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Abstract— As the demand increases for low power dissipation in digital computing system, a new technique called Reversible Logic 

was introduced. Reversible logic is one of the promising field which solves the problem of power dissipation and also it is the basic 

requirement for the field of quantum computing. The multiplication which plays a prior role in DSP applications. Some of the 

important operations in DSP are filtering, convolution and inner partial products. These are the processes  which requires 

multipliers so the speed and performance of their operations depends on the speed of the multiplication and addition. The 

logarithmic multiplier which is designed based on the Mitchell’s Algorithm proposed by Mitchell. The logarithmic multiplier 

convert multiplication and division problem into addition and subtraction.. This paper gives the design of pipelined iterative 

logarithmic multiplier using reversible logic. 
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I. INTRODUCTION 

 
  Reversible Logic has received great attention in the 

recent years due to their ability to reduce the power 

dissipation which is the main requirement in the low power 

VLSI design. Reversible logic is an n-input n-output logic 

device with one to one mapping. In the designing of the 

reversible logic circuits direct fan-out is not allowed and the 

concept of one-to-many is not entertained.  

 

Digital arithmetic calculations are most important in 

the design of digital processors and application-specific 

systems. Arithmetic circuits plays an important class of 

circuits in the digital system. Multiplication is relevant since 

other arithmetic operators such as division or exponentiation, 

which they usually utilize multipliers as building blocks. 

Logarithmic multiplier converts given binary numbers into 

their equivalent logarithm numbers. In LNS (Logarithmic 

Number System) multiplication is done interms of addition.  

II. DESIGN OF ALGORITHM 

Logarithmic multiplication is an approximate 

multiplication technique that uses the fact that logarithm of 

the product is a sum of operand logarithms; therefore an 

operand conversion from integer number system into the 

logarithm number system (LNS) is used. The multiplication 

of the two operands N1 and N2is performed in three phases, 

calculating the operand logarithms, the addition of the 

operand logarithms and the calculation of the antilogarithm: 

 

Log (N1N2) = log (N1) .Log (N2) 

 

The main advantage of this method is the substitution of 

the multiplication with addition. LNS multipliers can be 

generally divided into two categories, one based on methods 

that use lookup tables-where the log values are stored in 

memory tables and the pure LUT stores a (pre-calculated) 

value for the logarithm of every possible input value. The 

logarithm is obtained by looking for its value in the table. 

The LUT and Interpolator use a similar table to the LUT, but 

do not store every value. Instead it stores half, for example, 

and uses linear interpolation to estimate the values between 

the look-up points and the other based on Mitchell‟s 

algorithm (MA). 

 

The binary representation of the number N can be 

written as: 

 

N= 2
k
 (1+ 𝟐𝒊−𝒌𝒌−𝟏

𝒊=𝒋 zi) = 2
k
 (1+x)……. (1) 

 

Where, 

K is place of the most significant bit which equals 

one, so called characteristic number, 

zi is a bit value at the i
th

 position, 
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x is the fraction or mantissa, 

j depends on the number‟s precision. 

 

Because, computers works with binary number 

system, it is more appropriate to use 2 as logarithm basis, so 

it can be derive as: 

 

log2(N)=log2( 2
k
 (1+ 𝟐𝒊−𝒌𝒌−𝟏

𝒊=𝒋 z
i
)) = log2 (2

k
 (1+x)) 

=k+log2(1+x)……. (2) 

 

The expression log2 (1 + x) is usually approximated; i.e, 

logarithmic based calculations are a trade-off between the 

accuracy and time consumption. 

 

a. Mitchell’s Algorithm 

One of the most relevant multiplication methods in 

LNS is Mitchell‟s algorithm. Mitchell proposed a very low-

cost approach to approximating the base-2 logarithm and 

antilogarithm without the need for a table or iteration, hence 

reducing hardware area. Mitchell‟s technique is accurate to 

about four bits. There are more accurate techniques but none 

are as economical as Mitchell‟s method. 

