
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

1

Design of Neuron Processing Unit for FPGA-Based

Deep Convolutional Neural Network using

Binarized Weight and Activation for IOT
[1] Ajay Kumar Gautam, [2] Dr. R.K Jeyachitra

[1] PG Scholar, Department of ECE, NIT Tiruchirappalli, Tamil Nadu, India.
[2] Associate Professor, Department of ECE, NIT Tiruchirappalli, Tamil Nadu, India.

Corresponding Author Email: [1] kgautam.ajay97@gmail.com, [2] jeyachitra@nitt.edu

Abstract— In recent years, FPGA based convolutional neural networks (CNNs) accelerator have attracted a lot of attention towards it.

This is primarily due to the fact that, in comparison to GPUs, they offer a greater level of energy efficiency. On the other hand, it can be

challenging for solutions based on FPGAs to perform better their GPU replacements in terms of throughput. In this paper, we have

proven that using FPGA based acceleration for a CNN that has been trained with binarized weights and the activations factor can be

preferable in terms of throughput and energy efficiency. An efficient and totally mapped FPGA accelerator architecture with deep

pipeline stages presented with layer normalization to operate on small batch size. In contrast to GPU acceleration, the performance of an

FPGA accelerator is still not considerably affected by the size of the data batch being processed. On the other hand, GPU acceleration is

considerably affected by the size of the data batch being processed. According to test results, the suggested BCNN architecture operating

on a Virtex-7 FPGA processes individual requests in small batch sizes 8.3 times faster and 75 times greater efficiently than a Titan X

GPU.

Index Terms—BCNN, CNN, energy efficiency, FPGA, GPU, high throughput.

I. INTRODUCTION

One of the many traditional approaches to machine

learning is through the use of neural networks. The primary

objective of machine learning is, much like that of other

algorithms, to get connected to artificial intelligence. This is

because machine learning can perform much better than other

algorithms in both speed and precision. In terms of deep

learning architecture, convolutional neural networks (CNN)

are the most popular. CNN is a powerful and effective model

that performs picture categorization with superhuman

accuracy. GPUs can only be utilized for simple algorithms

because of their low energy budget. CNN is implemented in a

Field Programmable Gate Array (FPGA) for great

performance and power efficiency [1],[2]. It was

recommended that CNN's energy efficiency be increased

using the resistive RAM-based CNN accelerator [3]. The

accuracy dropped, rendering the RAM-based CNN

accelerator inappropriate for embedded systems used in the

IOTs, even if it is more energy-efficient than the

FPGA-based CNN version. To further minimize the size of

the model, quantization and compression models are applied

[4].

The quantization methods need more time while reducing

precision. The compression techniques lowered the size of

the model but had poor accuracy and considerably increased

computing complexity during training and testing. To

address CNN's drawbacks, the binary weighted convolution

neural network (BCNN) was developed [5]. When

processing forward propagation, the CNN uses large

precision weights while the BCNN uses binary weights and

data. Reading and writing operations are made quicker and

more powerful with the help of BCNN. At runtime, BCNN

has weights and activations binarized [+1, -1]. Bitwise

operations take the place of arithmetic operations, which

reduces memory size and access time as a benefit of using

BCNN [6]. Test-time inference will advance more quickly

and use less energy thanks to these sophisticated bitwise

techniques. However, BCNN still has issues with

cumbersome floating multiplication and accumulation

operations. In order to get around these restrictions, a model

that uses less space and offers more efficiency with simple

complement operations and multiplexers was presented.

There were still issues, such as increased power consumption

from continuous off-chip DRAM data transfer.

Numerous useful methods for training BCNNs have

emerged as a result of advancements in computer hardware

and machine learning algorithms over the past few years.

BCNNs have recently attracted significant attention from a

wide range of applications. In contrast to CNNs, BCNNs

have as their primary purpose the improvement of learning

performance. By utilising these qualities, BCNN algorithms

are able to deal with enormous and complex problems, which

CNN was unable to do.

High - throughput screening and low power dissipation are

provided by the suggested BCNN architecture in this study.

