
International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 202

Implementation of High Speed 64-bit Parallel

Cyclic Redundancy Check Generation for Ethernet

Application

[1]

Sinam Ajitkumar Singh,
[2]

Patrick Y,
[3]

L. Surajkumar Singh

Department of Electronics and Communication Engineering

National Institute of Technology Manipur, India
[1]

ajit_sinam@yahoo.com,
[2]

Patrick.yumnam07@gmail.com,
[3]

surajloi@nitmanipur.ac.in

Abstract: CRC is the most powerful tools for detecting and correcting error in data transmission. CRC can be implemented in

hardware using Linear Feedback Shift Register. This paper emphasizes mainly on data transmission using Ethernet. Serial CRC

can be implemented easily but it cannot achieve high speed. Using F matrix algorithm, Parallel CRC can be implemented, in which

speed is drastically increased. While transmitting 64-bit data using serial CRC-32, an output is obtained after 64 clock cycle.

However, using Parallel CRC-32 output is obtained after 9 clock cycle, which required 50% less cycles to generate CRC compared

to serial CRC generator. The design method is employed with Xilinx ISE 9.2 Tool

Index Terms—Cyclic Redundancy Check, F matrix, Linear Feedback Shift Register, Parallel CRC.

I. INTRODUCTION

 CRCs are a popular technique for detecting

errors that is based on cyclic error correcting codes

theory. The message is transmitted through different

transmitted media it is subjected to attenuation, distortion

and noise. As a result, some of the bits of data gets

corrupted (error). A CRC is a popular error detecting code

computed through binary polynomial division. In 1961,

W. W. Peterson proposed CRC [6].

Cyclic Redundancy Check is widely used in digital

data communication and other areas such as data

compression and data storage, as a powerful method for

dealing with data errors. Usually, linear feedback shift

registers (LFSRs) is used to implement CRC algorithm in

hardware, which handles the data serially using flip-flop

and logic gates. As digital data usage increases day by

day, high speed data transmission becomes eminent and

the increase in data transmission speed means a

subsequent increase in error checking, In this case, a

parallel computation of the CRC which can handle n bits

data simultaneously, which is necessary [1,2].

II. CYCLIC REDUNDANCY CHECK

A. Basic approach

To generate a CRC, the transmitter will transmit

a data and performed modulo 2 division operation by a

predefined standard generator (e.g., CRC-32). The

remainder of this operation becomes CRC of the data, it

will append to the original data and transmitted to the

receiver. The receiver also performs modulo 2 division

operation with the received data and same predefined

CRC generator. The operation of CRC performed at

transmitter and receiver is shown in fig. 1below.

Operation is shown below, given an m bit block

of a bit sequence, the sender generates an n bit sequence

known as frame check sequence (FCS), thus the resulting

frame consisting of m+n bits, which is exactly divisible

by the same predetermined number. The receiver divides

the incoming frame by that number and, if there is no

remainder, assumes there was no error.

B. Polynomial representation

Some commonly used CRC generator

polynomials are:

CRC-32:

 32+ 26+ 23+ 22+ 16+ 12+ 11+ 10+ 8+ 7+ 5+ 4+

 2+ +1

CRC-16: 16+ 15+ 2+1

CRC-CCIT: 16+ 12+ 5+1

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 203

Figure 1. Operation of CRC performed at transmitter

and receiver side [6]

III. SERIAL CRC

Serial CRC is designed by using Linear

Feedback Shift Register (LFSR) [3] as shown in fig. 2

below.

Figure 2. LFSR that divides serial input by using

CRC5.

LFSR operation is performed by a series of a

shift register, which stored temporal data for every bit

wise operation. By XORs between two registers, as

shown above fig.2, bit wise operation are performed. For

example, in the above fig.2. CRC5 is implemented by

using five D flip-flop and three XORs gates. Serial 8 bit

input is passed and after eight clock cycle CRC is

generated in which data to be sent from transmitter is

1111010110100 as shown in table 1below.

Table 1. An LFSR computation of (7 + 6 + 5

+ 4 + 2 + 1)/(5 + 4 + 2 + 1).

If P represents generator polynomial which can be written

as P = { , −1, … … … , 0}, F is m × m matrix and

G as 1× m [3].

The matrices of F and G can be denoted as follows.

The state equation for basic serial LFSR can be

written as:

 ′ = .

Where and ′denotes present state and next state of

the system respectively, which is given as = [−1 ⋯

 1 0] and ′ = [−1 ′ ⋯ 1 ′ 0 ′] . And d denotes

serial input data.