 

An approximation of the logarithm and the 

antilogarithm is essential, and it is derived from a binary 

representation of the numbers. 

 

The logarithm of the product is: 

 

log2(N1N2)= k1+k2+log2 (1+x1) + log2 (1+x2)….(3) 

 

The expression log2 (1 + x) is approximated with x 

and the logarithm of the two numbers‟ product is expressed 

as the sum of their characteristic numbers and mantissas: 

 

log2(N1N2)≈k1+k2+x1+x2     ……(4) 

 

The characteristic numbers k1 and k2 represent the 

places of the most significant operands‟ bits with the value of 

„1‟. The final MA approximation for the multiplication 

(where Ptrue = N1 x N2) depends on the carry bit from the sum 

of the mantissas and is given by: 

 

 

2
k1+k2

(1+x1+x2),        x1+x2 < 1 

PMA =(N1N2)MA=  2
k1+k2+1

(x1+x2),         x1+x2 ≥ 1 

 

 

  (5) 

 

If x1 + x2< 1, the sum of mantissas is added to the most 

significant bit of product to complete the final result. 

Otherwise, the product is approximated only with the scaled 

sum of mantissas. The MA produces a significant error 

percentage. The maximum possible relative error for MA 

multiplication is around 11%, and the average error is around 

3.8% .The error in MA is always positive so it can be reduced 

by successive multiplications. 

 

Mitchell analyzed this error and proposed the following 

analytical expression for the error correction       

 

pMA+2
k1+k2

(x1.x2),    x1+x2 < 1 
(N1.N2)MAC=PMA=      2

k1+k2
(1-x1) . (1-x2), x1+x2 ≥1    (6) 

 

Where, 2
k1+k2

(x1.x2) and 2
k1+k2

(1-x1). (1-x2) are the 

correction terms proposed by Mitchell.  

 

To calculate the correction terms: 

1. Calculate x1.x2 or (1 - x1) .(1 -x2) depending on x1 + x2. 

2. Scale the correction term by the factor 2
k1+k2

. 

3. Add the correction term to the product PMA. 

 

Algorithm 1 (Mitchell’s Algorithm) 

 

1. N1, N2: n-bits binary multiplicands, PMA = 0:2 n-bits 

approximate product 

2. Calculate k1: leading one position of N1 

3. Calculate k2: leading one position of N2 

4. Calculate x1: shift N1 to the left byn - k1bits 

5. Calculate x2: shift N2 to the left byn - k2 bits 

6. Calculate k12 = k1 + k2 

7. Calculate x12 = x1 + x2 

8. IF x12≥2
n
 (i.e. x1 + x2>=1): 

(a) Calculate k12 = k12 + 1 

(b) Decode k12 and insert x12 in that position of Papprox 

ELSE: 

(a) Decode k12 and insert „1‟ in that position of Papprox 

(b) Append x12 immediately after this one in Papprox 

9. Approximate N1. N2 = PMA 

 

One important observation (from Algorithm 1) is that the 

error correction can start only after the term x1 + x2 is 

calculated. 

 

The proposed solution simplifies logarithm 

approximation and introduces an iterative algorithm with 

various possibilities for achieving the multiplication error as 

small as required and of achieving the exact result. High level 

of parallelism can be achieved by the principle of pipelining, 

thus increasing the speed of the multiplier with error 

representation of the numbers in (1), we can derive a correct 

expression for the multiplication: 
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Ptrue = N1. N2 

= 2
k1

 (1 + x1) .2
k2

(1 + x2) 
= 2

k1 + k2
 (1+ x1+ x2) + 2

k1 + k2 
(x1 x2)(7) 

 

To avoid the approximation error, it would have to take 

into account the next relation derived from (1): 

 

x . 2
k  

= N- 2
k
(8) 

 

The combination of (7) and (8) gives: 

 

Ptrue = (N1. N2) 

= 2
k1 + k2 

+ ( N1– 2
k1

) 2
k2 

+ (N2 -2
k2

) 2
k1

+( N1 – 2
k1

).(N2 -2
k2

)                                      

