
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

Web Application Security Scanning using Machine

Learning

[1]
Dr. Harmeet Kaur Khanuja,

[2]
Pranav Gadekar,

[3]
Samruddhi Kulkarni,

[4]
Shalaka Kulkarni,

[5]
Shruti More

[1][2][3][4][5]
B Dept. of Computer Engineering, MMM’s College of Engineering, Chennai, Tamil Nadu, India

Abstract---- Web and web-based technologies have gained popularity in recent times. The security-sensitive information and

functionalities of web applications can be extracted easily. Web applications are the most common source of sensitive data, so they

are more vulnerable to a large number of web-based attacks. Incorrect input validation is one of the primary reasons for

vulnerabilities to take place.Though these vulnerabilities are simple in nature and usually easy to mitigate, developers are unaware

of security implications of these issues. This results in more vulnerable web applications on the Internet. If these vulnerabilities

remain present in the web application, then it might have some severe impacts on confidentiality of user data.

We implemented a system which crawls the entire web application to collect all referenced URLs and scan those URLs for the most

frequent vulnerabilities like SQL Injection and Cross Site Scripting. A comprehensive report for sub types of SQL injection like

Error-based, Union and Boolean SQL injection along with Cross Site Scripting, is presented to users. Each of the aforementioned

reports consists of URLs vulnerable to SQL Injection or Cross Site Scripting attacks.

Keywords— SQL Injection, Cross Site Scripting, Web Application Testing, Security Scanner, Exploitation, Code Injection, Web

Security, Machine Learning, Artificial Intelligence

I. INTRODUCTION

As of January 2020, there have been over 1.74 billion

websites on the web. On an average hackers attack after

every 39 seconds, that is 2,244 times a day. This gives us

the idea that many websites on the Internet are vulnerable

to different attacks. [1] As of the end of 2019, 42% of

publicly facing websites are prone to SQL Injection and

19% to Cross Site Scripting attacks. A security researcher

has earned a $25,000 bug bounty after finding a Cross Site

Scripting (XSS) vulnerability in one of the most popular

social media sites ‘Facebook’. Another such attack, in

August 2019, was on the famous coffee chain ‘Starbucks’

web services that created a way to access their critical

database through the SQL Injection Vulnerability. [2]

From this discussion, we can conclude that security has a

major role to play while developing websites.

Unfortunately, web developers are not aware of these

security aspects resulting in more vulnerable websites.

Some of the most commonly occurring ones being SQL

injection and Cross Site Scripting. So we have developed a

system that will find these vulnerabilities in given web

applications and report them to the user of the system.

We have designed a web application that accepts the target

URL from the user. Then it passes the accepted URL to a

Web crawler that crawls the given URL and collects all the

referenced URLs. Then it scans all collected URLs and it

tests different payloads to detect the vulnerabilities using

machine learning. Finally, a report is generated which

contains the detected vulnerabilities.

II. RELATED WORK

• Machine Learning for Web Vulnerability Detection:

The Case of Cross-Site Request Forgery published

within the year 2020 by Stefano Calzavara, Mauro

Conti, Riccardo Focardi, Alvise Rabitti, Gabriele

Tolomei. Its main advantage is that it offers a

language-sceptic vulnerability detection perspective,

which hides the complexity of scripting languages as it

offers a compatible interface to a large range of web

applications. [3]

• An efficient algorithm and tool for detecting dangerous

website vulnerabilities in the year 2020 and written by

Hoang Viet Long, Tong Anh Tuan, David Taniar,

Nguyen Van Can, Hoang Minh Hue. The given

technique has the key feature of detecting attacks

involving nested SQL queries and gives fine results.

[4]

• Dimitris E. Simos, Jovan Zivanovic, Manuel Leithner

proposed Automated Combinatorial Testing for

Detecting SQL Vulnerabilities in Web Applications in

the year 2019. It shows that our approach can

effectively escape defective filtering mechanisms. [5]

• Commix: automating evaluation and exploitation of

command injection vulnerabilities in Web applications

published within the year 2019 by Anastasios

Stasinopoulos, Christoforos Ntantogian and Christos

Xenakis. It gives access to a variety of functionalities

 21

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

that try to cover vast exploitation scenarios such as

authentication mechanisms, custom headers, attack

vectors developed using programming languages and

user enumeration. [6]

• A Distributed Vulnerability Scanning on Machine

Learning in the year 2019 by Xiaopeng TIAN, Di

TANG. Setting up standardized and quantified data

sets for various industries and businesses is of great

assistance to increase the testing standard. [7]

• An Automated Composite Scanning Tool with

Multiple Vulnerabilities within the year 2019 published

by Xun Zhang, Jinxiong Zhao, Fan Yang, Qin Zhang,

Zhiru Li, Bo Gong, Yong Zhi, Xuejun Zhang. It

assures the automatic detection for executing automatic

vulnerability scanning. [8]

III. PROPOSED SYSTEM

Fig. 1. System Architecture

The figure given above (Fig. 1. System Architecture),

represents the architecture of the proposed system. The

proposed system has four modules, those are, Web

Crawler, SQL

Injection detection, Cross Site Scripting detection and

Report generation. These modules are described in a later

part of the paper.

