 

evoked potentials and slow cortical potentials [8, 9]. 

Features need to be extracted from the brain signals and 

they need to be classified for controlling the external 

devices [10]. There are various methods for feature 

extraction as CSP, wavelet transform, autoregressive 

model [11], principal component analysis(PCA), and 

independent component analysis(ICA) [12]. Feature 

translation is the next important signal processing stage in 

BCI. Wolpaw et al. [13] have specified that the translation 

algorithm can be based on either on a classifier or a 

regression function. Regression analysis is a statistical tool 

for determining relationships between different variables. 

There are mainly five types of classifier algorithms: linear, 

nonlinear Bayesian, nearest neighbor, neural networks and 

a combination of classifiers [14, 15]. 
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III. COMMON SPATIAL PATTERN 

Brain computer interfaces can be seen as a pattern 

recognition system in which the brain activities are 

converted into control commands for external devices like 

computer [10]. In order to achieve this, certain features like 

band powers or power spectral density values need to be 

extracted from the acquired brain signal [10]. The 

amplitude modulations of sensorimotor rhythms can be 

obtained from time/frequency analysis of the EEG signals. 

The frequency based analysis is mostly done due to its 

simplicity and efficiency [16]. However frequency features 

does not provide any time domain information. Also 

because of the non-stationarity nature of EEG signal [17], 

time-frequency representations are mostly used [16]. 

Besides the temporal (time domain) and spectral 

(frequency domain) features, features related to spatial 

locations are also important for discriminant feature 

extraction [16, 18]. 

A. Importance of Spatial Filtering 

The EEG signals recorded from electrodes have 

not only the neural voltage fluctuations   but also have the 

voltages corresponding to the activities of distant current 

sources through volume conduction [18]. If EEG signal is 

represented as      which are generated by brain 

sources     , then the EEG signal can be represented as 

[19], 

               , 

where   is a matrix mapping the activity of each 

source to the electrode space. The sensory motor rhythms 

will be attenuated by the movement imagination in the 

corresponding cortical areas (e.g., left hand motor imagery 

affects the SMRs over the right motor cortex area) [18, 20]. 

Hence it becomes necessary to find the sources of the SMR 

modulation to discriminate between different motor 

imagery tasks and this can be achieved with spatial 

filtering as given below 

             

where W=[          ] projects the EEG signal to a 

lower dimension subspace[18] and   is a spatial filter 

which weights the electrode to get information about the 

sources.  

B. Common Spatial Pattern 

CSP is an algorithm to develop the spatial filters 

for the motor imagery experiments [18].  Haixian et al. 

[21] has explained CSP in both geometrical and 

mathematical ways. The method can be explained in 

geometric basis that it is used to find directions in which 

the projected scatters between two EEGs are maximized. 

Mathematically this can be obtained by simultaneously 

diagonalizing two covariance matrices associated with two 

EEG populations (or classes) in order to maximize the 

difference between the two projected populations [21].  

The spatial filtering is done by the CSP by linearly 

transforming the EEG measurements using the following 

equation, 

      

where E is the EEG measurement, Z is the EEG 

measurement after spatial filtering and W is the CSP 

projection matrix [22]. The main function of the CSP 

algorithm is to find the projection matrix W, so that 

features that can discriminate two classes can be obtained 

[22]. The projection matrix is obtained by solving the 

eigenvalue decomposition problem 

            

where    and    are the covariance matrices of EEG 

measurements corresponding to two classes and 

generalized eigenvalues    measure the variance ratio 

between class 1 and class 2 [18]. In a nutshell, CSP finds 

spatial filters that maximize the variance for one class or 

population and simultaneously minimizing for the other 

[23]. CSP can also formulated as a Rayleigh quotient 

problem [24]. 

C. Different CSP Variants 

Besides the CSP algorithm provides better 

discrimination it has limitations too. Some of the 

limitations are that the covariance estimation can be 

effected by the artificats in EEG, overfitting problem with 

the small training sets, the nonstationarity problem, etc.  

[18, 21]. In order to overcome various limitations of the 

standard CSP various methods have been developed by 

researchers.   

The projection matrix W remains unchanged 

within or across sessions, on the other hand the EEG signal 

changes within time [25]. Hence the direction obtained 

from projection matrix may not be always optimal. Chen et 

al. [25] proposed an adaptive method to overcome this 

problem. Here the covariance matrices are adapted to the 

varying EEG signals and then the eigenvalue 

decomposition problem is solved with this adapted 

covariance matrices. The results they obtained for the 

adaptive CSP were slightly better than that for traditional 

CSP. 

The standard CSP method is a supervised learning 

method (requires labeled EEG trials). It is difficult to get 

large number of labeled information at all the times and if 

small amount of trials is used then overfitting problem 

arises which leads to less efficient results [24]. On the 

other hand it is easy to get unlabeled information. Thus 

Wang et al. [24] proposed the comprehensive learning 

scheme of CSP (cCSP) that combines both the labeled and 

the unlabeled trials.  The information from unlabeled trials 

was incorporated with the help of   graph. In the objective 
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function of the comprehensive learning scheme of CSP a 

regularization term was also included to encode the 

knowledge of intrinsically temporal structure of the 

unlabeled EEG trials [24]. Wang et al. [24] obtained better 

performance of the proposed method for single-trial EEG 

classification. 

