
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 71

Homomorphic Encrypted MongoDB for Users

Data Security

[1]
 Anil Kumar,

[2]
 Harsha H L,

[3]
 B. Swaroop Reddy,

[4]
 K.Sunil Kumar Reddy,

[5]
 Krishna N

[1]
 Asst.Professor, CSE, Vemana Institute of Technology, Bengaluru
[2 3 4 5]

 Student, CSE, Vemana Institute of Technology, Bengaluru

Abstract- Database is used for storage of information in Software Applications. Normally, traditional RDBMS are used for storage

purposes but with applications generating enormous amount of data, RDBMS is no longer efficient because RDBMS doesn’t

support quick data access and computations as it do not support processing of data in distributed manner. To overcome this

problem, NoSQL based MongoDB is emerged which is document oriented database, it stores the data in the form of collections

rather than tables therefore it supports quick data access and computations in distributed way and it provides flexibility by not

enforcing the particular schema to be followed throughout. But very often MongoDB fails to provide security to the user data,

which is very important these days. In this paper, security for users data is provided by using additive homomorphic asymmetric

cryptosystem which encrypts the users data in MongoDB(CryptMDB) and achieve strong user’s data privacy protection. This also

supports the database operations over the encrypted data.

Keywords— Database, RDBMS, NoSQL, MongoDB, Homomorphic cryptosystem, CryptMDB.

I. INTRODUCTION

Big data is one of the world's hottest vocabularies after the

Internet of things and cloud computing. Big data has

brought a great impact. In the Big data era, the applications

based on it are generating huge amount of data and most of

them works on real time basis so they require fast

computation and huge storage capability [1],[2]. Generally,

data should be stored in databases for easy access and

utilization. Existing mainstream databases adopted by

enterprises and individuals are relational databases, such as

MySQL, Oracle, DB2, etc, in which data are stored as a

item of tables and participated various Sql requests. But,

RDBMS are not suitable for Bigdata storage purposes

because of the following reasons:

First, the data size has increased tremendously to the range

of petabytes—one petabyte = 1,024 terabytes. RDBMS

finds it challenging to handle such huge data volumes.

Second, the majority of the data comes in a semi-structured

or unstructured format from social media, audio, video,

texts, and emails. However, the second problem related to

unstructured data is outside the purview of RDBMS because

relational databases just can’t categorize unstructured data.

They are designed and structured to accommodate

structured data such as weblog sensor and financial data.

Third, data is generated at a very high velocity. RDBMS

lacks in high velocity because it’s designed for steady data

retention rather than rapid growth. Even if RDBMS is used

to handle and store big data, it will turn out to be very

expensive. In order to overcome the disadvantages posed by

the RDBMS platforms, we make use the NoSQL based

databases like Cassandra, MongoDB for the storage of

Bigdata. In this paper we considered MongoDB for the

security analysis. There are several advantages of using

NoSql over the RDBMS: 1.Schema Less: NoSQL databases

being schema-less do not define any strict data structure. 2.

Dynamic and Agile: NoSQL databases have good tendency

to grow dynamically with changing requirements. It can

handle structured, semi-structured and unstructured data. 3.

Scales Horizontally: In contrast to SQL databases which

scale vertically, NoSQL scales horizontally by adding more

servers and using concepts of sharding and replication. This

behaviour of NoSQL fits with the cloud computing services

such as Amazon Web Services (AWS) which allows you to

handle virtual servers which can be expanded horizontally

on demand.4.Better Performance: All the NoSQL databases

claim to deliver better and faster performance as compared

to traditional RDBMS implementations.[3] Inspite of these

advantages, existing MongoDB products fail to consider a

crucial and practical issue in databases, i.e., privacy

protection. It is well-known that data is stored which is

deprived of any safety measures on commonly used

databases, which is susceptible to attackers who are

interested in users’ sensitive information if adversaries can

compromise databases to steal private data. Besides,

MongoDB server is suspected as honest but curious, which

may malicious peep data stored in databases due to it has the

full access permission.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 72

Therefore, it is crucial to propose a privacy-preserving

approach which can ensure confidentiality of users’

information on MongoDB [4]. In the last few years, several

encryption schemes have been applied in relational

databases. Raluca[5] et al. design a CryptDB system in

MySQL, which uses an onion encryption structure to

support 99.5% operations over encrypted data.