We have developed a web application of the proposed

system. The web application has sign-in and sign-up

functionalities to log in and add new users to the system

respectively. Users have to log in to the system in order to

use the system’s functionalities.

• After successful login, the user is directed to the web

page where the user can provide the URL of the web

application to be tested.

• The URL given by the user is passed to the Web

crawler module where all referenced URLs are

collected recursively from referenced URLs found

previously.

• The SQL Injection and Cross Site Scripting modules of

the system will get the set of referenced URLs, where

URL query parameters, forms and cookies present on

that web page will be scanned for vulnerabilities.

• After that, a report will be generated for each of the

detected vulnerabilities which contains URL on which

vulnerabilities were found and payload used to detect

them

A. Project Scope

• The system requires the target URL to be entered by

the user.

• If the web application is not having the robots.txt file

then the user has to explicitly specify the restricted

URLs.

• The system will scan the target application and check if

the web application is having any of these

vulnerabilities:

– Reflected SQL Injection

– Union SQL Injection

– Boolean SQL Injection

– Cross Site Scripting

• The report will be generated consisting of endpoint

affected, payload used, and generalized remediation.

IV. WEB CRAWLER

As given in Fig. 1, the Web crawler is the first module of

the proposed system. The Web Crawler has two sub-

modules, that are, Robots.txt parsing and URL parsing.

A. Robots.txt parsing

The web application to be checked for vulnerabilities, may

or may not have a robots.txt file. This file basically

contains the details of User agents for the web application

and disallowed URLs for that User agents. Our system

parses the robots.txt file to get both the allowed and

disallowed URLs for web applications. The disallowed

URLs will not be crawled and tested for vulnerabilities.

• Checks for the presence of the robots.txt file and if

present, collect allowed and disallowed URLs.

B. URL Parsing

The URL parser takes input as the URL of the home page

or main page and it finds all the referenced URL present

on that page. Then it visits all those URLs one by one and

collects all the referenced URLs on the page. This

procedure continues in a recursive manner.

• All URLs specified within the anchor tag from the

 22

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

current page are saved in a List.

• Relative URLs (like /admin or #footer) are converted

into Absolute URL (like https://example.com/admin or

https://example.com#footer)

• URLs which are not in the scope of target application

are removed from the list (for example twitter.com or

instagram.com)

• Hyperlinks with ‘mailto:’ or ‘javascript:’ and those

pointing to static file types like images, pdfs, fonts, etc.

are also removed.

V. WEB SECURITY VULNERABILITIES

A. SQL Injection

SQL injection attacks are amongst the topmost threats in

database-centric web applications and SQL injection

vulnerabilities are one of the severe Vulnerabilities. SQL

Injection permits the attacker to achieve control over the

application’s database. [9]

SQL injection can take place in URL, forms, headers or in

cookies of any web page. Out of this, our model focuses

on URL and forms present in a web page for vulnerability

detection.

Depending on the payload used, it can be categorized into

4 major types, namely:

● Reflected or error based SQLi

● Boolean based SQLi

● Union based SQLi Blind SQLi

1) Reflected or error based SQLi:

Reflected or error based SQL injections are the most

common type of attack. Error-based SQLi is a SQL

Injection technique that relies on exceptions or errors

thrown by the server. From the errors received from the

server, one can infer the underlying structure of the

database.

For detecting error-based SQLi, model performs following

steps:

● Reflected SQL injection in URLs:

1) URL is taken as an input.The URL is then checked for

the presence of query parameters.

2) If one or more query parameters are present then a

special character such as single quote(’) or double

quote(”) is appended to the value of query parameter in

URL and it is sent to the server.

3) The contents of server response is then passed to the

Machine Learning model to determine whether

Reflected SQL injection is possible or not. 4) If no

query parameter is found in the URL, then that URL is

not vulnerable to Reflected SQL injection.

● Reflected SQL injection in Forms:

1) From the given URL, all the forms are extracted, if

any.

