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Abstract- Technologies day-to-day are becoming smaller, faster and more complex than its previous technologies being developed. 

Increase in clock frequency to achieve good speed and increase in number of transistors packed onto the chip to achieve complexity 

of a conventional system results in increased power consumption. All the gates used to perform Boolean algebra based 

computations by the use of silicon based semiconductor technology in a Conventional logic system are irreversible in nature. 

This is due to the mismatch of inputs and outputs. Reversible Logic is gaining interest in the recent past due to its less 

heat dissipating characteristics. This logic circuit maps to its unique input to the output and ensure one to one mapping and basis 

for emerging applications like DNA Computing, Bioinformatics, Nanotechnologies, Quantum Computing, Quantum Dot Cellular 

Data, Adiabatic CMOS, Thermodynamics, Low power Design and Optical Computing to produce zero power dissipation under 

ideal conditions. 

This paper presents the combinational circuit and Verilog code for the basic Reversible Logic gates which are important  

(Feynman, Double Feynman, Fredkin, Toffoli   and peres ). Every Logic circuit which is combinational uses all these basic 

Reversible Logic Gates and can be verified through Simulation using Verilog HDL. 

Keywords— Reversible Logic gates, Quantum Computing, Reversible Logic, Feynman,  Fredkin, Toffoli   and peres. 

 

I. INTRODUCTION 

            

Energy dissipation is one of the major issues in 

present day technology. Energy dissipation due to 

information loss in high technology circuits and systems 

constructed using irreversible hardware was demonstrated 

by R. Landauer[1] in the year 1960. According to 

Landauer’s principle, the loss of one bit of information lost, 

will dissipate kT*ln(2) joules of energy where, k is the 

Boltzmann’s constant and k=1.38x10
-23

 J/K, T is the 

absolute temperature in Kelvin[1]. The primitive 

combinational logic circuits dissipate heat energy for every 

bit of information that is lost during the operation. This is 

because according to second law of thermodynamics, 

information once lost cannot be recovered by any methods. 

Bennett [2] showed that if a computation is carried 

out in Reversible logic zero energy dissipation is possible, 

as the amount of energy dissipated in a system is directly 

related to the number of bits erased during computation. The 

design that does not result in information loss is irreversible. 

A set of reversible gates are needed to design reversible 

circuit. Several such gates are proposed over the past 

decades. 

  According to Moore’s law the numbers of 

transistors will double every 18 months. Thus energy 

conservative devices are the need of the day. The amount of 

energy dissipated in a system bears a direct relationship to 

the number of bits erased during computation. Reversible 

circuits are those circuits that do not lose information. 

   

 

The most prominent application of reversible logic 

lies in quantum computers [3]. A quantum computer will be 

viewed as a quantum network (or a family of quantum 

networks) composed of quantum logic gates; It has 

applications in various research areas such as Low Power 

CMOS design, quantum computing, nanotechnology, DNA 

computing etc., 

  Quantum networks composed of quantum logic 

gates; each gate performing an elementary unitary operation 

on one, two or more two–state quantum systems called 

qubits. Each qubit represents an elementary unit of 

information; corresponding to the classical bit values 0 and 

1. Any unitary operation is reversible and hence quantum 

networks effecting elementary arithmetic operations such as 

addition, multiplication and exponentiation cannot be 

directly deduced from their classical Boolean counterparts 

(classical logic gates such as AND or OR are clearly 

irreversible).Thus, quantum arithmetic must be built from 

reversible logical components [3]. Reversible computation 

in a system can be performed only when the system 

comprises of reversible gates. A circuit/gate is said to be 

reversible if the input vector can be uniquely recovered from 

the output vector and there is a one-to-one correspondence 

between its input and output assignments [4-6]. 

 

In order to achieving an optimized reversible 

circuit, some points should be considered:  

1) Fan-out is forbidden.  

2) Feedback and loop are not allowed.  

3) Delay should be minimum.  
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4) Optimization parameters should be minimum.  

 

The parameters such as number of reversible gates, 

number of constant inputs, garbage outputs, and quantum 

cost (QC) can be named as optimization parameters and are 

defined as:  

1) The inputs, which equal to 0 or 1, are constant 

inputs.  

2) Garbage outputs are output vectors which do not 

generate any useful function.  

3) Quantum cost refers to the cost of the circuit in 

terms of primitive gate [7].  

 

II. BASIC DEFINITIONS OF REVERSIBLE LOGIC 

 

In this section some important factors in reversible 

logic are explained. The main object in reversible logic 

theory is the reversible function, which is defined as 

follows. 

 

A. Reversible Function:  

 

The Boolean function f(x1, x2 … xn) of n Boolean 

variables is called reversible if: 

1. The number of outputs is equal to the number of 

inputs. 

2. Any output pattern maps to a unique input pattern. 

 

In other words, reversible functions are those that perform 

permutations of the set of input vectors [7-9]. 

