
International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 124

On-Chip Bus Architecture for Achieving Deadlock

Free Communication

[1]
Neethu Susan Alex,

[2]
Karthika Manilal

 [1]
 PG Student [VLSI and ES]

[2]
 Assistant professor,

Department of ECE, TKM Institute of Technology, Kollam
[1]

neethuvaidyan@gmail.com
 [2]

 karthikamanilal@gmail.com

Abstract: — In modern electronic systems, as the computing requirement increase, more and more intellectual property (IP) cores are

embedded in System-On-Chip (SOC). On-chip communication architectures play an important role in determining the over-all

performance of SOC designs. Communication architectures should be flexible so as to offer high performance over a wide range of

traffic characteristics. The modern communication protocol, AXI (Advanced eXtensible Interface) supports advanced transactions

like out-of-order transactions that improve communication efficiency. However a deadlock situation may occur if these transactions

are not handled properly. The deadlock may get occurred if each master in a set of masters is holding a slave and waiting for another

slave held by another master in the set. Hence a bus architecture avoiding deadlock condition, based on AXI protocol has to be

developed. The masters and the slaves communicate each other through the AXI interconnect having different channels. The address

bits should be transmitted initially through the address channel and data will be transmitted after that through the data channel. The

encoding and decoding of the data bits are done using DMC (Decimal Matrix Codes). For avoiding deadlock, a waiting relation

detector can be used to find whether any waiting relation exists. Thus multiple transactions can be handled without any deadlock

occurrence. The designing language is VHDL and synthesis in Xilinx ISE Design Suite 13.2 and can be simulated in ModelSim SE

6.3f.

Index Terms—advanced extensible Interface, Decimal Matrix Code, On chip communication, System on Chip

I. INTRODUCTION

 On-chip communication architectures determine the

overall performance of the System-on-Chip (SoC) designs.

The communication architectures should be flexible to offer

high performance over a wide range of traffic characteristics.

Since the communication requirements of on-chip

components can vary significantly over time, bus

architectures that dynamically detect and adapt to such

variations will substantially improve system performance.

Modern on-chip communication protocols should support

advanced transactions including burst transactions, pipelined

transactions and out-of-order transactions to improve the

communication efficiency. In out-of-order transactions the

responses will return in an order different from their request

order. The communication protocols in AXI support various

advanced transactions, such as burst transactions, pipelined

transactions, and out-of-order transactions [1]. Among these,

the out-of-order transactions serve as a major key in

improving system performance. Out-of-order transactions

can be executed more efficiently when a master IP, like a

processor, can handle out-of-order responses as it allows a

slave core such as a dynamic random-access memory

controller to service the requests in an order that is most

convenient, rather than the order in which requests are sent

by the master.

Bus deadlock is a problem that occurs when a set of

IP cores communicating through a bus system is involved in

a circular wait-and-hold state, which is difficult to resolve.

This situation may crash a bus system as none of the IP cores

involved in the deadlock problem can continue its functions.

A bus deadlock happens when each master in a set of masters

is holding a slave and is waiting for another slave held by

another master in the set. In these bus deadlocks, the relation

between masters and slaves is similar to that between the

processes and the resources in an operating system (OS)

where a deadlock occurs when there is a circular wait-and-

hold relation among a set of processes and resources [2].

Deadlock will decrease robustness of the system.

A deadlock situation may occur in a bus if out-of-

order transactions are not properly handled. This is because

in general a bus system supporting out-of-order transaction

also has to support transactions that will not allow out-of-

order execution. For example, a read operation has to wait for

a preceding write operation if they address to same memory

location. Such read-after-write operations are commonly seen

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 125

in a bus system and they do not allow out-of-order execution

[2]. As a tagged transaction must wait for the completion of

the earlier issued transaction with the same ID, it may happen

that a set of slaves are waiting for one another in a circular

way and are all blocked by the bus, thereby resulting in a bus

deadlock.

