
International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 581

Design and Implementation of 4x4 Pipelined

Iterative Logarithmic Multiplier using Reversible

Logic

[1]

Kavya Shree M S
[2]

Praveen Kumar Y G
 [3]

Dr. M Z Kurian

[1]

1
4

th
sem, M.Tech (VLSI and Embedded Systems)

[2]
 Assistant Professor,

[3]
HOD

Dept.of ECE, Sri Siddhartha Institute of Technology, Tumakuru
[1]

 kavyabhramara5@gmail.com

Abstract— As the demand increases for low power dissipation in digital computing system, a new technique called Reversible Logic

was introduced. Reversible logic is one of the promising field which solves the problem of power dissipation and also it is the basic

requirement for the field of quantum computing. The multiplication which plays a prior role in DSP applications. Some of the

important operations in DSP are filtering, convolution and inner partial products. These are the processes which requires

multipliers so the speed and performance of their operations depends on the speed of the multiplication and addition. The

logarithmic multiplier which is designed based on the Mitchell’s Algorithm proposed by Mitchell. The logarithmic multiplier

convert multiplication and division problem into addition and subtraction.. This paper gives the design of pipelined iterative

logarithmic multiplier using reversible logic.

Key Words: Reversible Logic, quantum Computing, Logarithmic Multiplier, Mitchell’s Algorithm.

I. INTRODUCTION

 Reversible Logic has received great attention in the

recent years due to their ability to reduce the power

dissipation which is the main requirement in the low power

VLSI design. Reversible logic is an n-input n-output logic

device with one to one mapping. In the designing of the

reversible logic circuits direct fan-out is not allowed and the

concept of one-to-many is not entertained.

Digital arithmetic calculations are most important in

the design of digital processors and application-specific

systems. Arithmetic circuits plays an important class of

circuits in the digital system. Multiplication is relevant since

other arithmetic operators such as division or exponentiation,

which they usually utilize multipliers as building blocks.

Logarithmic multiplier converts given binary numbers into

their equivalent logarithm numbers. In LNS (Logarithmic

Number System) multiplication is done interms of addition.

II. DESIGN OF ALGORITHM

Logarithmic multiplication is an approximate

multiplication technique that uses the fact that logarithm of

the product is a sum of operand logarithms; therefore an

operand conversion from integer number system into the

logarithm number system (LNS) is used. The multiplication

of the two operands N1 and N2is performed in three phases,

calculating the operand logarithms, the addition of the

operand logarithms and the calculation of the antilogarithm:

Log (N1N2) = log (N1) .Log (N2)

The main advantage of this method is the substitution of

the multiplication with addition. LNS multipliers can be

generally divided into two categories, one based on methods

that use lookup tables-where the log values are stored in

memory tables and the pure LUT stores a (pre-calculated)

value for the logarithm of every possible input value. The

logarithm is obtained by looking for its value in the table.

The LUT and Interpolator use a similar table to the LUT, but

do not store every value. Instead it stores half, for example,

and uses linear interpolation to estimate the values between

the look-up points and the other based on Mitchell‟s

algorithm (MA).

The binary representation of the number N can be

written as:

N= 2
k
 (1+ 𝟐𝒊−𝒌𝒌−𝟏

𝒊=𝒋 zi) = 2
k
 (1+x)……. (1)

Where,

K is place of the most significant bit which equals

one, so called characteristic number,

zi is a bit value at the i
th

 position,

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 582

x is the fraction or mantissa,

j depends on the number‟s precision.

Because, computers works with binary number

system, it is more appropriate to use 2 as logarithm basis, so

it can be derive as:

log2(N)=log2(2
k
 (1+ 𝟐𝒊−𝒌𝒌−𝟏

𝒊=𝒋 z
i
)) = log2 (2

k
 (1+x))

=k+log2(1+x)……. (2)

The expression log2 (1 + x) is usually approximated; i.e,

logarithmic based calculations are a trade-off between the

accuracy and time consumption.

a. Mitchell’s Algorithm

One of the most relevant multiplication methods in

LNS is Mitchell‟s algorithm. Mitchell proposed a very low-

cost approach to approximating the base-2 logarithm and

antilogarithm without the need for a table or iteration, hence

reducing hardware area. Mitchell‟s technique is accurate to

about four bits. There are more accurate techniques but none

are as economical as Mitchell‟s method.

An approximation of the logarithm and the

antilogarithm is essential, and it is derived from a binary

representation of the numbers.

