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Abstract— Deep Neural Networks(DNNs) use a cascade of hidden representations to enable the learning of complex mappings from 

input tom output features and are shown to produce more natural synthetic speech than conventional HMM-based statistical 

parametric systems. However even though it offers greater flexibility and controllability than unit selection, the naturalness of 

speech generated by DNN SPSS is still below that of human speech, and cannot compete with good unit selection systems. DNNs 

are very powerful models and it might be the case that we haven’t yet found the best possible way to use them. In this paper, we 

investigate the learning of a phoneme manifold as a secondary task in a Multitask Learning setting for acoustic modeling and show 

that the hidden representation used within a DNN can be improved using such a method. The rationale behind the techniques is 

independent of the architecture and can also be extended to the recurrent/recursive variants of the neural networks. 

 

Index Terms—Manifold, Multitask Learning, Synthesis. 

 

 
I. INTRODUCTION 

 
Statistical Parametric Speech Synthesis (SPSS) has 

made significant advances in naturalness [1] and is highly 

intelligible [2]. Zen et al.[1] suggest various factors which 

limit naturalness or quality. 

 

Neural Networks have re-emerged as a potential 

powerful acoustic model for SPSS. In [4],[5],[6],[7],[8], 

feed-forward neural networks are employed to map a 

linguistic representation derived from input text directly to 

acoustic features. In [5], a Deep Belief Network (DBN) 

was used to model the linguistic and acoustic 

representations jointly. In [9] and [10] Mixed Density 

Networks ( MDNs) and real valued neural autoregressive 

density estimators (RNADEs) were proposed respectively, 

to predict acoustic feature distributions given input 

linguistic features. In [11], authors point out that replacing 

decision trees with DNNs and moving from state-level to 

frame-level predictions both significantly improve 

listener’s naturalness ratings of synthetic speech produced 

by the systems. 

 

Despite this, it would be difficult to argue as of now 

that deep neural networks have had the same success in 

synthesis that they have had in ASR. DNN –influenced 

improvements in synthesis have mostly been fairly 

moderate. This becomes fairly evident when looking at the 

submissions to the Blizzard Challenge [12] in the recent 

past. Few of the submitted systems use DNNs in any part 

of the pipeline, and those that do use DNNs, do not seem to 

have any advantage over traditional well-trained systems. 

Even in the cases where improvements look promising, the 

techniques have had to rely on the use of much larger 

datasets than is typically used. The end result is that the 

DNN based SPSS ends up having to loose the advantage it 

has over traditional unit selection systems [3] in terms of 

amount of data needed to build a reasonable system. 

 

DNNs are extremely powerful models, and like 

many algorithms at the forefront of machine learning 

research, it might be the case we have not yet found the 

best possible way to use them. With this in mind, in this 

paper we investigate the usage of multitask learning with 

different levels of secondary tasks for acoustic modeling in 

DNN based SPSS. 

 

1.1. Motivation for the Proposed Method of Spectral 

Mapping 

Although a lot of issues pertaining to the 

regression mapping have been addressed, there is one 

problem that has not been stressed upon in literature so far 

that of sub optimality while training the mapping function, 
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which arises due to design of optimization function. The 

training criterion typically aims to maximize the likelihood 

of spectral features of speech which might not be the best 

representation. However, as the choice of speech features 

is constrained by the requirements of vocoder, many 

interesting and powerful representations which might lead 

to better output quality are avoided from being used in the 

mapping function. In this submission, we investigate the 

use of multitask learning (MTL) [13] in a DNN framework 

to alleviate this problem. Eventhough, similar approach has 

been explored in [14], all the secondary tasks are at frame 

level (formants,LSF,etc). 