2) For every input field present in each form, special

characters such as single quote(’) or double quote(”)

are inserted and submitted using the method given in

the method attribute of form tag.

3) The contents of the server response is then passed to

the Machine Learning model to determine whether

Reflected SQL injection is possible or not.

2) Boolean based SQLi:

Boolean based SQL injection is a SQL injection technique

that depends on sending an SQL query to the database

which results in either TRUE or FALSE, depending on

that, the content of HTTP response will change, or it will

remain the same.

For detecting Boolean-based SQLi, model performs

following steps:

● Boolean based SQL injection in URLs:

1) The list is prepared containing Boolean-based payloads

which are grouped in such a manner that each group

has payloads, ’” or 1=1’, ”’ or 1=1” and ’ or 1=1’.

2) URL will be taken as input. Then query parameters are

checked in the URL, if any present.

3) Each payload from the list is appended after the value

of the query parameter and such a URL is sent to the

server.

4) For each payload, contents of server responses are

stored in their respective lists.

5) Then we compare these lists with each other and if one

of the lists has different contents than the other two,

then we can infer that, given query parameter is

vulnerable to the respective payload.

● Boolean based SQL injection in forms:

1) The list is prepared containing Boolean-based payloads

which are grouped in such a manner that each group

has payloads, ’” or 1=1’, ”’ or 1=1” and ’ or 1=1’.

2) From the given URL, all the forms are extracted, if

any.

3) For all input fields present in the form, each payload

from the list is inserted and submitted using the method

given in the method attribute of the form tag.

4) For each payload, contents of server responses are

stored in their respective lists.

5) Then these lists are compared against each other and if

one of the lists has different contents than the other

two, then we can infer that, given form is vulnerable to

the respective payload.

 23

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

3) Union based SQLi:

Union-based SQLi is a SQL injection technique that

contains the UNION SQL operator that merges the results

of two or more SELECT statements into a single result,

then returned as part of the server response.

For detecting Union based SQLi, model performs

following steps:

● Union based SQL injection in URLs:

1) The CSV file is prepared which contains payloads

specific to Union based injections with labels ’1’ and

’0’, where ’1’ signifies that SQL injection is possible

with that payload and ’0’ signifies that SQL injection is

not possible.

2) The input URL is checked for the presence of query

parameters.

3) If one or more query parameters are present, then

special characters such as Single quote(’), Double

quote(”) and Backtick(‘) along with their URLencoded

versions are appended to the value of each query

parameter and such a URL is sent to server.

4) The special characters for which error statement is

present in the server response, then payloads with those

special characters are labelled as ’1’ and rest of the

payloads are labelled ’0’. 5) The machine learning

algorithm is trained using CSV file.

5) Testing dataset is prepared and passed to the machine

learning model for predictions.

6) The payloads in the dataset classified as ’1’ are then

sent to the server and if contents of base URL response

are present in the received response, then SQL

injection is achieved.

● Union based SQL injection in forms:

1) The forms are extracted from the input URL, if any

present.

2) For the input fields present in the form, special

characters such as Single quote(’), Double quote(”) and

Backtick(‘) along with their URL-encoded versions are

inserted and submitted using the method given in the

method attribute of the form tag.

3) The special characters for which error statement is

present in the server response, then payloads with those

special characters are labelled as ’1’ and rest of the

payloads are labelled ’0’.

4) The machine learning algorithm is trained using CSV

files.

5) Testing dataset is prepared and passed to the machine

learning model for predictions.

6) The payloads in the dataset classified as ’1’ are then

sent to the server and if contents of base URL response

are present in the response received after submitting

the form, then SQL injection is achieved.

B. Cross Site Scripting

Cross Site Scripting is a severe vulnerability that hampers

security of a web application. Cross Site Scripting attack is

an injection of harmful JavaScript code into the web

application by the attacker in the client-side within the

user's browser or in the server-side within the database,

this JavaScript code is inserted within distrustful input data

on the web application [8].

Many applications provide the facility to search for

specific content. Whenever the user searches for the

required content, the relevant results are displayed on the

webpage along with a search keyword entered by the user.

XSS can take place in URL, forms, headers or in cookies

of any web page. Out of this, our model focuses on URL,

forms and cookies present in a web page for vulnerability

detection. For performing XSS we follow the procedure

mentioned below:

● Cross Site Scripting in URLs:

1) The CSV file is prepared which contains payloads

specific to XSS with labels ’1’ and ’0’, where ’1’

indicates, XSS is possible with that payload and ’0’

indicates, XSS is not possible.

2) First input URL is taken and checked, if the query is

present or not.