The logarithm of the product is:

log2(N1N2)= k1+k2+log2 (1+x1) + log2 (1+x2)….(3)

The expression log2 (1 + x) is approximated with x

and the logarithm of the two numbers‟ product is expressed

as the sum of their characteristic numbers and mantissas:

log2(N1N2)≈k1+k2+x1+x2 ……(4)

The characteristic numbers k1 and k2 represent the

places of the most significant operands‟ bits with the value of

„1‟. The final MA approximation for the multiplication

(where Ptrue = N1 x N2) depends on the carry bit from the sum

of the mantissas and is given by:

2
k1+k2

(1+x1+x2), x1+x2 < 1

PMA =(N1N2)MA= 2
k1+k2+1

(x1+x2), x1+x2 ≥ 1

 (5)

If x1 + x2< 1, the sum of mantissas is added to the most

significant bit of product to complete the final result.

Otherwise, the product is approximated only with the scaled

sum of mantissas. The MA produces a significant error

percentage. The maximum possible relative error for MA

multiplication is around 11%, and the average error is around

3.8% .The error in MA is always positive so it can be reduced

by successive multiplications.

Mitchell analyzed this error and proposed the following

analytical expression for the error correction

pMA+2
k1+k2

(x1.x2), x1+x2 < 1
(N1.N2)MAC=PMA= 2

k1+k2
(1-x1) . (1-x2), x1+x2 ≥1 (6)

Where, 2
k1+k2

(x1.x2) and 2
k1+k2

(1-x1). (1-x2) are the

correction terms proposed by Mitchell.

To calculate the correction terms:

1. Calculate x1.x2 or (1 - x1) .(1 -x2) depending on x1 + x2.

2. Scale the correction term by the factor 2
k1+k2

.

3. Add the correction term to the product PMA.

Algorithm 1 (Mitchell’s Algorithm)

1. N1, N2: n-bits binary multiplicands, PMA = 0:2 n-bits

approximate product

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate x1: shift N1 to the left byn - k1bits

5. Calculate x2: shift N2 to the left byn - k2 bits

6. Calculate k12 = k1 + k2

7. Calculate x12 = x1 + x2

8. IF x12≥2
n
 (i.e. x1 + x2>=1):

(a) Calculate k12 = k12 + 1

(b) Decode k12 and insert x12 in that position of Papprox

ELSE:

(a) Decode k12 and insert „1‟ in that position of Papprox

(b) Append x12 immediately after this one in Papprox

9. Approximate N1. N2 = PMA

One important observation (from Algorithm 1) is that the

error correction can start only after the term x1 + x2 is

calculated.

The proposed solution simplifies logarithm

approximation and introduces an iterative algorithm with

various possibilities for achieving the multiplication error as

small as required and of achieving the exact result. High level

of parallelism can be achieved by the principle of pipelining,

thus increasing the speed of the multiplier with error

representation of the numbers in (1), we can derive a correct

expression for the multiplication:

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 583

Ptrue = N1. N2

= 2
k1

 (1 + x1) .2
k2

(1 + x2)
= 2

k1 + k2
 (1+ x1+ x2) + 2

k1 + k2
(x1 x2)(7)

To avoid the approximation error, it would have to take

into account the next relation derived from (1):

x . 2
k

= N- 2
k
(8)

The combination of (7) and (8) gives:

Ptrue = (N1. N2)

= 2
k1 + k2

+ (N1– 2
k1

) 2
k2

+ (N2 -2
k2

) 2
k1

+(N1 – 2
k1

).(N2 -2
k2

)

(9)

Let

P
(0)

approx. = 2
k1 + k2

+(N1 – 2
k1

) 2
k2

+ (N2 -2
k2

) 2
k1

be the first approximation of the product. It is evident that

Ptrue = P
 (0)

 approx. +(N1– 2
k1

).(N2 -2
k2

) (11)

The proposed method is very similar to MA. The error is

caused by ignoring the second term in (11). The term (N1-

2
k1

) (N2- 2
k2

) requires multiplication. The difference between

the proposed method and the method proposed by Mitchell is

that the proposed method avoids the comparison of the

addend x1 + x2 with 1. Hence the error correction can start

immediately after removing the leading ones form the both

input operands.

The absolute error after the first approximation is:

E
(0)

=Ptrue- P
 (0)

 approx. = (N1– 2
k1

).(N2 -2
k2

) (12)

Note that E
(0)

>= 0. The two multiplicands in (6) are

binary numbers that can be obtained simply by removing the

leading „1‟ in the numbers N1 and N2 so repeat the proposed

multiplication procedure with these new multiplicands.

E
(0)

= C
 (1)

+ E
(1)…..