II. EXISTING TECHNIQUES FOR DEADLOCK

PREVENTION

A. Cyclic Dependency Schemes

In any interconnect which is connected to a slave

that reorders read data or write response signals, there is the

potential for deadlock. To prevent this three cyclic

dependency schemes that enables the slave interface to

accept or stall a new transaction address is provided [6]. Each

slave interface can be configured to one of the following

cyclic dependency schemes:

 Single Slave Scheme

 Unique ID Scheme

 Hybrid Scheme

Single Slave Scheme: This configuration implements a

deadlock prevention technique that accepts or stalls a new

transaction address based on the following rules:

 A master can initiate a transaction to any slave if the

master has no outstanding transactions

 If the master does have outstanding transactions

then the master can initiate a transaction to the same

slave as the current outstanding transactions [6].

Unique ID Scheme: This configuration implements a

deadlock prevention scheme that accepts or stalls a new

transaction address based on the following rules:

 A master can initiate a transaction to any slave if the

master has no outstanding transactions

 If the master does have outstanding transactions

then the master can initiate a transaction to any slave

but only if the transaction ID of the current

transaction is unique, relative to current outstanding

transactions [6].

Hybrid Scheme: This configuration implements a deadlock

prevention scheme that accepts or stalls a new transaction

address based on the following rules:

 A master can initiate a transaction to any slave if the

master has no outstanding transactions

 If the master does have outstanding transactions

then the master can initiate a transaction to the same

slave as the current outstanding transactions, or the

master can initiate a transaction to any slave but

only if the transaction ID of the current transaction

is unique, relative to current outstanding

transactions [6].

B. Event Deadlock Detector

It is an apparatus for detecting a bus deadlock in an

electronic system [8]. It includes a bus tracker circuit to

monitor the bus transactions to detect a condition that

indicates the occurrence of a wait cycle or a retry cycle. The

apparatus also includes a counter circuit to indicate that the

tracker circuit has detected the condition a predetermined

number of times.

Fig. 1 illustrates one embodiment of the apparatus

for detecting a deadlock on a bus that follows the protocol in

Peripheral Component Interconnect (PCI) bus. The method

embeds a bus tracker in the buses to monitor bus transactions.

It includes an address circuit which includes memory circuit

to store an address of a bus agent involved in a transaction.

Address circuit also includes a comparator circuit to compare

an address of a bus agent involved in a transaction with an

address stored in a memory circuit. If the tracker detects a

condition indicating some transactions is waiting or retrying,

a counter with a predetermined number starts to count down.

When the counter is decreased to zero, it is regarded

as deadlock occurs. With this method, a bus deadlock can be

detected with a few clock cycles. However the predetermined

number is difficult to determine appropriately [8]. The main

drawbacks of the method are,

 If the number is too small, designer may encounter the

Fig. 1: Event deadlock detector

Problem of over detection, whereas if it is too large,

the latency between the occurrence and the detection of

deadlock will be long.

 For both a timer and bus tracker, after detecting the

deadlock, some complicated mechanism is required to

resume the bus system to state before the deadlock,

which may require large hardware overhead.

III. SOFT ERRORS

The unexpected changes in the value of a bit (or

bits) inside a memory is called as soft errors [4]. Due to the

sudden change in the data, it gets stored inside the memory as

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 126

if it was a valid data. Soft errors cause changes in the data

rather than changes in the hardware. By restoring the error,

the value of the system starts its operation. There are usually

two types of soft errors such as, Single bit upset and Multiple

cell upset. In single-bit upsets the error occur when only one

bit of given data unit is changed from 1 to 0 or from 0 to 1.

Multiple cell upset occurs when two or more bits in the data

changes from 0 to 1 or vice-versa. Such type of errors does

not mean that error occurs in adjacent bits.