Deshmukh[6] et al. propose a transparent data encryption

scheme to provide high levels of security for columns, table

and tablespace in Microsoft SQL Server 2008. Then

Raluca[7] et al. present an ideal-security protocol for order-

preserving encoding over relational databases, which not

only can provide ideal security but also demonstrate the

higher performance comparing with previous order-

preserving approach. However, few specific encryption

tools which have been applied in non-relational databases.

In this paper, we propose a practical encrypted MongoDB,

which can guarantee strong privacy protection and high

performance in non-relational databases. In specific, the

contributions of this paper can be summarized as follows:

1. We leverage an additive homomorphic asymmetric

cryptosystem to design an encrypted MongoDB,

which can achieve additive operations over

encrypted data.

2. Security analysis shows that the proposed system

can achieve strong privacy protection of users’

information stored in databases. Besides, extensive

experiments indicate that the proposed system is

better than existing relational database (such as

MySQL) in terms of data access and calculating.
The remainder of this paper is organized as follows. In

Section II, we will describe the preliminaries. In Section III,

we will propose a practical encrypted MongoDB and

describe the details of our model. Then we carry out the

security analysis and performance evaluation in Section IV

and Section V, respectively. Finally, Section VII concludes

the paper.

II. PRELIMINARIES

In this section, we will introduce the architecture of the

proposed system and analyse threats of the system. Besides,

encrypted tool also will be brought in this part, which will

be served as the basic of our proposed scheme.

Fig1: CryptMDB Architecture

A. System Architecture:

As shown in Fig.1, CryptMDB mainly contains three parts:

User’s computers, CryptMDB proxy server and MongoDB

server. Firstly, data provided by users will be encrypted by

encryption tools and stored in MongoDB, when users want

to query the contents of database, they should send some

specific MongoDB query languages (Mql) to CryptMDB

proxy server. Then these Mql queries will be rewritten by

pre-set encrypted tools and sent to the MongoDB server.

Next, the MongoDB server executes Mql to match

corresponding ciphertexts which will be delivered to

CryptMDB proxy server. Finally, the proxy server decrypts

these ciphertexts and sends them to authorised users. We

can see that in CryptMDB where MongoDB server executes

Mql queries and return corresponding ciphertexts to users, it

cannot gain access to the sensitive data of users, which

ensures that user’s private information cannot be leaked to

any part in whole CryptMDB architecture, Besides, in

CryptMDB, different users have their own disparate key to

encrypt personal information. Therefore, even if the

attackers full control the CryptMDB, they cannot get private

data whose owner are not log in the CryptMDB systems. In

this paper, although CryptMDB can protect the data

confidentiality, it does not guarantee the data completeness,

freshness, integrity and so on. Moreover, other attacks such

as compromise user’s computers, gain user’s key, or a

malicious DBA, are not the scope of our CryptMDB.

B. Threat 1: MongoDB Compromise:

Shown in Fig.1, in CryptMDB, we assume that the

MongoDB server is honest but curious. On the one hand,it

will strictly execute Mql queries provided by proxy server,

on the other side, it may try to infer the contents of user’s

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 73

data and learn the relationship among user’s information.

Besides, proxy server is supposed to trustworthy in

CryptMDB. Therefore, this threat mainly includes

MongoDB software compromise, access to the databases,

and access to the RAM of MongoDB machines. With the

development of big data and lack private protection

awareness in database areas, this threat turns more and more

dangerous when tens of thousands data are stored in various

databases. In this paper, we resist this threat by MongoDB

server to execute Mql queries over encrypted data, in

CryptMDB, all data will be encrypted by proxy server

firstly, then these ciphertexts of each user will be stored in

MongoDB. MongoDB server only to match corresponding

ciphertexts when it receives the queried requests from proxy

server. So it never gains access to plaintexts of data.

Therefore, MongoDB server cannot get private data of

users.

