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Abstract— In recent years, FPGA based convolutional neural networks (CNNs) accelerator have attracted a lot of attention towards it. 

This is primarily due to the fact that, in comparison to GPUs, they offer a greater level of energy efficiency. On the other hand, it can be 

challenging for solutions based on FPGAs to perform better their GPU replacements in terms of throughput. In this paper, we have 

proven that using FPGA based acceleration for a CNN that has been trained with binarized weights and the activations factor can be 

preferable in terms of throughput and energy efficiency. An efficient and totally mapped FPGA accelerator architecture with deep 

pipeline stages presented with layer normalization to operate on small batch size. In contrast to GPU acceleration, the performance of an 

FPGA accelerator is still not considerably affected by the size of the data batch being processed. On the other hand, GPU acceleration is 

considerably affected by the size of the data batch being processed. According to test results, the suggested BCNN architecture operating 

on a Virtex-7 FPGA processes individual requests in small batch sizes 8.3 times faster and 75 times greater efficiently than a Titan X 

GPU. 

 

Index Terms—BCNN, CNN, energy efficiency, FPGA, GPU, high throughput. 

 

I. INTRODUCTION 

One of the many traditional approaches to machine 

learning is through the use of neural networks. The primary 

objective of machine learning is, much like that of other 

algorithms, to get connected to artificial intelligence. This is 

because machine learning can perform much better than other 

algorithms in both speed and precision. In terms of deep 

learning architecture, convolutional neural networks (CNN) 

are the most popular. CNN is a powerful and effective model 

that performs picture categorization with superhuman 

accuracy. GPUs can only be utilized for simple algorithms 

because of their low energy budget. CNN is implemented in a 

Field Programmable Gate Array (FPGA) for great 

performance and power efficiency [1],[2]. It was 

recommended that CNN's energy efficiency be increased 

using the resistive RAM-based CNN accelerator [3]. The 

accuracy dropped, rendering the RAM-based CNN 

accelerator inappropriate for embedded systems used in the 

IOTs, even if it is more energy-efficient than the 

FPGA-based CNN version. To further minimize the size of 

the model, quantization and compression models are applied 

[4]. 

The quantization methods need more time while reducing 

precision. The compression techniques lowered the size of 

the model but had poor accuracy and considerably increased 

computing complexity during training and testing. To 

address CNN's drawbacks, the binary weighted convolution 

neural network (BCNN) was developed [5]. When 

processing forward propagation, the CNN uses large 

precision weights while the BCNN uses binary weights and 

data. Reading and writing operations are made quicker and 

more powerful with the help of BCNN. At runtime, BCNN 

has weights and activations binarized [+1, -1]. Bitwise 

operations take the place of arithmetic operations, which 

reduces memory size and access time as a benefit of using 

BCNN [6]. Test-time inference will advance more quickly 

and use less energy thanks to these sophisticated bitwise 

techniques. However, BCNN still has issues with 

cumbersome floating multiplication and accumulation 

operations. In order to get around these restrictions, a model 

that uses less space and offers more efficiency with simple 

complement operations and multiplexers was presented. 

There were still issues, such as increased power consumption 

from continuous off-chip DRAM data transfer.  

Numerous useful methods for training BCNNs have 

emerged as a result of advancements in computer hardware 

and machine learning algorithms over the past few years. 

BCNNs have recently attracted significant attention from a 

wide range of applications. In contrast to CNNs, BCNNs 

have as their primary purpose the improvement of learning 

performance. By utilising these qualities, BCNN algorithms 

are able to deal with enormous and complex problems, which 

CNN was unable to do. 

High - throughput screening and low power dissipation are 

provided by the suggested BCNN architecture in this study. 

Additionally, it decreases the need for bandwidth, critical 

path delay. storage complexity, and computational and 

hardware complexity while increasing accuracy. Field 
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programmable gate arrays are used to implement the 

suggested architecture (FPGA). 

In contrast to CNNs, BCNNs priorities the enhancement of 

students' overall academic performance as their primary 

objective. By utilizing these qualities, the algorithms that 

make up BCNN are equipped to deal with huge and complex 

problems, which is something that CNN was not capable of 

doing. 