(9) 

 

Let 

P
(0)

approx. =  2
k1 + k2

+( N1 – 2
k1

) 2
k2 

+ (N2 -2
k2

) 2
k1

 
 

be the first approximation of the product. It is evident that 

 

Ptrue = P
 (0)

 approx. +( N1– 2
k1

).(N2 -2
k2

)             (11) 

 

The proposed method is very similar to MA. The error is 

caused by ignoring the second term in (11). The term (N1- 

2
k1

) (N2- 2
k2

) requires multiplication. The difference between 

the proposed method and the method proposed by Mitchell is 

that the proposed method avoids the comparison of the 

addend x1 + x2 with 1. Hence the error correction can start 

immediately after removing the leading ones form the both 

input operands. 

The absolute error after the first approximation is: 

 

E
(0) 

=Ptrue- P
 (0)

 approx. = (N1– 2
k1

).(N2 -2
k2

)      (12) 

 

Note that E
(0)

>= 0. The two multiplicands in (6) are 

binary numbers that can be obtained simply by removing the 

leading „1‟ in the numbers N1 and N2 so repeat the proposed 

multiplication procedure with these new multiplicands. 

 

E
(0) 

= C
 (1) 

+ E 
(1)…..

(13) 
 

WhereC
 (1)

 is the approximate value of E
 (0)

 and E
 (1)

 is an 

absolute error when approximating E
 (0)

.The combination of 

(11) and (13) gives 

 

Ptrue = P
 (0)

 approx.  +C 
(1) 

+ E
 (1)                              

     (14) 

 

Now add the approximate value of E 
(0)

 to the approximate 

product Papprox as a correction term by which  decreases the 

error of the approximation. 

 

P
 (1)

 approx. = P
(0)

 approx.   + C 
(1)    

                           (15) 

 

If repeat this multiplication procedure with i correction 

terms, it can approximate the product as: 

 

P
 (i)

 approx.= P
 (0)

 approx. +C 
(1)

 + C
(2)

 + …. + C
(i) 

= P
 (0)

approx 

+ 𝑪𝒊
𝒋=𝟏

(j)
(16) 

 

The procedure can be repeated, achieving an error as small as 

necessary, or until at least one of the residues becomes a 

zero. Then the final result is exact: Papprox = Ptrue. The number 

of iterations required for an exact result is equal to the 

number of bits with the value of ‟1‟ in the operand with the 

smaller number of bits with the value of „1‟ 

 

Algorithm 2 (Iterative MA-based algorithm with i 

correction terms) 

 

1. N1, N2: n-bits binary multiplicands, P
(0)

approx.= 0 : 2n-bits 

first approximation C
(i)

=0:2n-bits i correction terms, 

Papprox = 0: 2n-bits product
 

2. Calculate k1: leading one position of  N1 

3. Calculate k2: leading one position of  N2 

4. Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits 

5. Calculate (N2-2
k2

)2
k1

 : shift (N2-2
k2

) to the left by k1 bit. 

6. Calculate k12 = k1 + k2 

7. Calculate 2
k1+k2

: decode k12 

8. Calculate P
(0)

approx: add 2
k1+k2

, (N1-2
k1

)2
k2

 and (N2-2
k2

)2
k1

 

9. Repeat i-times or until N1 = 0 or N2 = 0: 

(a) Set: N1= N1-2
k1

, N2=N2-2
k2

 

(b) Calculate k1: leading one position of N1 

(c) Calculate k2: leading one position of N2 

(d) Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits 

(e) Calculate (N2-2
k2

)2
k1

 : shift (N2-2
k2

) to the left by k1 bits 

(f) Calculate k12 = k1 + k2 

(g) Calculate 2
k1+k2

: decode k12 

(h) Calculate C
(i)

: add 2
k1+k2

, (N1-2
k1

)2
k2

and (N2-2
k2

)2
k1 

10.P
(i)

approx=P
(0)

approx+∑iC
(i) 

III. III. SYSTEM DESIGN: 

 

i. Reversible Logic: 

A reversible logic gate is an n-input, n-output logic 

device with one-to-one mapping, which helps to retrieve the 

inputs from the outputs. Also in the synthesis of reversible 

circuits direct fan-out is not allowed as one-to-many concept 

is not reversible. However fan-out in reversible circuits is 

achieved using additional gates. 