(13)

WhereC
 (1)

 is the approximate value of E
 (0)

 and E
 (1)

 is an

absolute error when approximating E
 (0)

.The combination of

(11) and (13) gives

Ptrue = P
 (0)

 approx. +C
(1)

+ E
 (1)

 (14)

Now add the approximate value of E
(0)

 to the approximate

product Papprox as a correction term by which decreases the

error of the approximation.

P
 (1)

 approx. = P
(0)

 approx. + C
(1)

 (15)

If repeat this multiplication procedure with i correction

terms, it can approximate the product as:

P
 (i)

 approx.= P
 (0)

 approx. +C
(1)

 + C
(2)

 + …. + C
(i)

= P
 (0)

approx

+ 𝑪𝒊
𝒋=𝟏

(j)
(16)

The procedure can be repeated, achieving an error as small as

necessary, or until at least one of the residues becomes a

zero. Then the final result is exact: Papprox = Ptrue. The number

of iterations required for an exact result is equal to the

number of bits with the value of ‟1‟ in the operand with the

smaller number of bits with the value of „1‟

Algorithm 2 (Iterative MA-based algorithm with i

correction terms)

1. N1, N2: n-bits binary multiplicands, P
(0)

approx.= 0 : 2n-bits

first approximation C
(i)

=0:2n-bits i correction terms,

Papprox = 0: 2n-bits product

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits

5. Calculate (N2-2
k2

)2
k1

 : shift (N2-2
k2

) to the left by k1 bit.

6. Calculate k12 = k1 + k2

7. Calculate 2
k1+k2

: decode k12

8. Calculate P
(0)

approx: add 2
k1+k2

, (N1-2
k1

)2
k2

 and (N2-2
k2

)2
k1

9. Repeat i-times or until N1 = 0 or N2 = 0:

(a) Set: N1= N1-2
k1

, N2=N2-2
k2

(b) Calculate k1: leading one position of N1

(c) Calculate k2: leading one position of N2

(d) Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits

(e) Calculate (N2-2
k2

)2
k1

 : shift (N2-2
k2

) to the left by k1 bits

(f) Calculate k12 = k1 + k2

(g) Calculate 2
k1+k2

: decode k12

(h) Calculate C
(i)

: add 2
k1+k2

, (N1-2
k1

)2
k2

and (N2-2
k2

)2
k1

10.P
(i)

approx=P
(0)

approx+∑iC
(i)

III. III. SYSTEM DESIGN:

i. Reversible Logic:

A reversible logic gate is an n-input, n-output logic

device with one-to-one mapping, which helps to retrieve the

inputs from the outputs. Also in the synthesis of reversible

circuits direct fan-out is not allowed as one-to-many concept

is not reversible. However fan-out in reversible circuits is

achieved using additional gates.

There are many parameters for determining the

complexity and performance of circuits.

 The number of reversible gates (N): The

number of reversible gates used in the circuits.

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 584

 The number of constant inputs (CI): The

number of inputs that are maintained constant at

either 0 or 1in order to synthesize the given

logical function.

 The number of garbage outputs (GO): The

number of unused outputs present in a

reversible logic circuits.

 Quantum cost (QC): The quantum cost refers to

the cost of the circuit in terms of primitive

gates.In a reversible logic circuit design two

restrictions should be maintain strictly.

 Fan-out is not allowed.

 Feedback loops are also prohibited.Logic

synthesis of reversible logic circuits should

have the following objectives to achieve

optimized structure.

 Design should use minimum number of logic

gates.

 Constant inputs should be minimum.

 Quantum cost should be kept as low as possible.

IV. PROPOSED SYSTEM DESIGN

A basic block (BB) is the proposed multiplier with

no correction terms. It calculates one approximate product.

The basic block is presented in Figure 1, which consists of

two leading-one detectors (LODs), two encoders, two barrel

shifters, and decode unit decodes k1 + k2, i.e. it puts the

leading one in the product. The left shifters are used to shift

the residues. The two shifted residues are then added to form

the approximate product.

Figure 1: Basic Block Diagram of the Proposed

Logarithmic Multiplier.

Implementation with Correction Circuits

The basic block is used in subsequent

implementations to implement correction circuits and

increase the accuracy of the multiplier. The error-correction

circuit is used to calculate the term C
 (1)

 and thus

approximates the term (N1 - 2
k1

) (N2 -2
k2

).To implements the

proposed multipliers, cascade the basic blocks. A block

diagram of the proposed logarithmic multiplier with one error

correction circuit is shown in Figure 2.The multiplier is

composed of two basic blocks, of which the first one

calculates the first approximation of the product P
(0)

approx.,

while the second one calculates the error-correction term C
(1)

.

Figure 2:Block Diagram of the Proposed Multiplier with

Error Correction Circuit.