 For highly deep BCNN models, we suggest an 

architecture and the accompanying processing 

schedule. The majority of design considerations are 

made with minimal energy costs and maximum data 

reuse in mind. 

 Compressor trees, negative skipping, and early 

pooling are three examples of the algorithmic 

transformations and microarchitectural level 

optimizations that can be implemented in order to 

minimize the lag time in the data flow and the amount 

of energy that is used. 

 We include two compensation techniques and 

approximate computation in binary multiplications 

(+1 or -1) in the proposed architecture, which can 

drastically decrease the number of adders used while 

resulting in very small to no accuracy loss. 

Additionally, the robustness of BCNN to the noise 

introduced by inappropriate adders is also studied. 

Our architecture's data path has specialised 

approximation adders, which takes up less space. 

 It is addressed how to use BCNN’s memory-efficient 

quantization approach to store intermediate data in 

less amounts of memory. Additionally, tests using 

various data sets are provided to demonstrate the wide 

application of this technique. 

 The suggested architecture is put into practise and 

assessed. In this paper, comparisons with past works 

are also demonstrated. 

This essay's remaining sections are organised as follows. 

The associated essential principles for CNNs and BCNNs are 

introduced in Section II. In Section III, certain hardware 

design and algorithmic strength reduction optimizations are 

discussed. The architecture of the suggested hardware is 

described in Section IV, which also demonstrates how to 

optimise the BCNNs' microarchitecture and processing 

schedule. Section V compares this research to the most recent 

BCNN architectures and shows the implementation results. 

II. MOTIVATION AND BACKGROUND 

A. Convolution Neural Network 

In the field of deep learning, CNN is a subset of the more 

general deep neural network. The input layer, the output 

layer, and the hidden layer are all the same in both 

conventional neural networks and CNNs. The same is true for 

the hidden layer. The pooling layers, the convolutional 

layers, and the rectified linear units (ReLU) are all contained 

within the hidden layers. In addition to fully connected layers 

and batch normalization, the hidden layer also contains any 

layers that have been normalized. Before being passed on to 

the neurons in the subsequent layer, the input undergoes a 

process known as convolution. It does so by computing the 

partial derivatives of each of their individual weights. 

𝑟ⅇ𝑙𝑢 = max(0, 𝑎) (1) 

The activation function known as ReLU is the one that is 

utilized most frequently in various deep learning models “the 

relu is calculated by using equation (1)”. In the event that any 

negative input is received, the function will always return 0. 

If ReLU is given a value that is in the positive, it will return 

that value. Hence, it can be expressed as follows: f(a) = 

maximum (0, a). It takes into account the nonlinearities and 

interactions that are present in the decision function. Pooling 

layers are infrequently appended between subsequent 

convolutions in the neural network in order to support in 

spatial size reduction and decrease the number of parameters. 

This is done since we wanted to minimize the number of 

parameters and computation in the neural network. In order 

to manage the challenges posed by overfitting, MAX pooling 

is utilized. This helps to protect vital data and contributes to 

the simplification of the computational process. It is feasible 

to decrease the amount of data needed for succeeding layers 

while also maintaining a sizable portion of the original data 

by summing the output of the convolution layers. 

At CNN's output, there are fully connected layers. 

Backpropagation is used in this layer to learn the weights 

among the connected layers. The fully connected layer, 

convolutional layers, and pooling layers are all affected by 

the error back propagation. It enables the nonlinear 

combination of features (corrects the important traits and 

reduces the unimportant ones by learning the full set of 

weights). It might be even better to combine such features. 

Due of the millions of parameters that must be learned, saved 

throughout training, and retrieved during inference, this layer 

reduces storage requirements. Additionally helps with energy 

consumption by over 90% [7–9]. 

B. Binary Convolution 

BCNN have binarized weights (0, 1) with or without 

activation factor. The BCNN uses forward pass and 

backpropagation methods, same as CNN. The error gradients 

are minimized through backpropagation. The weights in 

BCNN must be binary. The real valued weights and 

activations in BCNN are verified using the forward pass 

threshold technique “shown in equation (2)”. The threshold 

function was taken to be the identity function during 

backpropagation. During backpropagation, the threshold 

function was assumed to be the identity function.  

