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Abstract— Integer Multiplication is considered as the basic fundamental building block of digital design .It deeply affects the 

performance of the DSP activities. This paper proposes a novel approach to build integer multiplication circuits that is based on 

speculate method. This is a technique which performs a faster-but occasionally wrong-operation. The rare case of error is corrected 

using   a multi-cycle error correction circuit. The proposed speculative multiplier uses a three dimensional method reduction tree. The 

method is implemented using three steps: partial products recoding, partial products partitioning, speculative compression. It also uses 

speculative counters, that are faster than a conventional tree using full-adder and half-adders. Comparisons with conventional multiplier 

show that speculation is more effective when high speed is required. Speculative multipliers allow reaching a higher speed when 

compared with its conventional counterparts and are also quite effective in terms of power dissipation, when a high speed operation is 

required. 

 
Index Terms— Digital arithmetic operations, multiplication, speculative functional units, speculative multipliers. 

 

I. INTRODUCTION 

A system’s performance is generally determined by the 

performance of the multiplier units  because the multiplier is 

generally considered as the slowest element in the system. 

Moreover, it is also generally the most area consuming unit. 

Hence, optimizing the speed and area of the multiplier is a 

major design concern. However, area and speed are usually 

conflicting constraints so that improving speed results mostly 

in large areas. 

Some of the recent results in the technical literature [1],[2] 

points out that, faster circuits can be obtained by adopting a 

speculative approach. Speculative circuits are based on the 

idea of performing a faster-but occasionally 

wrong-operation.A multi-cycle error correction circuit is 

used only in the rare case of error. This approach is fairly 

general and can be applied whenever there are several 

functional units involved in some kind of dependency 

relationships. 

In this paper we propose a novel approach to build a high 

speed multiplier using some speculative method. The 

proposed speculative multiplier is implemented using three 

steps: partial products recoding, partial products partitioning, 

speculative compression. The speculative multiplier uses 

speculative counters. The speculative counters are faster than 

conventional counters.  

II. SPECULATIVE MULTIPLIER ARCHITECTURE 

Let us consider  two inputs A and B that needs to be 

multiplied. Consider A as the multiplicand and B as the 

multiplier. The multiplication result is termed as Y.  

A = an-12n-1 + . . . . . . . . . . . . . .  . . . . . . . . + a0      (1) 

B = bn-12n-1 + . . . . . . . . . . .  . . . . . . . . . .  + b0      (2) 

Y = A . B = y2n-122n-1 + . . . . . . . . . . .  . .. +y0       (3) 

    = ∑ ∑ ai bj 2i+j 

Hence the computation of requires the summation of the 

partial products aibj according to their weights 2i+j
.  

To introduce the proposed technique, we assume that input 

bits ai and bj are independent and equally likely. As the 

consequence of our assumption, the probability of being one 

for each partial product is 0.25. 

Fig. 1 shows us the arrangement of partial products matrix 

(PPM) for a 16 X 16 multiplier. It may be observed that, the 

rightmost and the leftmost columns of the PPM comprise a 

small number of partial products, whereas the inner columns 

have higher number of partial products. The critical path of 

the circuit is related to the height of the PPM. The critical 

path decides the delay. The higher the matrix, the higher the 

multiplier delays. In principle, a speculative carry-save 

reduction tree shall be obtained by deleting 

some partial products from the inner columns of the PPM. 

However, blind deletion of some partial products will 

increase the overall error probability and hence such an  

approach would be unacceptable. Thus, we propose a new 

technique to generate a speculative carry-save reduction tree 

for multiplication based on three steps: partial products 

recoding, partial products partitioning, speculative 

compression.  
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Fig. 1. 16  X 16 bit Multiplier partial products matrixes 

 

A. Partial Product Recoding  

Let us consider two partial products aibj and ajbi of the 

i+j-th column of the PPM and let us introduce the following 

two modified partial products: 

 

Ai,j = aibj AND ajbi                                 (4) 

Oi,j = aibj OR ajbi                                

 

The terms Ai,j and Oi,j are called the modified partial 

products. The modified partial products are such that Ai,j + 

Oi,j = aibj + ajbi.. Thus , in the i + j-th column of the PPM, we 

can replace the couple of partial products aibj  and ajbi with the 

modified partial products Ai,j and Oi,j. The advantage of this 

recoding is the introduction of low probability terms in the 

PPM.  