 

1.2. Mutlitask Learning 

Mutlitask Learing(MTL) is a mechanism to train a 

global model for various different yet related tasks using a 

shared representation[13]. Typically, there is one main task 

and one or more secondary tasks. It is generally believed 

that model learned in multitask learning can generalize 

better and make more accurate predictions than a model for 

a single task, provided that the secondary task(s) are 

related to the main task and at the same time 

complementary. MTL has produced good results in Speech 

Recognition [15], Synthesis [16] and Natural Language 

Processing [17]. When using MTL with a DNN, the main 

task and the secondary tasks share the same hidden 

representations. The extra target outputs associated with 

additional tasks are added to the original output for training 

the network and are discarded during the speech 

generation. In [9], acoustic features and various secondary 

features were trained together to improve voice quality of 

SPSS, demonstrating that the statistical model can be 

improved if the second task is chosen well. Specifically, 

the second task should be related with the primary task, 

with parameter sharing serving to improve the structure of 

the model. The DNN learns to predict a representation of 

the target speech as a secondary task, in parallel to learning 

to predict the usual invertible vocoder parameters as the 

main task. The predictions of the representation are 

discarded at reconstruction time as their purpose is to guide 

the hidden layers of the network during training towards 

obtaining a qualitatively more robust representation by 

providing additional supervision. 

 
Figure 1: Implementation of Multitask Learning 

 

In the current task there are three possible levels 

at which secondary task can be chosen: 

 At the utterance level, with the task being 

minimizing a metric such as the MCD 

 At the speech segment level, with the task being 

maximizing the probability of intermediate 

phoneme representations such as bottleneck or 

phoneme manifold or continuous representation 

obtained from text in an unsupervised method 

such as LSA or positive point wise mutual 

information matrix factorization technique and 

 At the frame level, where the task is to predict 

perceptual representation of speech such as 

formants or LSF, so as to improve the quality of 

final output. 

 

In our current work, we investigate the system 

performance at all the sub segmental levels. In particular, 

at the utterance level, we try to minimize the MCD of the 

test utterance, try to maximize the phoneme manifold at the 

segment level, and predict formant frequencies [16] at the 

frame level. Although there is interesting possibility to see 

the performance of the weighted combination of the 

different secondary tasks, we have not done it in the 

current work. 

 

The paper is organized as: In Section 2, we briefly 

describe Secondary tasks, followed by the implementation 

of the system along with the chosen secondary task in 

section 3 We evaluate the designed systems in section 4 

followed by the conclusion. 

 

II. SECONDARY TASKS 

 

2.1. Phoneme Manifold 

A Manifold is a non-Euclidean space that can be 

approximated by Euclidean patches in small 

neighborhoods. 
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We assume that speech resides on a manifold μ of 

dimension d within with d < D. Manifold serves as a useful 

low dimensional representation of a segmental entity such 

as phoneme and is already employed for applications such 

as speech recognition and denoising[19]. It has been 

suggested that the acoustic feature space is confined to lie 

on one or more low dimensional manifolds. Therefore, a 

feature space transformation technique that explicitly 

models and preserves the local relationships of data along 

the underlying manifold should be more effective for 

speech processing. We investigate if learning to predict the 

phoneme manifold serves as a secondary task, aiding the 

vocoder parameter prediciton. For this, we have obtained 

phone boundaries using NNET recipe of Kaldi Speech 

Recognition toolkit [20]. 

 

 
Figure 2: Illustration of Phoneme Manifold 

 

The phoneme manifold was obtained the 

following way: 

 Conversion of the time-domain representation of 

y[n] to the spectral domain using the short-time 

Fourier Transform (STFT) with a 20ms Hamming 

window shifted by 10ms. We used a 512-point 

FFT for the STFT, so the resulting spectral 

representation is in D = 257-dimensional space. 

 

 For each phoneme (boundaries obtained from 

Kaldi), we embedded its speech frames into a low 

dimensional space using Neighborhood 

Preserving Embedding (NPE)[21]. NPE preserves 

the local Euclidean structure by representing XIP, 

the ith speech frame labeled as phoneme p, as a 

linear combination of its K nearest neighbors, and 

preserving the weights in the linear combination 

when each speech frame is mapped to a low 

dimensional space. This ensures that the local 

geometry in high-dimensional space will be 

retained in low dimensional space. 

 

 We use the Manifold Charting method to join 

these patches together [22]. Manifold Charting 

determines the best global Cartesian coordinate 

system to represent the speech frames by re-

aligning the coordinate system of each of the 

phoneme patches. 

 

Thus, with the phoneme maps Ap from NPE and the 

global coordinate map f from Manifold Charting, we have 

a non-linear mapping between the high-dimensional 

spectral space and the low-dimensional speech manifold: 

zip = f(yip) = f(Apxip). 