Threshold (x) =  1 when x > 0                (2) 

                       =   0 otherwise.  
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XNOR and addition operations can be used to implement 

the training and inference. This helps with speed and energy 

economy. The chip takes up less room when using a bespoke 

CPU. The BCNN network is constrained to handle binary 

weights that result in regularized results [10].  

III.  PROPOSED BCNN ARCHITECTURE 

A. Block diagram of BCNN 

The block diagram of Binary weight convolution is shown 

in   Figureure1. There are several components to it, including 

a binary weight kernel, a binary convolution process, 

neuron-wise scaling, Layer normalization, ReLU, and max 

pooling. Here, α denotes the additional scaling factor with the 

value 1, μ denotes the mean, and σ denotes standard deviation 

in the layer normalization, n denotes the n-th neuron in the 

layer, ε denotes the very small batch size. x is used to 

represent the input data. 

 
Figure 1. Block diagram of BCNN. 

The suggested design is versatile and allows for the use of 

different kernel sizes. To every action on the subregion of the 

input matrix beneath the kernel movements and above the 

input data, the dot product is calculated. The kernels in the 

network learn during training in the same way as other 

network layers. The Neuron Processing Unit is made up of 

neuron wise scaling, layer normalization, ReLU, and max 

pooling blocked. Layer normalization aids in network 

training by accelerating convergence (limited time) and 

preventing overfitting of the model and avoid variable batch 

size.  

1. XNOR CONVOLUTION  

The XNOR convolution process is broken down into its 

component parts and illustrated in   Figureure2. The filter 

makes use of the element-wise operation that XNOR 

provides. In order to accomplish input(5X5) convolution in 

the first phase, the filter is utilized. Filters are run as matrices 

(3X3) to extract the feature in convolutional layers to obtain 

high accuracy. The following step is the addition of the 

values that are considered intermediate. The filter's output is 

compared to N/2 before being turned into an output matrix 

with just one member. When referring to a particular layer of 

the network, the notation N represents the total number of 

components that are utilized in the filter. The primary 

objective of the n filters is to generate n channels, each of 

which has only one output and is convolved by the same 

input. 

 
Figure 2. XNOR convolution [11]. 

B.  Proposed Methodology 

The suggested architecture's top-level diagram is shown in   

Figureure3. Both type of memories volatile memory 

(DRAM, SRAM) and non-volatile are both employed to meet 

the needs for a wide range of software applications. Data and 

software programs are permanently stored in non-volatile 

memory. The proposed architecture is the subject of a 

detailed discussion that focuses on the processing unit. Four 

data buffers are represented here: the MUX, the left register, 

and the right register. The left register is where input 

activations are saved when they are first loaded from DRAM 

into the on-chip SRAM. The utilization of the on-chip data 

bus is beneficial to the loading procedure. After the left 

register has reached capacity, the input activations are then 

transferred to the right register. The PU (processing unit) will 

now begin the process of convolving the data. 

 
Figure 3. Proposed architecture [11]. 

In order for the neuron to generate output, a component 

known as the ISU (input feature summation unit) must first 

add up all of the input feature maps. The ACCU 

(accumulation array) uses a partial parallel array to conduct 

partial summing because there are more input feature maps 

than processing units. neuron-by-neuron scaling, Layer 

normalization, ReLU, and max pooling blocks are the 

components that make up the Neuron Processing Unit (NPU). 

The CCU (central control unit) is responsible for maintaining 

the proposed architecture's optimum processing flow 

schedule. The neural network's need for memory can be 

reduced by employing a number of different compression and 

quantization strategies [12], [13].  

1. Compressor tree 

The compressor tree is used to reduce the amount of data 

by compressing it. It consists set of 3:2 and 4:2 compressor to 
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optimize the data. By compressing 36 data into 2 data 

utilizing 3:2 and 4:2 optimized compressor trees, system 

performance is increased. As shown in   Figureure4. each 

processing unit consists of a binary multiplier and a 

compressor. 