Additionally, it decreases the need for bandwidth, critical

path delay. storage complexity, and computational and

hardware complexity while increasing accuracy. Field

mailto:kgautam.ajay97@gmail.com
mailto:jeyachitra@nitt.edu

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

2

programmable gate arrays are used to implement the

suggested architecture (FPGA).

In contrast to CNNs, BCNNs priorities the enhancement of

students' overall academic performance as their primary

objective. By utilizing these qualities, the algorithms that

make up BCNN are equipped to deal with huge and complex

problems, which is something that CNN was not capable of

doing.

 For highly deep BCNN models, we suggest an

architecture and the accompanying processing

schedule. The majority of design considerations are

made with minimal energy costs and maximum data

reuse in mind.

 Compressor trees, negative skipping, and early

pooling are three examples of the algorithmic

transformations and microarchitectural level

optimizations that can be implemented in order to

minimize the lag time in the data flow and the amount

of energy that is used.

 We include two compensation techniques and

approximate computation in binary multiplications

(+1 or -1) in the proposed architecture, which can

drastically decrease the number of adders used while

resulting in very small to no accuracy loss.

Additionally, the robustness of BCNN to the noise

introduced by inappropriate adders is also studied.

Our architecture's data path has specialised

approximation adders, which takes up less space.

 It is addressed how to use BCNN’s memory-efficient

quantization approach to store intermediate data in

less amounts of memory. Additionally, tests using

various data sets are provided to demonstrate the wide

application of this technique.

 The suggested architecture is put into practise and

assessed. In this paper, comparisons with past works

are also demonstrated.

This essay's remaining sections are organised as follows.

The associated essential principles for CNNs and BCNNs are

introduced in Section II. In Section III, certain hardware

design and algorithmic strength reduction optimizations are

discussed. The architecture of the suggested hardware is

described in Section IV, which also demonstrates how to

optimise the BCNNs' microarchitecture and processing

schedule. Section V compares this research to the most recent

BCNN architectures and shows the implementation results.

II. MOTIVATION AND BACKGROUND

A. Convolution Neural Network

In the field of deep learning, CNN is a subset of the more

general deep neural network. The input layer, the output

layer, and the hidden layer are all the same in both

conventional neural networks and CNNs. The same is true for

the hidden layer. The pooling layers, the convolutional

layers, and the rectified linear units (ReLU) are all contained

within the hidden layers. In addition to fully connected layers

and batch normalization, the hidden layer also contains any

layers that have been normalized. Before being passed on to

the neurons in the subsequent layer, the input undergoes a

process known as convolution. It does so by computing the

partial derivatives of each of their individual weights.

𝑟ⅇ𝑙𝑢 = max(0, 𝑎) (1)

The activation function known as ReLU is the one that is

utilized most frequently in various deep learning models “the

relu is calculated by using equation (1)”. In the event that any

negative input is received, the function will always return 0.

If ReLU is given a value that is in the positive, it will return

that value. Hence, it can be expressed as follows: f(a) =

maximum (0, a). It takes into account the nonlinearities and

interactions that are present in the decision function. Pooling

layers are infrequently appended between subsequent

convolutions in the neural network in order to support in

spatial size reduction and decrease the number of parameters.

This is done since we wanted to minimize the number of

parameters and computation in the neural network. In order

to manage the challenges posed by overfitting, MAX pooling

is utilized. This helps to protect vital data and contributes to

the simplification of the computational process. It is feasible

to decrease the amount of data needed for succeeding layers

while also maintaining a sizable portion of the original data

by summing the output of the convolution layers.

At CNN's output, there are fully connected layers.

Backpropagation is used in this layer to learn the weights

among the connected layers. The fully connected layer,

convolutional layers, and pooling layers are all affected by

the error back propagation. It enables the nonlinear

combination of features (corrects the important traits and

reduces the unimportant ones by learning the full set of

weights). It might be even better to combine such features.

Due of the millions of parameters that must be learned, saved

throughout training, and retrieved during inference, this layer

reduces storage requirements. Additionally helps with energy

consumption by over 90% [7–9].