 

2.2. Continuous Representation of Text Using PPMI 

Matrix: 

Distributed dense representations of phonemes are 

shown to improve the performance of the connectionist 

repressors [23] for prediction of the acoustic parameters. 

We wish to investigate if the representation derived in such 

an unsupervised fashion using the co-occurrence statistics 

of the phonemes can serve as an assisting secondary task 

during multitask learning. We use the continuous 

representations obtained using PPMI factorization method 

mentioned in [23]. Precisely, we pose the task of obtaining 

a continuous representation of text as a matrix factorization 

problem where the matrix is populated by the co 

occurrence statistics and solve it using Symmetric Singular 

Value Decomposition. PMI(p, c) measures the association 

between a phone p and a context c by calculating the log of 

the ratio between their joint probability (the frequency in 

which they occur together) and their marginal probabilities 

(the frequency in which they occur independently). PMI 

can be estimated empirically by considering the actual 

number of observations in the corpus. 

 

Where, 

 
 NPC is the frequency of occurrence of the phone in the 

corpus. 

 ND is the size of the corpus. 

 NC is the frequency of the occurrence of the context in 

the corpus.  

 NPC is the frequency of the occurrence of the phone 

IN the context and appearing in the corpus. 

 

2.3. Speaker Representation Using I Vector 

An i-vector is a low-dimensional vector 

representing speaker identity. I-vectors have dramatically 

improved the performance of text-independent speaker 

verification and now define the state-of-the-art. Given a 
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speaker-dependent GMM, the corresponding mean super 

vector s can be represented as, 

s = m + Ti 
where m is the super-vector defined by the mean super-

vector of a speaker-independent universal background 

model (UBM) that benefits from multiple speakers training 

corpora, s is the speaker super-vector which is the mean 

super-vector of the speaker dependent GMM model 

(adapted from the UBM), T is the total variability matrix 

estimated on the background data, and i is the speaker 

identity vector, also called the i-vector. In the current 

context, when training a speaker independent DNN model. 

As suggested in the literatures [24], length normlisation is 

performed on all the i-vectors. In practice, we used the 

ALIZE toolkit [25] to extract i-vectors. 

 

III. IMPLEMENTATION 

 

3.1. Database 

Speech and text data for six Indian languages i) Bengali, ii) 

Hindi, iii) Malayalam, iv) Marathi, v) Tamil and vi) Telugu 

that were released as a part of Blizzard Challenge 2015 

have been used. The speech data for each language was 

around 4 hours (sampled at 16 KHz), recorded by 

professional speakers in a high quality studio environment. 

Along with the speech data the corresponding text was 

provided in UTF-8 format. 

 

3.2. Baseline systems 

For comparison, we built an HMM system on the 

same data, employing five-state, left-to-right Hidden Semi-

Markov Models (HSMM). The MCCs and BAPs with 

deltas and delta-deltas appended were modelled by single-

component Gaussians, and log F0 with delta and delta-

delta was modeled by a 3-dimension multi space 

probability distribution (MSD). Decision tree state 

clustering used a minimum description length (MDL) 

factor of 1.0. During parameter generation, global variance 

(GV) enhancement was applied. We have also built a 

Random Forest based system using the publicly available 

Festival toolkit. 

 

3.3. Top line Systems 

All the topline systems designed had the basic 

implementation of the DNN systems in addition to a 

specific secondary task(s) the systems with two secondary 

tasks always had speaker I vector prediction as one of the 

tasks. In the systems MTL+MCD and 

MTL+MCD+ivector, the aim was to minimize the Mel 

Cepstral distortion of the generated wavefile. This system 

was designed to see if such a metric minimization aimed 

training result in an acceptable output. The Systems 

MTL+Manifold and MTL+Manifold+iVector were 

designed using the minimization of the speech phoneme 

manifold as the secondary task. The idea behind the design 

of this system is to obtain the shared representation in the 

hidden layers such that the best approximation to a low 

dimensional representation of the phoneme being 

synthesized so that the representation can now better model 

the vocoder parameters at the output. The Systems 

MTL+Dense and MTL+Dense+iVector are similar to the 

Manifold systems except in the fact that the dense 

representation in this case is obtained from the text using 

the co-occurence statistics where as the manifold is 

obtained directly from the speech segment. The Systems 

MTL+Formant and MTL+Formant+iVector are designed 

so as to predict the second formant as the secondary task. 

