
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronic and Communication Engineering

(IJERECE)

Vol 3, Issue 5, May 2016

 628

FPGA Implementation of High Throughput Dual

Key based AES Encryption and Decryption

[1]
 Naveen Kumar M S

 [2]
 Manjunath C Lakhannavar

[1][2]
Department of E & C,

M. S. Ramaiah Institute of Technology

Abstract: ---- Data security plays a major role in today’s technology. Cryptography is one of the industry standards in providing data

security since many years. Federal Information Processing Standard (FIPS) is approved Advance Encryption Standard (AES)

cryptographic algorithm that can be used to protect electronic data. But the conventional scheme of AES is vulnerable for

cryptanalysis, due to static S-box which will never vary with the input text/key. Noticeable drawbacks with AES are, it can only

support one key, and is prone to easy reverse engineering which can lead to insecure data. Thus S-box value is necessary for changes

in input key. In this paper, a new scheme of AES is discussed which involves in the generation of Key based S-Boxes, with dual key

AES and implemented in pipeline architecture to improve the throughput with low latency.

Keywords—AES, Encryption, Decryption, S-Box, Dual key, Pipeline, Cryptography, Security

I. INTRODUCTION

 FIPS accepted Advanced Encryption Standard in

November 2001 so as to provide digital data security.

According to size of the encryption key different versions of

AES (AES128, AES196, and AES256) has been developed.

Depending on the versions, the number of rounds executed

in the process varies accordingly. In this paper, a hardware

model for implementing the AES 128 algorithm was

developed using the Verilog hardware description language.

A unique feature of the proposed design is dynamic S-Box

with Dual AES implemented in pipeline architecture. This

design is more secure and has high throughput with low

latency when compared with the existing design.

II. CONVENTIONAL AES ALGORITHM

The AES is a block cipher, which operates on 128 bits key

and 128 bits data block. The input to each round consists of

a block of message called the state and the round key as

shown in figure 1. The round key changes in every round

which is generated by key expansion algorithm.

Figure 1: AES encryption & decryption flowchart.

The state can be represented as a rectangular

array of bytes. This array has four rows and four columns

(1). The same could be applied to the cipher key. The

cipher consists of a 10 rounds. Each round of AES

encryption function consists mainly of four different

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronic and Communication Engineering

(IJERECE)

Vol 3, Issue 5, May 2016

 629

transformations: subbyte, shiftrow, mixcolumn and key

addition. On the other hand, each round of AES decryption

function consists mainly of four different transformations:

invsubbyte, invshiftrow, invmixcolumn, and key addition.

……….. (1)

The description of the four transformations of the cipher and

their inverses will be given below.

A. Sub byte transformation: sub byte transformation is a

non-linear byte substitution transformation, where each
element of the state matrix is replaced by a new element
from a pre calculated s-box table. That s-box table
contains 256 numbers (from 0 to 255) and their
corresponding resulting values. The main complexity of
the algorithm lies in this transformation. The
implementation of this transformation is very simple
and hence all the modifications presented in this paper
are on this transformation.

B. Inverse sub byte transformation: the invsubbyte
transformation is done using a once pre-calculated
substitution table called invsbox. That table (or invs-
box) contains 256 numbers (from 0 to 255) and their
corresponding values.

C. Shift Row Transformation: The rows of the state

matrix are cyclically left shift but each row is shifted

with a different offset. Row i is shift over (i-1) byte

offset.

D. Inverse Shift Row Transformation: The rows of the

state are cyclically right shift over different offsets.

Row i is shift over (i-1) byte offset.

E. Mix Column Transformation: The state matrix is

multiplied with a constant matrix (2) to obtain the new

matrix. Matrix multiplication is done over Galois Field.

In this transformation, the bytes are treated as a

polynomials rather than numbers. The implementation

complexity of this transformation is high and hence this

algorithm is also used as it is.

………. (2)

F. Inverse Mix column Transformation: This is

similar to mix column transformation, the state

matrix is multiplied with a constant matrix (3) to

obtain the new matrix.

 ………….(3)
G. Add Round Key: This transformation involves a

bitwise XOR operation between the state array and

the result of Round Key that is output of the Key

Expansion algorithm

III. PROPOSDE WORK

A. Generation of Dynamic Key Based S-Box

The architecture for generation of s-box and inverse s-box

dynamically is proposed in [2]. The subbyte

transformation is computed by taking the multiplicative

inverse in GF (2
8
) followed by an affine transformation.

For its reverse, the invsubbyte transformation, the inverse

affine transformation is applied first prior to computing

the multiplicative inverse. Sub-byte: multiplicative

inversion in GF (2
8
) → affine transformation

(4)

Inverse sub-byte: inverse affine transformation →

multiplicative inversion in GF (2
8
)

(5)

The affine transformation (4) and its inverse can be

represented in matrix form and it is shown below.

 (6)

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronic and Communication Engineering

(IJERECE)

Vol 3, Issue 5, May 2016

 630

 (7)

The at and at
-1

 are the affine transformation and its

inverse while the vector a is the multiplicative inverse of the

input byte from the state array.