B. Binary Convolution

BCNN have binarized weights (0, 1) with or without

activation factor. The BCNN uses forward pass and

backpropagation methods, same as CNN. The error gradients

are minimized through backpropagation. The weights in

BCNN must be binary. The real valued weights and

activations in BCNN are verified using the forward pass

threshold technique “shown in equation (2)”. The threshold

function was taken to be the identity function during

backpropagation. During backpropagation, the threshold

function was assumed to be the identity function.

Threshold (x) = 1 when x > 0 (2)

 = 0 otherwise.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

3

XNOR and addition operations can be used to implement

the training and inference. This helps with speed and energy

economy. The chip takes up less room when using a bespoke

CPU. The BCNN network is constrained to handle binary

weights that result in regularized results [10].

III. PROPOSED BCNN ARCHITECTURE

A. Block diagram of BCNN

The block diagram of Binary weight convolution is shown

in Figureure1. There are several components to it, including

a binary weight kernel, a binary convolution process,

neuron-wise scaling, Layer normalization, ReLU, and max

pooling. Here, α denotes the additional scaling factor with the

value 1, μ denotes the mean, and σ denotes standard deviation

in the layer normalization, n denotes the n-th neuron in the

layer, ε denotes the very small batch size. x is used to

represent the input data.

Figure 1. Block diagram of BCNN.

The suggested design is versatile and allows for the use of

different kernel sizes. To every action on the subregion of the

input matrix beneath the kernel movements and above the

input data, the dot product is calculated. The kernels in the

network learn during training in the same way as other

network layers. The Neuron Processing Unit is made up of

neuron wise scaling, layer normalization, ReLU, and max

pooling blocked. Layer normalization aids in network

training by accelerating convergence (limited time) and

preventing overfitting of the model and avoid variable batch

size.

1. XNOR CONVOLUTION

The XNOR convolution process is broken down into its

component parts and illustrated in Figureure2. The filter

makes use of the element-wise operation that XNOR

provides. In order to accomplish input(5X5) convolution in

the first phase, the filter is utilized. Filters are run as matrices

(3X3) to extract the feature in convolutional layers to obtain

high accuracy. The following step is the addition of the

values that are considered intermediate. The filter's output is

compared to N/2 before being turned into an output matrix

with just one member. When referring to a particular layer of

the network, the notation N represents the total number of

components that are utilized in the filter. The primary

objective of the n filters is to generate n channels, each of

which has only one output and is convolved by the same

input.

Figure 2. XNOR convolution [11].

B. Proposed Methodology

The suggested architecture's top-level diagram is shown in

Figureure3. Both type of memories volatile memory

(DRAM, SRAM) and non-volatile are both employed to meet

the needs for a wide range of software applications. Data and

software programs are permanently stored in non-volatile

memory. The proposed architecture is the subject of a

detailed discussion that focuses on the processing unit. Four

data buffers are represented here: the MUX, the left register,

and the right register. The left register is where input

activations are saved when they are first loaded from DRAM

into the on-chip SRAM. The utilization of the on-chip data

bus is beneficial to the loading procedure. After the left

register has reached capacity, the input activations are then

transferred to the right register. The PU (processing unit) will

now begin the process of convolving the data.

Figure 3. Proposed architecture [11].

In order for the neuron to generate output, a component

known as the ISU (input feature summation unit) must first

add up all of the input feature maps. The ACCU

(accumulation array) uses a partial parallel array to conduct

partial summing because there are more input feature maps

than processing units. neuron-by-neuron scaling, Layer

normalization, ReLU, and max pooling blocks are the

components that make up the Neuron Processing Unit (NPU).

The CCU (central control unit) is responsible for maintaining

the proposed architecture's optimum processing flow

schedule. The neural network's need for memory can be

reduced by employing a number of different compression and

quantization strategies [12], [13].

1. Compressor tree

The compressor tree is used to reduce the amount of data

by compressing it. It consists set of 3:2 and 4:2 compressor to

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

4

optimize the data. By compressing 36 data into 2 data

utilizing 3:2 and 4:2 optimized compressor trees, system

performance is increased. As shown in Figureure4. each

processing unit consists of a binary multiplier and a

compressor.