 
Figure 4. Compressor tree [11]. 

The primary operations of CNNs are carried out on MACs. 

Due to the fact that BCNNs have already done away with 

whole multiplications involved in the convolution process, 

the crucial step takes place during the accumulation phase. 

This architecture consists of a 3X3 kernel and four processor 

units altogether. However, if the system is constructed using 

an adder tree, the lengthy path causes a significant amount of 

delay, which in turn lowers the frequency of the system. A 

specific 3:2 and 4:2 compressor tree that have been improved 

by using pipeline (shown in   Figureure4) method, has helped 

to increase the overall performance of the system.  

 
(a) 

 
(b) 

Figure 5 Expanded diagram of. (a) 3:2 compressor. (b) 4:2 

compressor [14] 

Several 1-bit complete adders make up a compressor [15], 

as shown in   Figureure5 (a) and (b).  

The equation  

P + Q + R = S + C × 2                              (2) 

holds for a 3:2 compressor, where P, Q, and R are its three 

inputs and S, and C are its outputs. As seen in   Figureure5(a) 

they all contain N number of bits. 

According to   Figureure 5(b), a 4:2 compressor's structure 

is comparable to a 3:2 compressor. Only a 1-b 4:2 compressor 

is depicted for simplicity's sake. A multibit compressor is 

made up of multiple 1-b 4:2 compressors with 𝐶𝑖𝑛 connected 

to 𝐶𝑜𝑢𝑡  of the (𝑘 − 1)𝑡ℎ  bit. A multibit 4:2 compressor's 

input-output relationships are shown in equation (3). 

P + Q + R + W + 𝐶𝑖𝑛0  = Carry × 2 + Sum.    (3) 

A 4-to-2 compressor has a two-times longer delay than a 

1-b complete adder. In 3:2 and 4:2 compressors, there is no 

carry chain. In comparison to a multi-input adder that has 

extended carry propagation for numerous stages, there is a 

significant reduction in data route delay. 

We suggest cascading many 3:2 and 4:2 compressors 

together in a tree topology as an alternative to the 

conventional adder tree. It has the ability to reduce the 

summation of 36 data to just 2 data. As demonstrated in   

Figureure4. An approximative adder will combine two data at 

the compressor tree's end. The compressor tree can reduce the 

critical route by a significant amount. 

2. Binary Multiplier 

The optimized approximate binary multiplier seen in   

Figureure4 replaces the multipliers as shown in   Figureure6. 

According to synthesis results, the area of the optimized one 

is 60% smaller than that of the binary multiplier design 

utilizing 2's complement in [16], by taking out the add-one 

adder.  

 
Figure 6. Optimized binary multiplier [14]. 

As can be seen in   Figureure 4 and   Figureure5, the 

accumulation path for each output neuron is comprised of 

only two adders at this point, and these adders have the 

maximum data width and the tallest data path latency. It is 
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incredible how well neural networks that have been trained 

with weight projections or quantization, particularly 

binarization, can withstand the influence of a variety of 

distortions like noises. This was the impetus for us to develop 

the solely devoted approximate adder that is depicted in   

Figureure7 in order to replace the adders that were present in 

the data route. Carry propagation induced stutters account for 

a sizable amount of an adder's power usage. 

 
Figure 7 Approximate Adder (APA) [14]. 

The approximate adder (APA) that has been suggested is 

built in such a way that it divides an N-bit adder into two sub 

adders of k bit, which mitigates the effects of carry 

propagation. A preliminary estimation of the value of the 

input carry bit C in for the higher-order (N-k)-bit sub adder is 

made using the kth bit of one of the input data. This topology 

can reduce not only the time required for the data path  also 

the complexity of the hardware by virtue of the fact that the 

carry of the approximation adder ripples through a condensed 

channel. 

The k parameter should be set to a value that is equal to or 

less than half the word size for the greatest advantage to the 

hardware's efficiency. However, the error rate (the loss of 

accuracy) increases whenever the value of k is increased. At 

the point where the BCNN's accuracy starts to drop off 

dramatically, the ideal value is chosen. 