3) If query parameters are present, the word like ’l3333t’

is given as the value of the query parameter and now it

is sent to the server.

4) In the contents of the server response, we search for the

same word. If the word is found, that URL is appended

to a list. Basically here we are checking if the searched

word is reflected in the HTML response or not.

5) From the list of URLs obtained in step 3), the URL is

taken at a time, the value of the query parameter is now

replaced with each special character, those are specific

to Javascript.

6) The characters which are reflected in the server

response, labels of those payloads with that specific

character are changed to ’1’ and rest of the payloads

are labelled ’0’.

7) With this CSV, we train the Machine Learning model.

8) Testing dataset is passed to the machine learning model

for predictions. The payloads classified as ’1’, are the

most likely ones for XSS attack.

 24

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

● Cross Site Scripting in Forms:

1) From the given input URL, all the forms are extracted,

if any present.

2) In each input field of the form, a specific word like

’l3333t’ is inserted and submitted using the method

attribute specified in the form tag.

3) The word given as input, i.e., ’l3333t’ is searched in

server response and if found, that form is appended to a

list.

4) For training the machine learning model, we use the

same CSV file as used in the machine learning part of

URL.

5) Trained machine learning model is then used in

prediction of test data.The payloads with label as ’1’,

are the most likely ones for XSS attack.

6) If the list of URLs obtained in step 3) of the URL

module is empty, then in the input fields of form,

special characters are inserted one by one and

submitted to the server.

7) If Special characters are present in the contents of

server response,then the labels of those payloads are

changed to ’1’ and rest of the payloads are labelled ’0’.

8) Now with this CSV we train the machine learning

model.

9) The test CSV file is given to a machine learning model

for predictions and the payloads labelled as ’1’ are

most probable ones for XSS attack.

● Cross Site Scripting in Cookies:

1) For the input URL, a dictionary is created which

contains the URL along with its cookies.

2) The value for the cookie is a word like ’l3333t’ and the

input URL is sent to the server along with this cookie.

3) In the response from the server, we find the word

’l3333t’ and if it's present we append that cookie to a

list.

4) The list of cookies we got from step 3), for each

cookie, now the value for the cookie will be special

characters and it is submitted to the server with a URL.

5) If the special character is present in the contents of the

response from the server, then the payloads containing

that special character will be changed to ’1’ and the

rest will be ’0’.

6) The machine learning model will be trained on a CSV

file and the model test data will be sent.

7) The payloads classified with ’1’ are most likely to

achieve XSS attack.

VI. MACHINE LEARNING ALGORITHM

A. Logistic Regression

Logistic regression is a statistical technique for analyzing a

dataset that predicts the probability of an outcome that can

only have two values. The goal is to find the best fitting

model to describe the relationship between a set of

dependent variables and a set of independent variables

(predictor or explanatory variable). In logistic regression,

the dependent variable is binary in nature, i.e. having two

categories. Independent variables can be continuous or

binary in nature.

Logistic regression is used in XSS detection and it is

implemented in the following manner:

1) An independent variable, X, is defined as a set of XSS

payloads along with a set of some ordinary statements.

2) A set of classes, y, with values ’0’ and ’1’, where ’1’

represents payloads that are most likely responsible to

trigger XSS attack and ’0’ represents the ordinary

statements.

3) Tokenization technique is used for converting text

strings present in X into numeric form.

4) The training dataset, D, is built which contains a pair of

(Xi,yi) where, Xi represents tokenized XSS payload and

yi as its class.

5) Now, this training dataset, D, is used to train the

logistic regression classifier.

6) In case of XSS detection, the classifier would be used

to identify statements that could be either XSS

payloads or the ordinary ones.

B. Naïve Bayes Classifier

Na¨ıve Bayes is a probabilistic classification algorithm

based on Bayes Theorem and the Maximum A Posterior

hypothesis. Bayes’ theorem provides the relationship

among the probabilities of 2 events with their conditional

probabilities. Na¨ıve Bayes makes an assumption that the

effect of an attribute value on a given class is independent

of the values of other attributes.

Naïve Bayes classifier is used in detection of Reflected

SQL injection, it is implemented in the following manner:

1) An independent variable, X, is defined as a set of

generic SQL error statements with ordinary statements.

2) A set of classes, y, with values ’0’ and ’1’, where ’1’

represents statements that are most likely to be SQL

error statements and ’0’ represents the ordinary

statements.

3) Count-vectorizer and Tf Idf-transformation is used to

convert text strings to numeric form.

4) The training dataset, D, is built which contains a pair of

 25

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

(Xi,yi) where, Xi represents tokenized SQL error

statements and yi as its class.