Figure 4. Compressor tree [11].

The primary operations of CNNs are carried out on MACs.

Due to the fact that BCNNs have already done away with

whole multiplications involved in the convolution process,

the crucial step takes place during the accumulation phase.

This architecture consists of a 3X3 kernel and four processor

units altogether. However, if the system is constructed using

an adder tree, the lengthy path causes a significant amount of

delay, which in turn lowers the frequency of the system. A

specific 3:2 and 4:2 compressor tree that have been improved

by using pipeline (shown in Figureure4) method, has helped

to increase the overall performance of the system.

(a)

(b)

Figure 5 Expanded diagram of. (a) 3:2 compressor. (b) 4:2

compressor [14]

Several 1-bit complete adders make up a compressor [15],

as shown in Figureure5 (a) and (b).

The equation

P + Q + R = S + C × 2 (2)

holds for a 3:2 compressor, where P, Q, and R are its three

inputs and S, and C are its outputs. As seen in Figureure5(a)

they all contain N number of bits.

According to Figureure 5(b), a 4:2 compressor's structure

is comparable to a 3:2 compressor. Only a 1-b 4:2 compressor

is depicted for simplicity's sake. A multibit compressor is

made up of multiple 1-b 4:2 compressors with 𝐶𝑖𝑛 connected

to 𝐶𝑜𝑢𝑡 of the (𝑘 − 1)𝑡ℎ bit. A multibit 4:2 compressor's

input-output relationships are shown in equation (3).

P + Q + R + W + 𝐶𝑖𝑛0 = Carry × 2 + Sum. (3)

A 4-to-2 compressor has a two-times longer delay than a

1-b complete adder. In 3:2 and 4:2 compressors, there is no

carry chain. In comparison to a multi-input adder that has

extended carry propagation for numerous stages, there is a

significant reduction in data route delay.

We suggest cascading many 3:2 and 4:2 compressors

together in a tree topology as an alternative to the

conventional adder tree. It has the ability to reduce the

summation of 36 data to just 2 data. As demonstrated in

Figureure4. An approximative adder will combine two data at

the compressor tree's end. The compressor tree can reduce the

critical route by a significant amount.

2. Binary Multiplier

The optimized approximate binary multiplier seen in

Figureure4 replaces the multipliers as shown in Figureure6.

According to synthesis results, the area of the optimized one

is 60% smaller than that of the binary multiplier design

utilizing 2's complement in [16], by taking out the add-one

adder.

Figure 6. Optimized binary multiplier [14].

As can be seen in Figureure 4 and Figureure5, the

accumulation path for each output neuron is comprised of

only two adders at this point, and these adders have the

maximum data width and the tallest data path latency. It is

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

5

incredible how well neural networks that have been trained

with weight projections or quantization, particularly

binarization, can withstand the influence of a variety of

distortions like noises. This was the impetus for us to develop

the solely devoted approximate adder that is depicted in

Figureure7 in order to replace the adders that were present in

the data route. Carry propagation induced stutters account for

a sizable amount of an adder's power usage.

Figure 7 Approximate Adder (APA) [14].

The approximate adder (APA) that has been suggested is

built in such a way that it divides an N-bit adder into two sub

adders of k bit, which mitigates the effects of carry

propagation. A preliminary estimation of the value of the

input carry bit C in for the higher-order (N-k)-bit sub adder is

made using the kth bit of one of the input data. This topology

can reduce not only the time required for the data path also

the complexity of the hardware by virtue of the fact that the

carry of the approximation adder ripples through a condensed

channel.

The k parameter should be set to a value that is equal to or

less than half the word size for the greatest advantage to the

hardware's efficiency. However, the error rate (the loss of

accuracy) increases whenever the value of k is increased. At

the point where the BCNN's accuracy starts to drop off

dramatically, the ideal value is chosen.

IV. EXPERIMENTAL RESULTS AND

COMPARISION

The BCNN design, which uses binary weights, is

recommended because high-precision parameters are not

required to produce high precision in an ANN's (artificial

neural networks) output. Verilog HDL is used to create the

intended algorithm, and the Spartan-3 Xilinx FPGA is used to

actualize it. The simulation platform provides the outcomes

of the simulation.