The implementation with correction circuits shows

substantial increase in combinational delay as each correction

circuit is added. The two basic blocks cannot really work in

parallel in real-time, because the correction block cannot start

until the residues are calculated from the first basic block.

But in the pipelined implementation of the basic block the

residues are available after the first stage; the correction

circuit can start to work immediately after the first stage from

the prior block is finished.

V. IMPLEMENTATION OF PROPOSED

MULTIPLIER

 The RTL schematic of 4x4 reversible logarithmic

multiplier without correction circuit is as shown in Figure 3.

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 585

Figure 3: RTL Schematic of Reversible Log Multiplier

Without Correction Terms.

 The RTL schematic of 4x4 reversible logarithmic

multiplier with correction circuit is as shown in Figure 4.

Figure 4: RTL Schematic of Reversible Log Multiplier With

3 Correction Terms.

The reversible implementation and simulation

results of logarithmic multiplier is as shown in Figure 5.

Figure 5: Simulation Results of 4x4 Log Multiplier.

VI. CONCLUSION

In this paper, the 4x4 logarithmic multiplier is

designed using reversible logic.Power analysis is done for

both conventional and reversible based 44 log multiplier

and it is found that reversible based log multiplier consumes

less power than conventional. As a future work, this design

can be used for image enhancement, compression, video

tracking, DSP filters etc..

REFERENCES

[1]Z. Babi‟c, A.Avramovi‟c, P. Buli‟c, “An iterative

logarithmic multiplier” ELSEVIER publication 2011,

pp. 0141-9331.

[2] Landauer .R, “Irreversibility and heat generation in the

computing process”, IBM Research and Development,

pp.183-191, 1961.

[3] Bennett C.H., “Logical reversiblility of Computatio”,

IBM Research and Development, pp 525-532, 1973.

[4] P.Vanusha, k.AmruthaVally, “Low Power Computing

Logic Gate design using Reversible logic”, International

Journal of Application or Innovation in Engineering &

Management, Vol. 3, N0. 10, pp. 2319-4847, OCT

2014.

[5] Ravish Aradhya H.V, Lakshmesha J, Muralidhara K.N,

“Design optimization of Reversible Logic Universal

Barrel Shifter for Low Power applications”,

International Journal of Computer Applications, Vol.

40, No. 15, pp. 0975-8887, Feb 2012.

[6]P.K.LALA,J.P.PARKSON,P.CHAKRABORTY, “Adder

Designs using Reversible Logic Gates”, WSEAS

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 586

transaction on circuits and systems, Vol. 9, No. 6, ISSN

1109-2734, June 2010.

[7] Sanjeev Kumar Patel, VinodKapse, “Optimized Design

and Implementation of an Iterative Logarithmic Signed

Multiplier”, International Journal of Scientific &

Engineering Research, Vol. 3, No. 13, pp. 2229-5518,

Dec 2012.

[8]BhavaniPrasad.Y, Rajeev Pankaj.N, Samhitha.N.R,

Shruthi.U.K, “Design of Reversible Multiplier by Novel

ANU gate”, International Journal of Engineering and

Technology, Vol. 4, No, 6, pp. 2049-3444, June 2014.

[9]PragyanParamita Mohantly1, Mrs.Annapurana K.Y.2,

“FPGA Implementation of Iterative Log Multiplier

using Operand Decomposition for Image Processing

Application”, International Journal for Research in

Applied Science and Engineering Technology, Vol. 2,

No. 6, pp. 2321-9653, June 2014.

[10] Patricio Buli‟c*, ZdenkaBabi‟c and AleksejAvramovi‟c,

“A Simple Pipelined Logarithmic Multiplier”, IEEE

Transactions on Computers, pp. 978-1-4244-8935, Oct

2010.

[11] Arindam Banerjee*, SamayitaSankar, Mainuck Das and

AniruddhaGhosh, “Design of Reversible binary

Logarithmic Multiplier and Divider using Optimal

Harbage”, International Journal of Advanced Computer

Research, Vol. 5, No. 18. pp. 2277-7970, March 2015.

 [12] Rakshith.T.R, Rakshith Saligram, “Design of High

Speed Low Power Multiplier using Reversible Logic: a

Vedic Mathematical Approach”, International

Conference on Circuits, Power and Computing

Technologies, pp.4673-492, ICCPCT-2013.

[13] Kavyashree M S, Praveen Kumar Y G, Dr.M.Z. Kurian,

“A Survey on Reversible Logic Based Logarithmic

Multipliers”, National Conference on Recent Trends in

Information and Communication Technology, ISBN:

978-81-927765-3-8, PP:40-42, April-2016.