C. Threat 2: Arbitrary Threats:

In this section, we describe the arbitrary threats, which

means that CryptMDB proxy server and MongoDB server

have been compromised by attackers. In this case, attackers

can get access to the databases and utilize the keys to

encrypt or decrypt user’s data arbitrarily. Compared with the

threat 1, the hazard of threat 2 is more deadly and

dangerous. To prevent user’s data from being leaked to

malicious attackers, we adopt different keys to encrypt data

for each user. Besides, developers pre-annotate the database

schemas to determine which key will be used for each data

set, and these keys only be activated by corresponding users

who are logging in the MongoDB. Thus, even attackers

entire control the proxy and MongoDB server, they just

decrypts the data of current users (who are logging in

MongoDB), other user’s private data do not reveal to

attackers.

D. Cryptographic Tool:

In this paper, an additive homomorphic asymmetric

cryptosystem is adopted. In the CryptMDB, we utilize a

common encrypted tool proposed by Paillier et al. [8] which

can achieve additive operations over encrypted data.

 Pailier Algorithm:

Key generation:

1. Choose two large primes p and q randomly and

independently of each other such that

gcd (pq,(p-1)(q-1))=1. This property is assured if

both primes are of equal length.

2. Compute n=pq and λ=lcm(p-1,q-1).

3. Select random variable g such that g ϵ Zn
2*

4. Ensure n divides the order of g checking the

existence following modular multiplicative

inverse: µ=(L(g
λ
mod n

2
)

-1
mod n, where L function

is defined as: L(x)=

5. The public (encryption) key is (n,g)

6. The private (decryption) key is (λ,µ)

Encryption:

1. Let m be the message to be encrypted 0≤m≤n

2. Select random number r, 0≤r≤n

3. Compute ciphertext as: c=g
m

.r
n
 mod n

2

Decryption:

1. Let be the ciphertext to decrypt, where: c ϵ Zn
2*

2. Compute the plaintext message as:

m=L(c
λ

mod n
2
).µ mod n

Homomorphic properties:

 A notable feature of the Paillier cryptosystem is

its homomorphic properties along with its non

deterministic encryption. As the encryption function is

additively homomorphic, the following identities can be

described:

Homomorphic addition of plaintexts: The product of two

ciphertexts will decrypt to the sum of their corresponding

plaintexts D(E(m1,r1) . E(m2,r2)

mod n
2
)= m1 + m2 mod n

The product of a ciphertext with a plaintext raising g will

decrypt to the sum of the corresponding plaintexts,

D(E(m1,r1) . g
m2

 mod n
2
)= m1 + m2 mod n

Homomorphic multiplication of plaintexts: An encrypted

plaintext raised to the power of another plaintext will

decrypt to the product of the two plaintexts,

D(E(m1,r1)
m2

 mod n
2
)= m1 m2 mod n

D(E(m2,r2)
m1

 mod n
2
)= m1 m2 mod n

III. DESIGN OF CRYPTMDB

In this section, we will introduce the details of CryptMDB.

Before executing Mql queries , we create an encrypted

user’s document in MongoDB as follows:

 > post = {‖Epk(name)‖ : ‖Epk(Harsha)‖,

...‖Epk(age)‖ : Epk(23),

...‖Epk(sex)‖ : ‖Epk(male)‖,

...‖Epk(Location)‖ : ‖Epk(Bengaluru)‖, }

> db.users.insert(post)

Since, pailier Algorithm works on numbers, we convert each

key and value into number format. After pailier algorithm is

applied on those numbers.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 74

Here,

Name(key) is converted to 1851878757.

Harsha(value) is converted to 79583369193569.

Similarly, all other key and value pair converted to number

format as shown above.