There are many parameters for determining the 

complexity and performance of circuits. 

 The number of reversible gates (N): The 

number of reversible gates used in the circuits. 
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 The number of constant inputs (CI): The 

number of inputs that are maintained constant at 

either 0 or 1in order to synthesize the given 

logical function. 

 The number of garbage outputs (GO): The 

number of unused outputs present in a 

reversible logic circuits. 

 Quantum cost (QC): The quantum cost refers to 

the cost of the circuit in terms of primitive 

gates.In a reversible logic circuit design two 

restrictions should be maintain strictly. 

 Fan-out is not allowed. 

 Feedback loops are also prohibited.Logic 

synthesis of reversible logic circuits should 

have the following objectives to achieve 

optimized structure. 

 Design should use minimum number of logic 

gates. 

 Constant inputs should be minimum. 

 Quantum cost should be kept as low as possible. 

 

 

IV. PROPOSED SYSTEM DESIGN 

A basic block (BB) is the proposed multiplier with 

no correction terms. It calculates one approximate product. 

The basic block is presented in Figure 1, which consists of 

two leading-one detectors (LODs), two encoders, two barrel 

shifters, and decode unit decodes k1 + k2, i.e. it puts the 

leading one in the product. The left shifters are used to shift 

the residues. The two shifted residues are then added to form 

the approximate product. 

 

 
Figure 1: Basic Block Diagram of the Proposed 

Logarithmic Multiplier. 

Implementation with Correction Circuits 

 

The basic block is used in subsequent 

implementations to implement correction circuits and 

increase the accuracy of the multiplier. The error-correction 

circuit is used to calculate the term C
 (1)

 and thus 

approximates the term (N1 - 2
k1

) (N2 -2
k2

).To implements the 

proposed multipliers, cascade the basic blocks. A block 

diagram of the proposed logarithmic multiplier with one error 

correction circuit is shown in Figure 2.The multiplier is 

composed of two basic blocks, of which the first one 

calculates the first approximation of the product P
(0) 

approx., 

while the second one calculates the error-correction term C
(1)

. 

 

 
 

Figure 2:Block Diagram of the Proposed Multiplier with 

Error Correction Circuit. 

 

The implementation with correction circuits shows 

substantial increase in combinational delay as each correction 

circuit is added. The two basic blocks cannot really work in 

parallel in real-time, because the correction block cannot start 

until the residues are calculated from the first basic block. 

But in the pipelined implementation of the basic block the 

residues are available after the first stage; the correction 

circuit can start to work immediately after the first stage from 

the prior block is finished. 

 

V. IMPLEMENTATION OF PROPOSED 

MULTIPLIER 

 The RTL schematic of  4x4 reversible logarithmic 

multiplier without correction circuit is as shown in Figure 3. 
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Figure 3: RTL Schematic of Reversible Log Multiplier 

Without Correction Terms. 

 

 The RTL schematic of  4x4 reversible logarithmic 

multiplier with correction circuit is as shown in Figure 4. 

 
Figure 4: RTL Schematic of Reversible Log Multiplier With 

3 Correction Terms. 

 

The reversible implementation and simulation 

results of logarithmic multiplier is as shown in Figure 5. 

 

 
Figure 5: Simulation Results of 4x4 Log Multiplier. 

 

VI. CONCLUSION 

 

In this paper, the 4x4 logarithmic multiplier is 

designed using reversible logic.Power analysis is done for 

both conventional and reversible based 44 log multiplier 

and it is found that reversible based log multiplier consumes 

less power than conventional.  As a future work, this design 

can be used for image enhancement, compression, video 

tracking, DSP filters etc..  
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