The multiplicative inverse is generate in GF (2
8
)

using irreducible polynomial

 X
8
+X

4
+X

3
+X

1
+1 ….. (8)

Represented as 100011011 in the form of bits

Figure 2(a) multiplicative inversion for the s-box in GF

(2
8
).

Figure 2(B) The Building Block Of Multiplicative Inverse

The multiplecative inverse calculation is carried

out by mapping the GF (2
8
) to GF (2

4
) as shown in figure 2

(a), (b).

To generate a key based s-box, the system takes

an another 8-bits input key called skey, this skey is used

as a address to the lookup table which contains set of 128

bits system keys. This system key is used to generate a 8-

bit offset. The flow chart of algorithm used to generate

offset is show in figure 3.

Figure 3 flowcharts for generation of key s-box

In the above algorithms, the 8 bit input SKEY

selects 128 bit system key from the lookup table, this

system key split into 16 sets of 8 bits, the first 8 bits is

modulo by 8 and the remainder is stored in m variable.

Now m
th

 bit of each byte of system key is stored in 16 bit

temp variable. Offset is calculated by ex-or the first 8 bits

of temp variable with the next 8 bits of temp variable.

Finally the key based s-box is obtain by ex-or s-box

element with offset. Similarly the key based inverse s-box

is obtained by EXOR inverse s-box element with offset.

Thus proposed key based s-box is more complex and

secure than the existing static s-box.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronic and Communication Engineering

(IJERECE)

Vol 3, Issue 5, May 2016

 631

B. Pipeline method of implementing AES the pipeline

method of implementing the 11 rounds of AES

Encryption Is Shown In Figure 4

Figure 4 Pipeline Method Implementation Of AES

Encryption

In pipeline method, between each round of

encryption process flip-flops are used to store and passing

encryption data to next round on active clock edge. In each

round, proper scheduling to data and key form key-

expansion block to avoid timing violations. Using key based

s-box, pipeline AES encryption is implemented on virtex 7

xc7v585t, operates at 212 MHz.

To implement AES decryption in pipeline method

is difficult because the AES decryption process starts with

cipher text and key which is used in the last round of

encryption.

So key expansion and AES decryption core is

implemented separately, first 11 cycles are used generate

complete 10 keys and stored in memory which required for

decryption, then decryption process starts which next takes

11 clock cycle to decrypt the cipher text using key based

inverse s-box, pipeline AES decryption is implemented on

virtex 7 xc7v585t, operates at 192 mhz.

The pipeline method of implementing AES decryption is

shown in figure 5

Figure 5 pipeline method implementation of AES

decryption

IV. SIMULATION AND SYNTHESIS RESULTS

The architecture proposed above was compiled

and synthesized on virtex 7 xc7v585t fpga using ise

navigator and simulated using isim tool, the results were

found to be as follows:

figure 6 simulation of dual key encryption

Figure 7 Simulation of dual key Decryption

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronic and Communication Engineering

(IJERECE)

Vol 3, Issue 5, May 2016

 632

Table1 Synthesized result

Device:

xc7v585t

Proposed

Encryption

Proposed

Decryption

No. of Slice Register 3,034 5,658

No. of Slice LUTs 17,249 22,542

No. of fully used LUT-FF

pairs

2,641 4,965

No. of bonded IOBs 394 394

No. of BUFG/BUFGCTRLs 2 2

No. of Memory 0 1,152

Maximum operating Freq. 212 MHz 192MHz

Latency 11 cycles 22 cycles

Throughput 27.16 Gbps 24.57 Gbps

V CONCLUSION

Results shown in table1 indicates that the encryption

algorithm is operating with a maximum of 212mhz clock

cycles, with latency of 11 clock cycles and throughput of

27.16gbps. Decryption algorithm is operating with a

maximum of 192mhz clock frequency with a latency of 22

clock cycles and throughput of 27.16 gbps. With this

proposed methodology, high throughput and secured data

encryption can be attained.

REFERENCE

1) Advanced Encryption Standard, Federal Information

Processing Standards 197”, National Institute of

Standards and Technology, November 2001

2) A.F Webster and S.E Travares, "On The Design of S-

boxes," Queen's university Kingston, Springer- verlag,

Canada1998

3) Muhammad Asim, "Efficient and Simple Method for

Designing Chaotic S-boxes" Electronic and

Telecommunications Research Journal, University of

Technology Petronas, Malaysia February 2008.

4) Xinmiao Zhang and Keshab K. Parhi, “On the

Optimum Constructions of Composite Field for the

AES Algorithm”, IEEE, VOL. 53, NO. 10,

OCTOBER 2006

5) F. Fahmy and G. Salama, "A proposal for Key-

dependant AES, " 3
rd

 International Conference:

Sciences of Electronic, Technologies of Information

and Telecommunications (SETIT), TUNISIA March

2005.

6) Joan Daemen and Vincent Rijmen.“Two-Round

AES Differential”. Cryptology ePrint Archive,

Report 2006/039, 2006.