For detecting and correcting errors, extra bits should

be added to every data byte of the memory. The extra bits are

called as parity check bits. Parity bits are the simplest form of

error detecting codes. These parity bits are used to determine

whether the byte data that is stored in the memory has the

correct number of 0s and 1s in it. If the count changes, it

indicates that there is an error. There are two types of parity

bits such as, Even parity bit and Odd parity bit. In even parity

bit, if the number of ones in the given data is odd then the

parity bit is set as one. If the number of ones is even then,

parity bit is set as zero. In odd parity bit, if the number of

ones in the given data is even then the parity bit is set as one.

If the number of ones is odd then the parity bit is set as zero.

In some cases these parity bit itself may be

erroneous and thus the error cannot be detected. Due to this

error correcting codes were used. It is an algorithm which

gives a sequence of numbers, such that the errors present can

be easily detected and corrected. Error-correcting codes are

more complex than the error detecting codes. Moreover it

requires more redundant bits. Hence, the number of bits

required to correct multiple bit errors will be very high.

IV. BUS ARCHITECTURE FOR DEADLOCK FREE

COMMUNICATION

The bus architecture can be developed based on

AXI protocol. AXI stands for Advanced eXtensible

Interface.

Fig. 2. Masters/Slaves in AXI Bus Architecture

From a technology perspective, AXI provides the

means to perform low latency, high bandwidth on chip

communication between multiple masters and multiple

slaves. AXI Interconnect provides efficient connection

between masters and slaves. The Interconnect is a highly

configurable RTL component, which provides the entire

infrastructure required to connect number of AXI masters to

a number of AXI slaves. This infrastructure is an integral part

of an AXI-based system. Architecture of the interconnect is

highly modular with each of the routers and associated

control logic partitioned on a per channel basis. It ensures,

which bus master is allowed to initiate data transfers

depending on highest priority or fair access.

Fig. 2 shows the basic block diagram of the bus

architecture. The Master generates and drives transaction

onto the bus, the Slave device accepts transaction from any

master and the Interconnect routes the AXI requests and

responses between masters and slaves. The interconnect

consists of five channels; Read address channel, write

address channel, read data channel, write data channel and

write response channel. Every transaction has an address

information and control information on the address channel

that describes the nature of the data to be transferred. The

data transfer takes place between master and slave using a

write data channel to the slave or a read data channel to the

master. In write transactions, all the data flows from the

master to the slave and it has an additional write response

channel to allow the slave to acknowledge the master about

the completion of the write transaction. Then the architecture

should allow, address information to be issued ahead of the

actual data transfer, support for multiple outstanding

transactions.

The masters/slaves are named as North, East, South

and West should communicate each other through the

interconnect. The read as well as write operations will takes

place between these masters/slaves. The interconnect will

provide efficient connection between the masters and slaves.

Each one can act as either master or slave. The one who

initiates the transaction will be the master and the other will

be the slave. The master will give the request and the slave

will respond according to it. A slave is a device or process

that always responds according to the requirement of the

master. The different channels included in the AXI protocol

will be there in the interconnect. The address as well as the

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 127

Fig. 3. Communication between Single Master and Single

Slave

Control bits will be carried by the address channel.

There will be separate channels for the read and write

operation. The write response channel will give the

acknowledgement for the operations.

The communication between a single master and

slave will happen as shown in the Fig. 3. The data transfer

between a master and slave will be completed through the

different channels between the master and the slaves.

A. Read and Write Address Channels

These channels are used to read or write the address

information from master to slave and vice versa. The address

channel will contain the address of the corresponding slave to

be communicated, the tagged ID of the transaction and the

read or write information. The address will be given to the

master and decoding is done to get address, tagged ID and

read or write information. Then it checks whether any

waiting relation exists. If any waiting relation exists, that

transaction will be stalled. If there is no waiting relation, the

corresponding slave is identified and it will be enabled for

the data transfer.

Handling Out-of-Order Transactions: Out-of-order

transactions allow the responses to be returned in an order

different from request order. It is based on the tagged ID. The

execution order depends on the IDs they are tagged. That is,

all tagged transactions with the same tag ID must be executed

Fig. 4. Handling Out-of-Order Transactions

In order and two transactions tagged with different

IDs can be executed out of order.