5) This training dataset, D, is used to train Na¨ıve Bayes

Classifier.

6) In case of reflected SQLi detection, the classifier

would be used to identify statements that could be

either SQL error statements or the ordinary ones.

VII. OTHER SPECIFICATIONS

A. Advantages

• Provides facility for automated and fast crawling.

• Comprehensive analysis of SQL Injection and XSS

vulnerabilities.

• Easy to use GUI.

B. Limitations

• Only non-CAPTCHA registrations and logins can be

carried out.

• Possible to detect first-order SQL Injection and XSS

vulnerabilities.

• For the large Web application, stack overflow may

happen.

C. Applications

With the proposed system, vulnerabilities present in the

Web application can be detected.

VIII. RESULTS

Proposed model was successful in detecting SQL injection

and Cross site scripting vulnerabilities in the particular

realworld web applications.

For testing purposes, we used http://testphp.vulnweb.com/.

This website is made intentionally vulnerable for testing

purposes. It was chosen because it is built in PHP and PHP

still continues to be the most common language used for

web application development. As this website has known

vulnerabilities, our goal was to find all of them and also

try to find those vulnerabilities which are not yet known.

Following table summarizes the results of testing the

model on various websites and vulnerable labs:

Web Application

(to be tested)

URLs

found

Pages

vulnerable

to SQLi

Pages

vulnerable

to XSS

http://testphp.

vulnweb.com/

35 18 2

https://<redacted>

.web-

securityacademy.net/

(SQL

Injection labs)

27 22 -

https://<redacted>

.web-

securityacademy.net/

(XSS

labs)

30 - 12

IX. CONCLUSION AND FUTURE SCOPE

We have found the common vulnerabilities present in the

web application, such as Error based SQLi, Union based

SQLi, Boolean based SQLi and Cross Site Scripting. We

proposed a system that will crawl the entire web

application, scan different types of vulnerabilities, and

generate a report specifying an overview of the detected

vulnerabilities. Instead of conventional programming, we

have used Machine learning algorithms for detecting the

vulnerabilities.

There is a scope of improvement in some modules of the

developed system. More vulnerabilities can be

incorporated to further increase the scope of scanning. By

adapting some techniques like file management, the

limitation of large web application crawling can be

eliminated. Furthermore, new features can be added to

make the analysis of reports more understandable.

X. ACKNOWLEDGMENT

We would like to express sincere gratitude towards our

respected project coordinator Prof. Shubhada Mone,

Department of Computer Engineering, for guiding and

supporting us for successful completion. We thank our

guide for providing us a helping hand whenever needed

and clearing our doubts. We thank all the staff members

for their mentoring and valuable advice. With respect and

gratitude, we would like to thank all the people, who have

helped us directly or indirectly.

REFERENCES

[1] https://portswigger.net/daily-swig.

[2] https://www.websitehostingrating.com/ internet-

statistics-facts/.

[3] Stefano Calzavara, Mauro Conti, Riccardo Focardi,

Alvise Rabitti, and Gabriele Tolomei. Machine

learning for web vulnerability detection: The case of

cross-site request forgery. IEEE Security & Privacy,

18(3):8–16, 2020.

[4] Hoang Viet Long, Tong Anh Tuan, David Taniar,

Nguyen Van Can, Hoang Minh Hue, and Nguyen Thi

Kim Son. An efficient algorithm

[5] and tool for detecting dangerous website

vulnerabilities. International Journal of Web and

Grid Services, 16(1):81–104, 2020.

 26

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

[6] Dimitris E Simos, Jovan Zivanovic, and Manuel

Leithner. Automated combinatorial testing for

detecting sql vulnerabilities in web applications. In

2019 IEEE/ACM 14th International Workshop on

Automation of Software Test (AST), pages 55–61.

IEEE, 2019.

[7] Anastasios Stasinopoulos, Christoforos Ntantogian,

and Christos Xenakis. Commix: automating

evaluation and exploitation of command injection

vulnerabilities in web applications. International

Journal of Information Security, 18(1):49–72, 2019.

[8] TIAN Xiaopeng and TANG Di. A distributed

vulnerability scanning on machine learning. In 2019

6th International Conference on Information Science

and Control Engineering (ICISCE), pages 32–35.

IEEE, 2019.

[9] Xun Zhang, Jinxiong Zhao, Fan Yang, Qin Zhang,

Zhiru Li, Bo Gong, Yong Zhi, and Xuejun Zhang. An

automated composite scanning tool with multiple

vulnerabilities. In 2019 IEEE 3rd Advanced

Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC), pages

1060–1064. IEEE, 2019.

 27