Second formant is known to be contributing to the 

coarticulation [26] and therefore, the idea is to use such 

ability in the prediction of the speech generation 

parameters. 

 

3.4. DNN System Overview 

STRAIGHT [28] was used to extract 60-

dimensional Mel Cepstral Coefficients (MCCs), 25 band 

aperiodicities (BAPs) and logarithmic fundamental 

frequency (log F0) at 5 MSEC frame intervals. In the 

DNN-based systems, the input features consisted of 592 

binary features and 9 numerical features. The binary 

features were derived from a subset of the questions used 

by the decision tree clustering in the HMM system, and 

included linguistic contexts such as quinphone identity, 

and parts-of-speech positional information within the 

syllable, word and phrase, and so on. 9 numerical features 

were appended: the frame position within the HMM state 

and phoneme, the state position within the phoneme, and 

state and phoneme durations. Frame-aligned training data 

for the DNN was created by forced alignment using the 

HMM system described above. 

 

The main task DNN outputs comprised MCCs, 

BAPs and continuous log F0 (all with deltas and delta-

deltas) plus a voiced/unvoiced binary value. We have used 

a 0.2 dropout at each of the hidden layers. Input features 

were normalized to the range of [0.01, 0.99] and output 

features were normalized to zero mean and unit variance. 

MLPG using pre-computed variances from the training 

data was applied to the main task output features, and 

spectral enhancement post-filtering was applied to the 

MCCs . In both DNN and MTLDNN, the ReLu function 

was used as the hidden activation function, and a linear 

activation function was employed at the output layer. 

During training L2 regularization was applied on the 

weights with penalty factor of 0.00001, the mini-batch size 

was set to 256 and momentum was used. For the first 10 

epochs, momentum was 0.3 with a fixed learning rate of 

0.002. After 10 epochs, the momentum was increased to 

0.9 and from that point on the learning rate was halved at 
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each epoch. The learning rate of the top two layers was 

half that of other layers. 

 

The maximum epochs was set to 25 (early 

stopping). For software implementation, we used Keras, a 

wrapper around Theano and training was conducted on a 

GPU. 

Table1 : Objective Evaluation of the various systems 

Designed 

 

 
 

IV. EVALUATION 

 

We conducted objective evaluation to analyze the 

performance of each individual system. The results are 

presented in Table 2. From initial observations, two 

conclusions can be drawn (1) Topline systems perform 

better than the baseline systems in terms of the objective 

measure and (2) There doesn’t seem to be language based 

dependency on the technique. Across all the languages, the 

four top line with single secondary task, the phoneme 

manifold approach achieves the lowest Mel Cepstral 

distortions. When combining the secondary tasks with the 

i-vector however, the system using MCD optimization 

obtains the best result, indicating the positive impact of the 

addition of I vector as the task. There is no specific 

improvement in the MCD scores of the formant based 

system with the addition of I vector across any language. It 

might be interesting to combine the phoneme manifold and 

the dense continuous representation of the phoneme 

obtained form the text and use the combined vector as the 

secondary task in this setting. We can also use other 

speaker representative features such as the bottleneck 

features obtained from an auto associative neural network, 

which is known to capture the distribution of the given data 

in the higher dimensional feature space[27]. Eventhough 

its ideal to perform subjective evaluation using listeners 

from the native languages, we have, in the current study, 

performed objective evaluation of the systems designed. 

 

V. CONCLUSION 

 

Though DNNs are powerful in acoustic 

modelling, the naturalness obtained from the DNN based 

system is poorer than Unit Selection System. Hence, our 

work is in the direction of investigating if the speaker and 

phoneme level information as the secondary task would 

help in increasing the performance of the system and bring 

about intelligibility in the synthesized voice. Even though 

objective evaluation obtained was showing improvement in 

the system performance, we need subjective evaluation for 

better understanding which we could not do as there were 

multiple systems in multiple languages. 
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