For the convenience of description, there we use Epk(mi) to

denote the ciphertext of mi. According to the encrypted tool

mentioned above, a cipheretext document is created and sent

to MongoDB server by proxy server as follows:

{ "_id" : ObjectId("5ace6cd1b1ea970474a64577"),

"17880361333142338130021354392805348986976264811

809606259554383446104795902795814091831592482288

630009245635590394901334290760360963450319165884

767178680242901981185158101449176257608510402252

717360295305135111398630730615334263963860103187

753260313479014903156121675735477952857270449030

407620254028231148008" :

"22381110553932608687818338184962220349675534160

225164879694566710563068099667685685888268347913

744327296320010753438453669098185125086839281992

423323785023310203324987832969647295109544277812

277198687806669377508979196050073674892414460565

836121486576263728705815926155443258437426921635

872388808134801392966",

"16170122257890772960153143187894865712000403780

853419726571750118305651248973845835127374779527

753780721181943267336771745406213604256263318087

884235296305162687149176123594512090629923634394

362052711643038310249202815938137213896771642079

151756206339189880185346787348652423671855076676

468489765306329903305" :

"16397646801038108864807494747918362839201960234

196646592949716734522411238371846808582568736148

809460188450616603289324242514799883805090011854

307993292933234393395770753674735925232081041676

788945113700306092198201221663641338479826755585

050090326589216994455194231407002305816038094399

146696020097258896169",

"79000193997077946529721920215651428129302888590

793980140831114058063752882650845231486550444543

294184372123240017358133016163972580985770778464

032521524107978996221751199088327583319512287221

925156005785878806532417959140915505284125466859

194901252463428789174850177113720669224143312844

96668630024254585236" :

"26054346867392485882595058538145247010327670004

932600081222597259775785431537405764360219513151

451242414687116130077641812201486777745587064215

572101387787069068962290110241910691123070783175

564859208559902992943976660917280807643402180469

628250879282928820013279867095003048814253346961

805689570464273031498",

"36825062527421293448663208928987121808804033369

959589110356558252597272208889072753062350576554

136808153532127287203364481289237161835805322352

834452031809605974258321949117006947805241065740

057940438236331606236256633804872344912787066799

174251212935901478999650404935785179102365538571

51527275666049119270" :

"25660265960004634490946841429023377320199927686

282477577611102984234658029276766910456229267364

998528070030740349305832564310715232354441991550

246005540888493376807021759437764774147394087403

707842242093588538122406886974773798118146765813

000395979357652671862483710859001189646098123255

342098508909066703283"}

where the id is a identifier of each document assigned by

MongoDB automatically. Because the key lengths we adopt

are 512 bits, so the lengths of ciphertexts are fairly long..

A. Insert Document :

As mentioned above, user’s data will be encrypted by proxy

server before executing Mql queries. If we need to add some

new information in MongoDB, such as insert a ‖favorite

book‖ to user’s document, user’s computers firstly send a

insert Mql request to proxy server as follows:

>db.users.update({‖id‖:ObjectId(‖5ace6cd1b1ea970474a64

577‖)},

 ...{‖$set‖ : { ‖favorite book‖ : ‖Wings of Fire‖}})

Then this Mql request will be rewritten by proxy server as

follows:

>db.users.update({‖id‖:ObjectId(‖5ace6cd1b1ea970474a64

577‖)},

...{‖$set‖ : {Epk(‖favorite book‖) : Epk(‖Wings of Fire‖)}

Next, proxy server delivers the rewritten Mql request to

MongoDB server. Finally, MongoDB server queries over

encrypted data and insert Epk (f avorite book) information

to corresponding user’s document.

B. Query Document:

Similarly, in CryptMDB, if users want to query some

document information encrypted in MongoDB, users should

send a Mql query to MongoDB proxy server firstly, then

this Mql query will be rewritten and sent to MongoDB. For

example, f avorite book information have been inserted in

user’s document above, we can use a Mql query to check

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 75

whether this information has been stored in MongoDB.

Firstly, user sends a Mql query to proxy server as follows:

> db.users.find({‖name‖:‖Harsha‖, ‖age‖ : 23})

Then this Mql query will be rewritten as follows:

 >db.users.find({‖178803‖:‖163976‖,‖161701‖:163976})

We can see that all the Mql queries of plaintexts are

encrypted by proxy server, then these Mql requests are sent

to MongoDB server, which only to execute the Mql query of

ciphertexts over encrypted data, and return corresponding

results to proxy server as follows:

{‖ id‖:ObjectId(‖5ace6cd1b1ea970474a64577‖),

‖178803‖:‖223811‖,

‖161701‖:163976 ,

‖790001‖:‖260543‖,

‖368250‖:‖256602‖,

‖254881‖:‖209542‖,}

Here ‖ 254881‖: ‖ 209542‖ denotes the ciphertexts of

‖favorite book‖:‖ Wings of Fire‖. Finally, the proxy server

decrypts the ciphertexts and returns the plaintexts to

authorised users.