For an (n, k) function, i.e. function with n-input k-

output, it is necessary to add inputs and/or outputs to make it 

reversible. This leads to the following definition. 

 

B. Reversible logic gate:  

 

Reversible Gates are circuits in which number of outputs is 

equal to the number of inputs and there is a one to one 

correspondence between the vector of inputs and outputs 

[10- 12]. It not only helps us to determine the outputs from 

the inputs but also helps us to uniquely recover the inputs 

from the outputs.  

 

C. Ancilla inputs/ constant inputs:  

 

Anicilla inputs are used to denote the present value 

inputs that were added to an (n, k) function to make it 

reversible. The constant inputs are known as ancilla inputs. 

[13].  

 

D. Garbage outputs: 

  

Garbage is the number of outputs added to make an 

n-input k-output function ((n; k) function) reversible. The 

relation between garbage outputs and constant inputs is [7] 

 

Input + constant input = output + garbage. [7] 

 

As with reversible gates, a reversible circuit has the 

same number of input and output wires; the reversible 

circuit with n inputs is called an n X n circuit or a circuit on 

n wires. 

 

E. Quantum cost:  

 

Quantum cost refers to the cost of the circuit in 

terms of the cost of a primitive gate. It is calculated knowing 

the number of primitive reversible logic gates (1*1 or 2*2) 

required to realize the circuit.  

 

F. Flexibility:  
 

Flexibility refers to the universality of a reversible 

logic gate in realizing more functions [14].  

 

G. Gate Level:  

 

This refers to the number of levels in the circuit 

which are required to realize the given logic functions.  

 

H. Hardware Complexity:  

 

This refers to the total number of logic operation in 

a circuit. Means the total number of AND, OR and EXOR 

operation in a circuit [11] and [15]. 

 

I. Design Constraints for Reversible Logic Circuits:  

 

Reversible logic imposes many design constraints 

that need to be either ensured or optimized for implementing 

any particular Boolean functions.  

1) In reversible logic circuit the number of inputs 

must be equal to the number of outputs.  

2) For each input pattern there must be a unique 

output pattern.  

3) Each output will be used only once, that is, no fan 

out is allowed.  

4) The resulting circuit must be acyclic. 

 

 

III. REVERSIBLE LOGIC GATES 

 

In this section, we describe all about reversible 

logic and reversible logic gates. Though it is already briefly 

described about garbage outputs, in this section we will 

define these with more appropriate Reversible logic gates. 

 

(i) NOT Gate: 1*1 NOT gate is the simplest among all the 

reversible gates where the gate has only one input (A) and 
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one output (B) such that B = A’. The block diagram for 1*1 

NOT gate is shown in Fig.3.1. (Quantum Cost = 0) 

 
Figure 3.1: 1x1 NOT GATE 

 

Code : 

 

module NOTGATE( input A, output P ); 

assign P = ~A; 

endmodule 

 

 
Figure 3.2: combinational circuit diagram of 1x1 NOT 

GATE 

 

(ii) Feynman Gate: Let Iv and Ov be the input and output 

vector of a 2*2 Feynman gate (FG) [16,17] respectively, 

where Iv= (A,B) and Ov = (P=A, Q=A⊕B). The block 

diagram for 2*2 Feynman gate is shown in Fig.3.3. 

(Quantum Cost = 1) 

 
Figure 3.3: 2x2 FEYNMAN GATE (CNOT GATE) 

Code: 

 

module Feynman( input A, B,   output P, Q ); 

assign P = A; 

assign Q = A^B; 

endmodule 

 

 
 

Figure 3.4: combinational circuit diagram of 1x1 CNOT 

GATE 

 

(iii) Double Feynman Gate: Let Iv and Ov be the input and 

output vector of a 3*3 Double Feynman Gate respectively, 

where Iv = (A, B, C) and Ov = (P=A, Q=A⊕B, R=A⊕C). 

Fig.3.5 shows the 3*3 Double Feynman gate. (Quantum 

Cost = 2) 

 
Figure 3.5: 3x3 DOUBLE FEYNMAN GATE 

 

Code: 

 

Module Double_Feynman(   input A, B, C,  output P, Q, R  

); 

assign P = A; 

assign Q = A^B; 

assign R = A^C; 

endmodule 
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Figure 3.6: combinational circuit diagram of 3x3 

DOUBLE FEYNMAN GATE 

 

(iv) Toffoli Gate: Let Iv and Ov be the input and output 

vector of a 3*3 Toffoli Gate (TG) [18,19] respectively, 

where Iv =(A, B, C) and Ov=(P=A, Q=B, R=AB⊕ C). 