 

B. Partial Product Partitioning   

Only low-probability Ai,j ,terms are included in the 

speculative method tree. We recode only the partial products 

belonging to the large columns of the PPM. An example is 

shown in Fig. 1(b). Here we use only the partial products of 

the columns 11,12,..............22 are recoded. 

 

 
Fig 2 .Partial products matrix after recoding. 

 

 

C. Speculative Compression 

Although the probability of Ai,j is reduced with respect to 

original partial products, simple deletion Ai,j of terms would 

still introduce some error probability. Thus, instead of 

deleting Ai,j terms, we sum them in an approximate way. The 

summation is done using speculative counters. 

 
Fig .3 Partial products matrix after speculative 

compression 

 

An (m :2) speculative counter has m inputs 

(x0,x1,........xm-1) and only two outputs: Sum and Carry . The 

speculative counter counts the number of input bits that are 

“1” and encode the result on C and S, assuming that no more 

than three inputs are high. Similarly to full-adders and 

half-adders, the output C has a weight doubled with respect to 

S so that: 

 

     2C + S =x0 + x1 + .........................+xm-1 ≤ 3        (5) 

 

For m=2 and m=3 , the speculative counter is designed to 

give the correct count of high input bit and hence corresponds 

to either to a half-adder (m=2) or to a full-adder (m=3). For 

the case :  m > 3, it is impossible to represent the sum x0 + x1 

+ . . . . . . . xm-1 by using only C and S signals for all the 

possible input configurations.  

 

The speculative counter performs the output calculations 

assuming that no more than three inputs are high: if this 

condition is not verified an error occurs and the 

multiplication result is wrong and it must be corrected in the 

next cycle.  Compared to conventional counters, speculative 

counters are simpler as they produce a lower number of 

output bits (2 instead of [log2(m+1)] ) and hence are faster. 

This explains the improvements in multiplier performance.  

III.  MULTIPLIER ARCHITECTURE 

The complete architecture of the proposed speculative 

multiplier is outlined in Fig. 4. The multiplier inputs are 

firstly processed by the partial products generation and 

recoding block. This block computes all the partial products 

aibj and recodes those belonging to the inner columns of the 

PPM, generating 

Ai,j and Oi,j and recoded partial products. The Ai,j terms are 
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processed using the speculative counters obtaining the 

reduced Si,j and Ci,j terms. The reduced Si,j ,Ci,j  terms, the 

un-recoded aibj and the recoded partial products Oi,j are 

summed together by using the TDM carry-save tree. The 

TDM considers the different arrival times of various inputs 

and tries to make proper connections to full adders so that the 

delay throughout each path is approximately the same. 

Hence, the late arriving outputs of the speculative counters 

are connected to the shortest delay path in the TDM. 

Generally, at the TDM outputs we obtain the delay profile 

similar to the one of a conventional multiplier. The maximum 

delay, however, is reduced compared to conventional 

multipliers. This is due to the use of speculative counters. 

 The two outputs obtained from the TDM tree are added 

by using a speculative adder, obtaining the speculative result 

Ys. It may be noted that any speculative adder can be 

employed in this architecture. The one proposed in [3][4] is 

used in this architecture. 

As in any speculative functional unit, no information loss 

can be tolerated at the output of the proposed multiplier. 

Since each speculative compressor can introduce an error, a 

correction block is required for each speculative compressor. 