C. Update Document:

In CryptMDB, all Mql requests are encrypted by the proxy

server, to the users, they execute Mql queries over

CryptMDB without difference compared with unmodified

MongoDB. So, as a user, if he want to modify some

information which have been stored in CryptMDB(such as

the ages of Harsha), a normal Mql request will be sent to the

proxy server:

> db.users.update({‖name‖:‖Harsha‖}

...{‖$set‖ : {‖age‖ : 25}})

Then this request is encrypted by the proxy server as

follows:

> db.users.update({‖178803‖:‖223811‖}

 ...{‖$set‖ : {‖161701‖ : 209795}})

where 161701denotes the ciphertexts of ages. Next, the

proxy server sends the Mql request to MongoDB server

which executes the ciphertext orders. Finally, the ages of

Harsha will be changed.

D. Remove Document:

Data stored in CryptMDB may be outdated or inaccurate

sometimes, in this case, we can utilize the Mql queries to

delete these data. Similarly, as mentioned above, if Harsha

want to delete his age information, he should send a Mql

request to proxy server as follows:

> db.users.remove({‖age‖:23})

Then the proxy server rewrites the order as follows:

> db.users.remove({‖161701‖:163976 })

E. Aggregation Operation:

In this paper, we adopt an additive homomorphic

asymmetric cryptosystem which can achieve additive

operations over encrypted data, such summation, average,

count, etc. For example, we create several user’s documents

in CryptMDB, utilizing aggregate orders provided by

MongoDB to add the ages of all users. Similarly, users send

Mql requests to the proxy server as follows:

 > db.users.aggregate([{$group : { id : ‖sex‖, num_total

: {$sum : $age}}}])

Then this Mql request will be rewritten by the proxy server

as follows:

> db.users.aggregate([{$group : { id : ‖790001‖, num_total:

{$sum : $161701}}}])

This is going to return the appropriate results and the reason

of additive encrypted tool we adopt, we can utilize the

aggregate order installed in MongoDB to execute average,

count, and many other aggregate operations.

IV. SECURITY ANALYSIS

A. Confidentiality of Users’ Data :

As mentioned before, there has two security threats in

CryptMDB. For the threat 1, the MongoDB server is

supposed to honest but curious, which can utilize the

computing power to infer the user’s information when it

executes the Mql queries. But in CryptMDB, all data are

encrypted by the proxy server before storing in MongoDB,

besides, user’s Mql requests also are encrypted before

sending to MongoDB server. Therefore, the tasks of

MongoDB server are to execute the encrypted Mql queries

over encrypted data, and returns the matching ciphertexts to

corresponding users, which cannot deduce any information

of plaintexts. Thus, the confidentiality of user’s data can be

protected well in CryptMDB.

B. Resist Arbitrary Threat

For the threat 2, when the MongoDB server and proxy

server are compromised by attackers, they can use the proxy

server to encrypt ciphertexts returned by MongoDB server

and get the plaintexts. For this case, we adopt different keys

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 76

to encrypt each user’s information in CryptMDB. In this

way, user’s keys only be activated by user logged in

MongoDB at that time. Thus, although the proxy server and

MongoDB server have been compromised by attackers, they

only can steal the information from current users, and other

user’s data (which are not logging in MongoDB) do not

reveal to any attacker.

V. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of

CryptMDB by comparing with MySQL in terms of insert,

query, update, remove, and aggregation operations. For the

authority of experiment, the same encryption tool is used in

MySQL. Besides, all the experimental procedures are

performed on an Intel Core i5 3.2GHZ system.

Fig. 2: Total running times. (a) For the different number

of inserted data. (b) For the different number of queried

data.

Fig. 3: Running time. (a) For the different number of

updated data. (b) For the different number of removed

data. (c) For the different number of data need to

summation.