If the out-of-order transactions are not properly

handled, the deadlock situation may get occurred. It should

have to check whether any waiting relation happen in the bus

while handling each transactions and in such cases, it have to

be avoided. The waiting relation can be avoided by stalling

such transactions. Such transactions can be stalled until the

waiting relation ends. When those transactions are stalled,

other transactions can be handled.

B. Read and Write Data Channels

The read data channel and the write data channel

will carry the data to be transferred between the masters and

slaves. After the selection of the slave to be communicated

by the address channel, the data transfer will takes place. The

read data channel conveys the read data from the slave back

to the master. The write data channel conveys write data

information from the master to the slave.

There will be buffers in the sending side and

receiving side. While writing data, the data that is to be

transferred will be initially stored into a buffer. Then it will

be handled. In the receiving side, the output will be stored in

another buffer and it will be obtained at the required slave.

The same process will takes place while reading data also.

Here Decimal Matrix Code is used for the encoding and

decoding purpose. DMC are mainly used to avoid soft errors.

DMC make use of decimal algorithm that is decimal integer

addition and decimal integer subtraction to detect errors. In

this the input bits are provided to the DMC encoder during

the encoding process. As a result, the horizontal redundant

bits, vertical redundant bits and the information bits are

obtained. Once encoding process gets completed, the

obtained codeword is stored to the memory. If multiple cell

upset occurs in memory information block, this can be

corrected during the decoding process.

DMC Encoder: At first an N-bit data is divided

into k symbols of m bits such that N=k*m. Then the symbols

are arranged as k=k1*k2. Here k1 represents the number of

rows and k2 represents the number of columns. The

horizontal redundant bits (H) are calculated by using decimal

integer addition of selected symbols per row and the vertical

redundant bits (V) are calculated by binary operation of the

bits per column. Here a 32 bit word is chosen and it is

divided into 8 symbols of 4 bit, such that k1=2 and k2=4.

Here D0-D31 are the information bits, H0-H19 are

the horizontal redundant bits and V0-V15 are the vertical

redundant bits. The maximum correction capability and the

number of redundant bits are different for different values of

k and m. Hence k and m should be properly chosen to

maximize the error correction capability and to reduce the

number of redundant bits.

The horizontal bits are calculated by decimal integer

addition as follows:

H4H3H2H1H0 = D3D2D1D0 + D11D10D9D8 (1)

H9H8H7H6H5 = D7D6D5D4 + D15D14D13D12 (2)

H14H13H12H11H10 = D19D18D17D16 + D27D26D25D24

 (3)

H19H18H17H16H15 = D23D22D21D20 + D31D30D29D28

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 128

 (4)

Where + indicates decimal integer addition.

The vertical redundant bits are calculated as follows:

Fig. 5. DMC Encoder

V 0 = D0 xor D16 (5)

V 1 = D1 xor D17 (6)

V 2 = D2 xor D18 (7)

V 3 = D3 xor D19 (8)

Accordingly all the vertical redundant bits are

calculated. Thus at the output of the encoder horizontal

redundant bits, vertical redundant bits and the original bits

(U0- U31) are obtained.

DMC Decoder: The decoding process takes place in two

steps: Firstly the received redundant bits [H4H3H2H1H0]

and [V0- V3] are calculated from the information bits

obtained from the memory information block. Secondly the

horizontal syndrome bits ∆H4H3H2H1H0 and vertical

syndrome bits S3-S0 are calculated.