The imagery classifications are done based on the 

changes in the mu and the beta rhythms and corresponding 

spatial distributions but these rhythmic changes will vary 

from subject to subject [26]. Hence fine tuning process will 

be required. Novi et al.[26] have proposed a method called 

sub-band common spatial pattern (SBCSP) to solve this 

problem.  In this case they have decomposed the EEG 

signals into various sub-bands using a filter bank and CSP 

is performed on each sub-band [26]. Novi et al.[26] fused 

the scores from each sub-band and decision was made. 

They compared this method with the CSSP (common 

spatio-spectral pattern [27]) and CSSSP (common sparse 

spatio-spectral pattern [28]) method and found that the 

proposed method outperformed the two. The performance 

of CSP is dependent on the frequency band, hence setting 

up a broad frequency range or manual selection of subject 

specific frequency range [29]. The CSSP [27] and CSSSP 

[28] were proposed to solve the problem of manual 

selection of the frequency range. Ang et al.[29] proposed 

filter bank common spatial pattern, in which there are four 

stages as band pass filtering , feature extraction, feature 

selection and classification. FBCSP was compared with the 

SBCSP and the result outperformed that of SBCSP. In 

FBCSP fixed filter bank was used by all the subjects. 

Thomas et al. [30] proposed  subject specific 

discriminative FB (DFBCSP), in which the parent FB 

filters the EEG from one channel (C3 or C4) and then 

fisher ratio of the filtered EEG signal was used to 

determine the subject specific discriminative frequency 

bands and they obtained successful results. In FBCSP there 

involves multiple spatial filtering which requires multiple 

estimations of the covariance matrices and thus this 

increases the sensitivity of the FBCSP to noise, artifacts 

and outliers. Ang et al. [31] proposed a method called 

composite FBCSP that employs a single spatial filter 

(computed from a weighted sum of covariance matrices) 

instead of multiple spatial filters. The results obtained had 

a better kappa values as compared to FBCSP [31]. Aghaei 

et al[32]  proposed a novel method called separable 

common spatio-spectral patterns (SCSSP) where a 

heteroscedastic matrix-variate Gaussian model and was 

found to be computationally efficient and outperformed the 

FBCSP method. 

Hyohyeong et al. [33] provides modified CSP for 

subject to subject transfer (transfer useful information of 

subjects involving the same task to the subject with lower 

training samples). They exploited the composite 

covariance matrices determined by a linear combination of 

covariance matrices for all subjects in consideration. Two 

different methods were proposed to determine appropriate 

weights in evaluating composite covariance matrices: 

Method 1 de-emphasized covariance matrices involving 

fewer samples, while Method 2 emphasized covariance 

matrices for subjects with similar characteristics to the 

subject in consideration [33]. The method proposed by 

Hyohyeong et al.[33] worked well for subjects with a small 

number of samples, while the traditional methods worked 

better for subjects with a sufficient number of training 

samples. 

One of the important objectives of the BCI 

research is to reduce the number of training trilas needed 

and at the same time conventional CSP algorithm is based 

on the sample-based covariance matrix estimation and the 

accuracy of estimation is badly affected if only small 

training set is available [34]. In order to tackle this problem 

Haiping et al. [34] proposed regularized CSP, to regularize 

the covariance estimation in CSP; two parameters have 

been employed, one to lower the estimation bias and the 

other to lower the estimation variance. Later Fabien et al. 

[35] reviewed several regularization techniques for CSP 

and also proposed four RCSP algorithms. They got the best 

results from the Tikhonov regularization method, which is 

a classical form of regularization generally used with 

regression problems [35]. 

In EEG based BCI technology, to get better 

performance signals from multiple sites of the scalp are 

required and at the same time large number of EEG 

channels may increase noise,  redundant signals and long 

preparation time[36]. Therefore, there is a need to select 

least number of channels that yields best accuracy. 

Arvaneh et al. [36] proposed a novel sparse CSP (SCSP) 

for optimal EEG channel selection. The method 

outperformed the CSP in the case where the number of 

selected channels was small. Wang et al.[37] proposed L1 

based CSP to make it less sensitive to outliers. In standard 

CSP the formulation is based on variance using L2 norm, 

and in the proposed method in [37] the formulation of 

variance is based on L1 norm. The spatial filters in this 

case are obtained through an iterative algorithm and Wang 

et al. [37] obtained better results compared to other CSP 

variants.  Kam et al. [38] proposed time dependent CSP 

inorder to overcome the limitation of standard CSP that it 

does not consider the temporal information of EEG signals. 

The standard CSP is usually used for two-class problems, 

however its extension to multiclass problems are also 

studied [39]. Wentrup et al. [39] have mentioned various 

multiclass extensions of CSP and have proposed an 

information theoretic feature extraction method for 

multiclass. 
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IV. CONCLUSION 

 

The common spatial pattern method had been 

widely used in brain-computer interface technology for 

feature extraction. Though it provides discrimination of 

EEG data, its performance are degraded by the artifacts in 

EEG data, the nonstationarity problem, overfitting problem 

that arises due to availability of small training data sets. 

Hence inorder to overcome these limitations of the basic 

CSP algorithm different variants have been developed by 

various researchers. 
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