1. ReLU vs Tanh comparison

Rectified Linear Unit (ReLU) activation functions are

frequently employed in deep learning models. Compared to

other activation mechanisms like the sigmoid and hyperbolic

tangent, it has a number of advantages. The fact that ReLU

does not experience the vanishing gradient problem, which

can happen with sigmoid and Tanh activation functions when

the input is big in magnitude, is one of its key advantages.

This may hinder the model's ability to learn and slow down

training. ReLU also has the benefit of being computationally

efficient because it doesn't require more difficult calculations

like exponentiation or trigonometry, merely a straightforward

comparison and assignment action. ReLU has also been

demonstrated to function well in a variety of applications and

is simple to implement.

Table. 1 Area Utilization of ReLU vs Tanh.

Logic

utilization
Used Available %utilization

Activations ReLU Tanh For all ReLU Tanh

Slice LUTs 31 153 63400 0 0

LUT-FF

pairs

0 0 153 0 0

Bonded

IOBs

64 29 210 30 13

RAM/FIFO 0 1 135 0 0

BUFG/BU

FGCTRLS

0 1 31 0 3

DSP48E1s 0 2 240 0 0

Overall, while ReLU has some advantages over other

activation functions, it is not necessarily the "best" activation

function for all situations. Different activation functions may

be more or less suitable for different types of tasks or model

architectures. It is important to consider the characteristics

and limitations of different activation functions when

choosing one for a specific application.

1. Design Utilizations.

The proposed architecture of neuron processing unit is

implemented using Verilog HDL and various result is

obtained.

a. Area utilization

Figure 8 Logic utilization of BCNN

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

6

Figure 9 %logic utilization.

b. Power utilizations.

Figure 10 on chip power utilization.

2. Area Comparison

Table. 2 Area utilization by Existing CNN, and Proposed

BCNN.

Resources Available % Utilizations

Technology

Used

Existing

CNN[17]

Proposed

BCNN

For All

Technology

Existing

CNN

Proposed

BCNN

Slice

Register

12306 2067 460800 4.77 0.448

Slice

LUTs

26688 79281 230400 7.99 0.83

DSPs 640 26 2800 82.29 0.92

V. CONCLUSION

The development of computer hardware and machine

learning techniques has made it possible to train the BCNN

efficiently. BCNN overcomes CNN's limits and has the

ability to handle extremely complicated issues. The primary

objective of this research, utilizing the suggested

architecture, was to apply BCNN in control regions. The

suggested architecture displays a BCNN model that employs

only binary weights and is both high-performing and

energy-efficient. Utilizing the most effective processing

schedule in the processing unit, the data reuse is taken

advantage of. The power to access the input-output has

significantly decreased, according to the results. Power and

input-output accessibility have been substantially restricted.

Reduced computational complexity, improved performance,

and throughput. Energy dissipation for Input-Output and

input-output bandwidth are taken into account during

implementation

The suggested architecture offers a high throughput and

little power loss. Additionally, it decreases the need for

bandwidth, storage complexity, critical path time, and

computational and hardware complexity while increasing

accuracy. Proposed neuron processing unit (NPU)

architecture includes layer normalization which can be used

to implement recurrent neural networks (RNN). Because it is

independent of batch size, so it provides best accuracy and

throughput with smaller batch size.

VI. ACKNOWLEDGEMENT

I want to sincerely thank everyone who has supported me

in any manner while I've been a student at the National

Institute of Technology in Tiruchirappalli, Tamil Nadu. First,

I want to sincerely thank to my advisor, Dr. R. K.

JEYACHITRA, Associate Professor, who sparked my

interest in Deep Learning and provided support and

encouragement at key times. I would like to thank her for her

patience, motivation, and immense knowledge which has

helped me to become a successful person at this moment. Her

advice was very helpful in my research.

REFERENCES

[1] Yu Hsin Chen, Joel Emer, Vivienne Sze (2016) “Eyeriss: A

spatial architecture for energy-efficient dataflow for

convolutional neural networks” International Symposium on

computer architecture proceedings 367–379.