Fig.3.7 shows the 3*3 Toffoli gate. (Quantum Cost = 5) 

 
Figure 3.7: 3x3 TOFFOLI GATE 

 

Code: 

 

module Toffoli(  input A,B,C, output P,Q,R  ); 

assign P = A; 

assign Q = B; 

assign R = (A&B)^C; 

endmodule 

 

 
Figure 3.8: combinational circuit diagram of 3x3 

TOFFOLI GATE 

 

(v) Fredkin Gate: Let Iv and Ov be the input and output 

vector of a 3*3 Fredkin Gate [18,20] respectively, where 

Iv=(A,B,C) and Ov=(X=A,Y=A’B⊕AC , Z=A’C⊕AB). 

Fig. 3.9 shows the block diagram of 3*3 Fredkin gate. 

(Quantum Cost = 5) 

 

 
Figure 3.9: 3x3 FREDKIN GATE 

 

Code: 

 

module Fredkin(  input A, B, C,    output X, Y, Z   ); 

assign X = A; 

assign Y =((~A)&B) ^ (A&C); 

assign Z =((~A)&C) ^( A&B); 

endmodule 

 

 
Figure 3.10: combinational circuit diagram of 3x3 

FREDKIN GATE 
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(vi) Peres Gate: Let Iv and Ov be the input and output 

vector of a 3*3 Peres Gate [18,20,21] respectively, where 

Iv=(A,B,C) and Ov=(X=A,Y=A⊕B , Z=AB⊕C). Fig. 3.11 

shows the block diagram of 3*3 Peres gate. (Quantum Cost 

= 4) 

 
Figure 3.11: 3x3 PERES GATE 

Code: 

 

module Peres(input A,B,C, output X,Y,Z     ); 

assign  X = A; 

assign Y =A^B; 

assign Z =(A&B)^C; 

endmodule 

 

 
Figure 3.12: combinational circuit diagram of 3x3 PERES 

GATE 

 

Peres Gate [11] is an important gate which has a low 

quantum cost as compared to other gates. A single Peres 

gate can give generate and propagate outputs when the third 

input C = 0. Two Peres gates can be combined to form a full 

adder. 

 

IV. 4-BIT ADDER USING PFA (PERES FULL 

ADDER) BLOCK: 
 

 Some of the most used universal quantum 

gates[21] and their quantum cost are shown in figures 

3.1,3.3,3.5,3.7 and 3.9. All these gates are used for 

implementing any logical function therefore they can also 

implement the full adder functions sum and carry. 

Sum = A XOR b XOR C 

Carry = ((A XOR B) C) XOR AB 

 

For this we go with peres gate as it has low 

quantum cost as compared with the discussed above basic 

Reversible Logic gates. The Peres implemented Full Adder 

with its corresponding quantum cost is shown in the figure 

4.1 

 
Figure 4.1:Full Adder using Peres Gates 

 

Code: 

 

module FULLADDER( input A,B,Cin, output SUM,Cout     

); 

Peres P1(A,B,0,G1,G2,G3); 

Peres P2(G2,Cin,G3,G4,SUM,Cout); 

endmodule 

 

 
Figure 4.2: Full Adder using Peres Gates 

 

This PFA (Peres Full Adder) can be taken as a 

block as shown in figure 4.3 in order to facilitate the 

notation of its expansion with a Quantum Cost equal to 8. 

The inputs order was also changed to better fit in an 

expansion diagram and the logic diagram is given in figure 

4.4. 

 

 
Figure 4.3: PFA as a block 
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Figure 4.4:  PFA traditional logic implementation. 

 

Once we take the PFA as a block, we can derive 

the algorithm to implement an n-bits adder. This algorithm 

was implemented in this design for a 4-bit adder and can be 

seen in figure 4.5. 

 

 
Figure 4.5: 4-bits adder implementation 

 

V. DISADVANTAGES 

 

1. However, in order to attain the supposed benefits of 

reversible computation, the reversible machine must 

actually be run backwards to attain its original state. If this 

is not happening then typically the machine is heated up and 

thus it stops its working.  

 

2. You must make sure weather your computation was 

performed with no errors when reversible machine actually 

be run backwards - otherwise chaos (and not the original 

starting condition) may result when the machine is run 

backwards.  

 

So: do you think is the reversible logic a waste of time? No. 

Reversible logic is of substantial significance. 

 

VI. ADVANTAGES 

 

What do digital power management and digital heat 

management even mean?  

 

1. Digital power refers to ordered bit patterns, which 

can be used to do digital work.  

2. Management of digital power involves moving it to 

where it is needed.  

3. Digital heat refers to disordered bit patterns that are 

no good to anyone.  

4. Management of digital heat involves moving it to 

where it can be dumped.  

 

VII. CONCLUSION 

 

  This paper presents Verilog CODE for all 

Reversible Logic Gates, which provide us to design Verilog 

CODE of any complex combinational circuit. Here we have 

tried to make the Verilog code as much as possible. We can 

simulate and synthesis it using Xilinx 15.1 software and  

verified using Z series board and also calculate the power 

consumption and compare it with the irreversible 

Combinational Circuits. 
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