This correction block receives the same inputs as that of the 

speculative compressor and computes two outputs: an error 

flag (E) and a suitable correction word (EW) . The error flag 

(E) is high if four or more inputs of the speculative 

compressor are “1.” The correction word (EW) is computed 

so that by adding (EW) to the speculative compressor output 

(2C +S) we obtain the correct result.  

 
Fig. 4 Architecture of proposed Speculative Multiplier. 

 

As it can be observed in the right-hand part of Fig. 4, all 

error flags produced by each correction block are OR-ed 

together and OR-ed with the error flag of the speculative 

adder, to obtain the error flag of the speculative multiplier. In 

case of error, the non speculative multiplication result is 

computed by summing the correction words with the outputs 

of the TDM carry-save tree included in the speculative part of 

the multiplier.  

It is interesting to observe that in this architecture the error 

correction part of the speculative adder is not needed—only 

the error flag is required. In case of misprediction, in fact, the 

multiplier output is , which is computed independently of the 

speculative adder. 

A. (m:2) Speculative Counter Implementation 

We recall that an (m:2) speculative counter, defined in 

previous section, is a component with m inputs(x0,x1,. . . . . . . 

xm-1) and two outputs: sum(S) and Carry(C) . The value 

(2C+S) is equal to the arithmetic sum of the inputs when no 

more than three inputs are high. From this definition, the S 

output can be simply computed as a tree of XOR gates of the 

inputs. 

The calculation of the signal, on the other hand, poses a 

few difficulties. Let f ≥2(x0,x1,. . . . . .xm-1)be the binary 

function that is high if there are at least two input signals xi 

high. The function f ≥2(x0,x1,. . . . . .xm-1) clearly corresponds 

to the C output of the (m:2)speculative compressor. In the 

case of two, three, and four inputs, the function f≥2 can be 

easily and efficiently computed. In the case of two inputs we 

readily have:  

 

f≥2 (x0 , x1) = x0 . x1                        (6) 

 

The function f≥2  applied to three inputs corresponds to the 

carry function of a conventional full-adder : 

 

f≥2 (x0 , x1 ,x2) = x0 . x1 + x0 . x2 + x1 . x2       (7) 

 

The function  f≥2 applied to four inputs can be computed 

as:  

 

f≥2 (x0 , x1 ,x2)  

= x0 . x1 + x0 . x2 + (x0 +x1)(x2 + x1)          (8) 

B. Correction Block Implementation   

The correction circuits are not critical for the overall 

multiplier. The error correction words are summed together 

in a two cycle sub circuit, while the error flags are only ORed 

together to generate the single-cycle error output. This OR is 

normally outside the critical path that goes through the 

compressor tree and the VMA. While the error correction 

blocks may be described in a behavioural way and 

automatically synthesized, the function they realize can be 

easily described in terms of basic components such as 

standard logic gates and full-adders and half-adders. For 

instance, the (4:2) error correction circuit must yield a 

single-bit word with weight 2, being high only if all input 

signals are high, i.e., an AND4 gate. This bit also acts as the 

error flag .  The correction block, in this case, must assert the 

error flag when 4 or 5 inputs of th compressor are high. This 
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condition is false if at least two inputs of the compressor are 

zero. Hence, the error flag can be computed as 

 

                (9) 

IV.  CONCLUSION 

In the paper a novel speculative multiplier for high-speed 

application is proposed. The circuit recodes some of the 

multiplier partial products and uses a speculative 

compression tree to sum the recoded partial products. A 

speculative adder is used in the final carry-propagate 

addition. The speculative multipliers can be useful in critical 

applications justifying the more complex architecture and the 

handling of multi-cycle paths. In cases where the multiplier 

speed is not critical, the use of speculative units appears 

unjustified. Additional work may further improve the 

performance of speculative multipliers: the implementation 

of the output of speculative counters could be optimized by 

considering don’t care conditions. This work investigates 

only non-Booth multipliers. For large input widths, Booth 

multipliers may yield an advantage in terms of speed, area, 

and power. 
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