A. Insert Operations

As shown in Fig. 2.(a), we can see that the MySQL and

CryptMDB are inserted users’ records from 10000 to

100000 respectively. The results shows that CryptMDB has

higher insertion speed compared with MySQL. For

example, when the number of inserted data reach 100000,

the CryptMDB only takes 21.513s to complete inserted

operations while MySQL needs 111.025 to finish the same

operations.

B. Query Operations

Similarly, Fig. 2.(b) shows that the running times with

different number of queried data, from the picture it is

obvious that the CryptMDB has stronger queried ability

compared with MySQL. For example, when the number of

queried data reach 100000, the total running times of

MySQL rapidly up to 27.884s but CryptMDB only takes

0.064s.

C. Update Operations

As shown in Fig. 3.(a), with the increase of user’s data, it is

easy to find that the running time of two databases both are

increased quickly. But compared with MySQL, we can see

that the updated performance of CryptMDB is better than

MySQL, one of the major reasons is that the strong ability

of CryptMDB to achieve large scale data access and

calculating. Thus, it can conduct updated operations by

combing other servers to improve the execution speed. For

example, when the number of updated data reach 100000,

MySQL need 133.821s to execute all the sql requests but

CryptMDB only takes 22.513s to achieve the same tasks.

D. Remove Operations

Similarly, we also analyze the removed performance of

CryptMDB by comparing with MySQL in same

experimental environment. As shown in Fig. 3.(b), we

remove the users’ data from 10000 to 100000 orderly, it is

not difficult to find that CryptMDB has higher performance

to remove user’s information, especially when users’ data

are huge.

E. Aggregation Operations

Because an additive homomorphic asymmetric

cryptosystem is adopted in this paper, we evaluate the

aggregation ability of two databases. As mentioned before,

although all the user’s data are stored in database in the

form of ciphertexts, we also can execute some aggregation

operations such as summation, average, count, etc. In this

section, we take the summation as a example. Fig. 3.(c)

shows that the running times with different number of data

need to summation, because the strong ability of distributed

data processing, it is undoubted that the CryptMDB has

lower running time to achieve same operations compared

with MySQL.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 6, June 2018

 77

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a practical encrypted MongoDB

(i.e., CryptMDB) to achieve the privacy protection of user’s

data stored in database. The key idea of the CryptMDB is

utilizing an additive homomorphic asymmetric

cryptosystem to encrypt user’s data. Security analysis

demonstrates that the cryptMDB can achieve strong privacy

protection for user’s data and prevent adversaries from

illegally gaining access to the database. Future works

include: 1. Incorporate all the dynamic operations

supported by mongo DB into our portal. 2. Integrate our

portal with cloud service providers. 3. restoration

techniques to get back the encrypted data in CryptMDB

deleted by unauthorized person.

REFERENCES

[1] Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, O.

Zahn, M. J. Franklin, D. A. Patterson, and S. Perlmutter,

―Kira: Processing astronomy imagery using big data

technology,‖ IEEE Transactions on Big Data, 2016.

[2] J. Chen, Q. Jiang, Y. Wang, and J. Tang, ―Study of data

analysis model based on big data technology,‖ in IEEE

International Conference on Big Data Analysis (ICBDA),

March 2016, pp. 1–6.

[3] https://dzone.com/articles/when-use-mongodb-rather-

mysql

[4] http://people.csail.mit.edu/nickolai/papers/raluca-

cryptdb.pdf

[5] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H.

Balakrishnan, ―Cryptdb: Protecting confidentiality with

encrypted query processing,‖ in Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles.

ACM, 2011, pp. 85–100.

[6] Deshmukh, A. Pasha, and D. Qureshi, ―Transparent data

encryption solution for security of database contents,‖

International Journal of Advanced Computer Science and

Applications, vol. 2, no. 3, pp. 25– 28, March 2011.

[7] R. A. Popa, N. Zeldovich, and F. H. Li, ―An ideal-

security protocol for order-preserving encoding,‖ in IEEE

Symposium on Security and Privacy. IEEE, 2013, pp. 463–

447.

[8] https://en.wikipedia.org/wiki/Paillier_cryptosystem