IV.  EXPERIMENTAL RESULTS AND 

COMPARISION 

The BCNN design, which uses binary weights, is 

recommended because high-precision parameters are not 

required to produce high precision in an ANN's (artificial 

neural networks) output. Verilog HDL is used to create the 

intended algorithm, and the Spartan-3 Xilinx FPGA is used to 

actualize it. The simulation platform provides the outcomes 

of the simulation. 

1. ReLU vs Tanh comparison 

Rectified Linear Unit (ReLU) activation functions are 

frequently employed in deep learning models. Compared to 

other activation mechanisms like the sigmoid and hyperbolic 

tangent, it has a number of advantages. The fact that ReLU 

does not experience the vanishing gradient problem, which 

can happen with sigmoid and Tanh activation functions when 

the input is big in magnitude, is one of its key advantages. 

This may hinder the model's ability to learn and slow down 

training. ReLU also has the benefit of being computationally 

efficient because it doesn't require more difficult calculations 

like exponentiation or trigonometry, merely a straightforward 

comparison and assignment action. ReLU has also been 

demonstrated to function well in a variety of applications and 

is simple to implement. 

Table. 1 Area Utilization of ReLU vs Tanh. 

Logic 

utilization 
Used Available %utilization 

Activations ReLU Tanh For all ReLU Tanh 

Slice LUTs 31 153 63400 0 0 

LUT-FF 

pairs 

0 0 153 0 0 

Bonded 

IOBs 

64 29 210 30 13 

RAM/FIFO 0 1 135 0 0 

BUFG/BU

FGCTRLS 

0 1 31 0 3 

DSP48E1s 0 2 240 0 0 

Overall, while ReLU has some advantages over other 

activation functions, it is not necessarily the "best" activation 

function for all situations. Different activation functions may 

be more or less suitable for different types of tasks or model 

architectures. It is important to consider the characteristics 

and limitations of different activation functions when 

choosing one for a specific application. 

1. Design Utilizations. 

The proposed architecture of neuron processing unit is 

implemented using Verilog HDL and various result is 

obtained. 

a. Area utilization 

 
Figure 8 Logic utilization of BCNN 
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Figure 9 %logic utilization. 

b. Power utilizations. 

 
Figure 10 on chip power utilization. 

2. Area Comparison  

Table. 2 Area utilization by Existing CNN, and Proposed 

BCNN. 

Resources Available % Utilizations 

Technology 

Used 

Existing 

CNN[17] 

Proposed 

BCNN 

For All 

Technology 

Existing 

CNN 

Proposed 

BCNN 

Slice 

Register 

12306 2067 460800 4.77 0.448 

Slice  

LUTs 

26688 79281 230400 7.99 0.83 

DSPs 640 26 2800 82.29 0.92 

V.  CONCLUSION 

The development of computer hardware and machine 

learning techniques has made it possible to train the BCNN 

efficiently. BCNN overcomes CNN's limits and has the 

ability to handle extremely complicated issues. The primary 

objective of this research, utilizing the suggested 

architecture, was to apply BCNN in control regions. The 

suggested architecture displays a BCNN model that employs 

only binary weights and is both high-performing and 

energy-efficient. Utilizing the most effective processing 

schedule in the processing unit, the data reuse is taken 

advantage of. The power to access the input-output has 

significantly decreased, according to the results. Power and 

input-output accessibility have been substantially restricted. 

Reduced computational complexity, improved performance, 

and throughput. Energy dissipation for Input-Output and 

input-output bandwidth are taken into account during 

implementation 

The suggested architecture offers a high throughput and 

little power loss. Additionally, it decreases the need for 

bandwidth, storage complexity, critical path time, and 

computational and hardware complexity while increasing 

accuracy. Proposed neuron processing unit (NPU) 

architecture includes layer normalization which can be used 

to implement recurrent neural networks (RNN). Because it is 

independent of batch size, so it provides best accuracy and 

throughput with smaller batch size.   
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