IV. PARALLEL CRC

A. Parallel CRC Computation

Parallel CRC is implemented using F matrix

algorithm as shown in fig. 3.

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 204

Figure 3: F matrix algorithm for generation of

CRC.

Firstly, using CRC generator polynomial F

matrix is generated. Each input of F matrix and parallel

input data is anded. Finally, the result of anded operation

will be exoring with current state of CRC checksum. [1]

B. F Matrix Generation

Let us assume m as a degree of polynomial CRC

generator, w bits as a message to be transmitted and k as

the length of the message to be processed. Then after

 + clock cycle, output CRC is generated [1]. F

matrix is generated using equation (1) as follows.

Using equation (2) and (3) we can write final equation as

 ′ =

Where ′ and indicates next state and current state

respectively, and w dimensional data input D =[−1 ⋯

 1 0] .

Let us take CRC-4 generator polynomial, which is given

as P(x) = 4 + 3 + 1 + 0. Then using equation (1), F is

given as follows.

 =

 ′ =

Where,

X = current state

 ′= next state

D(0 to 31) = first 32 bits input data which processed in

parallel manner

D(32 to 63) = next 32 bits input data which processed in

parallel manner

Figure 4: Proposed model of CRC32.

In the proposed model is the input data which

is processed in a parallel manner. The element of matrix

 32 with ℎ row and ℎcolumn is represented as , .

As shown in fig.4 first 32 input bits data is anded with

each row of and result will be xored with next 32 bits

input data. To get the final resultant X, each element of

 is xored with ′ term of CRC32. The output

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 205

CRC is generated after + cycles i.e. after 9 cycle,

where w = 64.

IV. RESULT AND ANALYSIS

The design method is employed using Xilinx 9.2i

and simulated using Xilinx ISE simulator. The output

CRC is obtained after 9 clock cycles. By using Verilog

code, CRC generator is designed and implemented.

Comparative analysis of various parallel CRC is analyzed

in Table.2 below.

Table. 2. Comparison table of a variety of

parallel CRC circuits based on LUTs, CPD and Clock

Cycles.

The simulation result of our proposed method

required 9 clock cycle, CPD required is much less than

other two methods whose architecture was proposed by

[1][7]. The only disadvantages of this method is that, it

required more area compared to other two architecture.

Figure 5: Simulation result for proposed 64bit CRC.

The simulation result for CRC32 with 64 bit

parallel data is obtained by Xilinx ISE 9.2i. Input to the

system is AAAAAAAAAAAAAAAA (64 bit). After 9

clock cycle, final CRC output is obtained i.e. 8BO8EAC4

(hex form).

Figure 6: Simulation result for proposed 32 bit CRC.

V. CONCLUSION

32 bit parallel architecture proposed by [1] [7]

required 17 clock cycle to generate CRC output. Proposed

64 bit parallel CRC32 architecture required only 9 clock

cycle, which required 50% less cycles to generate CRC

compared to serial CRC generator. In this proposed

method, pre-calculation of F matrix is not required. Hence

this method is simple and easy to implement for high

speed CRC generation.

REFERENCES

[1] G. Campobello, G. Patane, Marco Russo, "Parallel

CRC Realization," IEEE Transactions on Computers, Vol

52, No.10, pp.1312-1319,Oct.2003.

[2] Yan sun and Min Sik Kim, "High Performance Tle-

Based Algorithm for Pipelined CRC Calculation,"

Consumer Communication and Networking Conference

(CCNC), 7th IEEE, Vol. No. pp. 1-2, 9-12 Jan 2010.

[3] Weidong Lu and Stephan Wong, "A Fast CRC Update

Implementation," IEEE Workshop on High Performance

Switching and Routing, pp. 113-120, Oct 2003.

[4] F Barun and M. Waldvogel,"Fast Incremental CRC

Updates for IP over ATM Networks," IEEE Workshop on

High Performance Switching and Routing. Vl. No. pp. 48-

52, 2001.

[5] Albertengo. G and Sisto. R, "Parallel CRC

Generation," Micro, IEEE Vol. No.5 pp. 1312-1319, Oct

2003.

[6] W. W. Peterson and D.T. Brown, "Cyclic codes for

error detection," Proceedings of the IRE, Vol. 49, No.1,

pp. 228-235, Jan 1961.

[7] M. Spachmann, “Automatic Generation of Parallel

CRC Circuits,” IEEE Design and Test of Computers, May

2001