[2] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Lenne,

Ling Li, Tao Luo, Xiaobing (2015) “ShiDianNao: Shifting

vision processing closer to the sensor” Annual international

symposium on computer architecture (ACM-IEEE)

proceedings 43(3):92–104.

[3] Yu Wang, Lixue Xia, Tianqi Tang, Boxun Li, Song Yao,

Ming Cheng, Huazhong Yang (2016) “Low-power

convolutional neural-networks on a chip” Annual

international symposium on computer architecture

(ACM-IEEE) proceedings 129–132.

[4] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,

Pritish Narayanan (2015), “Deep learning with limited

numerical precision,” International conference on machine

learning proceedings 1737–1746.

[5] Matthiew Courbariaux, Yoshua bengio, Jean Pierre Davis

(2015) “BinaryConnect-Training deep neural networks with

binary-weights during propagations” Advances in neural

information processing systems proceedings 3123–3131.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 10, Issue 6, June 2023

7

[6] Italy Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El

Yaniv, Yoshuva Begio (2016), “Binarized neural networks”

Advances in Neural Information Processing Systems

proceedings 4107–4115.

[7] Emily Denton, Wojciech Zaremhba, Joan Bruna, Yann

LeCun, Rob Fergus (2014) “Exploiting linear structure within

convolutional networks for efficient evaluation” Annual

Conference on Advances in neural information processing

system proceedings 1269–1277.

[8] Chen Zhang, Peng Li, Guangyu Sun (2015) “Optimizing

FPGA-based accelerator design for deep convolutional neural

networks” International Symposium on Field-Programmable

Gate Arrays conference proceedings 161–170.

[9] Wenlin Chen, James Wilson, Stephen Tyree, Kilian

Weinberger, Yixin Chen (2015) “Compressing Neural

Networks with the Hashing Trick” international conference on

machine learning proceedings 2285–2294.

[10] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, Ali

Farhadi (2016) “XNOR-Net: ImageNet Classification Using

Binary Convolutional Neural Networks” European

conference on computer vision Lecture notes in computer

science, 9908:525-542.

[11] Charles Rajesh Kumar, Vinod kumar, D. Baskar, Mary

Arunsi, Jenova R, and M. A. Majid. "VLSI design and

implementation of High-performance Binary-weighted

convolutional artificial neural networks for embedded

vision-based Internet of Things (IoT)." Procedia Computer

Science 163 (2019): 639-647.

[12] Ronny Meir, Jose F Fontanari (1993) “Data compression and

prediction in neural network” Journal of Physica A-Statistical

Mechanics and its Applications 200(1-4):644-654.

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu (2016)” EIE:

Efficient inference engine on compressed deep neural

network.” International Symposium on Computer

Architecture proceedings 243-254.

[14] Y. Wang, J. Lin and Z. Wang, "An Energy-Efficient

Architecture for Binary Weight Convolutional Neural

Networks," in IEEE Transactions on Very Large-Scale

Integration (VLSI) Systems, vol. 26, no. 2, pp. 280-293, Feb.

2018, doi: 10.1109/TVLSI.2017.2767624.

[15] S.-F. Hsiao, M.-R. Jiang, and J.-S. Yeh, “Design of

high-speed low power 3–2 counter and 4–2 compressor for

fast multipliers,” Electron. Lett., vol. 34, no. 4, pp. 341–343,

1998.

[16] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An

ultralow power convolutional neural network accelerator

based on binary weights,” in Proc. IEEE Comput. Soc. Annu.

Symp. VLSI (ISVLSI), Jul. 2016, pp. 236–241.

[17] O. Choudhari, M. Chopade, S. Chopde, S. Dabhadkar and V.

Ingale, "HARDWARE ACCELERATOR:

IMPLEMENTATION OF CNN ON FPGA FOR DIGIT

RECOGNITION,"2020 24th International Symposium on

VLSI Design and Test (VDAT), 2020, pp. 1-6, doi:

10.1109/VDAT50263.2020.9190274.