To calculate the horizontal syndrome bits, decimal integer

subtraction is performed between the received horizontal

redundant bits and the horizontal redundant bits obtained

from memory redundant block and is as shown below:

∆H4H3H2H1H0 = [H4H3H2H1H0]’ - H4H3H2H1H0 (9)

∆H9H8H7H6H5 = [H9H8H7H6H5]’ - H9H8H7H6H5

(10)

∆H14H13H12H11H10 = [H14H13H12H11H10]’ -

 H14 H13H12H11H10 (11)

∆H19H18H17H16H15 = [H19H18H17H16H15]’ -

 H19H18H17H16H15 (12)

Where - indicates decimal integer subtraction. To calculate

vertical syndrome bits, XOR operation is performed between

the received vertical redundant bits and the vertical redundant

bits obtained from memory redundant block and is as shown

below:

S0 = V 0’ xor V 0 (13)

S1 = V 1’ xor V 1 (14)

S2 = V 2’ xor V 2 (15)

S3 = V 3’ xor V 3 (16)

Fig. 6. DMC decoder

Accordingly all the vertical syndrome bits, are

calculated. Suppose if all the bits of ∆H4H3H2H1H0 and

S3-S0 are zero then there is no error. This indicates that

there is no error in symbol zero. If ∆H4H3H2H1H0 and S3-

S0 is non-zero, it indicates that there is error in symbol 0

and this error can be corrected as follows:

D0correct = D0’ xor S0 (17)

D1correct = D1’ xor S1 (18)

D2correct = D2’ xor S2 (19)

D3correct = D3’ xor S3 (20)

C. Write Response Channels

The write response channel provides a way for the slave to

respond to write transactions. When the data reaches the

exact destination, the slave acknowledges the master that the

data is received. After this the transaction gets completed.

V. EXPERIMENTAL RESULTS

The transactions happen between multiple

Masters/Slaves such as NORTH, EAST, SOUTH and West.

Read as well write operations are performed between the

Masters/Slaves. The one who initiates the transaction will be

the master. The address as well as tagged ID is transferred

through the address channel and thus the corresponding slave

can be identified. Then the data can be transferred though the

data channel.

International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 4, April 2016

 129

Fig. 7. DMC Output

Fig. 8. Output Obtained without Deadlock Occurrence

The data bits are encoded and decoded using DMC

to avoid unexpected or unusual errors. Fig. 7 shows the

simulation result of the DMC.

Fig. 8 shows the transactions between multiple

masters/slaves. The transactions happen based on the tagged

ID. While handling out-order-transactions, the chances of

occurring deadlock situation are avoided. This is done by

checking the waiting relation between the transactions. If any

waiting relation occurs, the transaction should be stalled and

will go for handling next transactions. The stalled

transactions can be handled after the waiting relation ends.

Hence deadlock is avoided. VHDL language is used to

develop the bus architecture and it is synthesized in Xilinx

ISE Design Suite 13.2 and simulated in ModelSim SE 6.3f.

REFERENCES

[1] Advanced Microcontroller Bus Architecture

Specification (1997) [Online]. Available:

http://www.arm.com

[2] Chin-Yao Chang, Student Member, IEEE, and Kuen-

Jong Lee,“On Deadlock Problem of On-Chip Buses

Supporting Out-of-Order Transactions ”, IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp.

484-496, March 2014.

[3] Mayank Rai Nigam, Mrs Shivangi Bande, “AXI

Interconnect Between Four Master and Four Slave

Interfaces”, Int. Jou. of Engg. Res. and Gen. Sci., vol. 2,

issue 4, pp. 432-446, June-July 2014.

[4] Jing Guo, Liyi Xiao, Zhigang Mao, and Qiang Zhaoz,“

Enhanced Memory Reliability Against Multiple Cell

Upsets Using Decimal Matrix Code”, IEEE Trans. Very

Large Scale Integr. (VLSI) Syst.,vol. 22, No. 1, January

2014.

[5] AXI Reference Guide, XILINX, UG761 (v13.4)

January 18, 2012.

[6] Technical Reference Manual of PrimeCell AXI

Configurable Interconnect (PL300), ARM, Cambridge,

U.K., 2010.

[7] K. Lahiri, A. Raghunathan, and G. Lakshminarayana,

“The LOTTERYBUS on-chip communication

architecture”, IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 14, no. 6, pp. 596608, Jun. 2006.

[8] T. S. Cummins, “Method and apparatus for detecting a

bus deadlock in an electronic system”, U.S. Patent 6 292

910, Sep. 18, 2001.

