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Abstract: - Frequent Pattern Mining (FPM) is one of the most well-known techniques to extract frequent patterns from data. It 

plays an important role in association rule mining, finding correlations and trends etc. Finding Frequent Patterns becomes a very 

difficult task when they are applied to Big Data. Many researchers have proposed many algorithms to generate FIM, but the 

execution time and storage space plays a key difference .All the existing algorithms hold well only when the dataset is small. So 

there is a need to propose an efficient algorithm to find frequent itemsets from Big Dataset using constraints. In almost all FPM 

algorithms, Frequent 1-itemsets are generated to find the support count (occurrences) of each item in the entire database In order 

increase the efficiency of generating FIM, cache is introduced so that the support count can be calculated in the cache itself. For 

this a Modified Map Reduce algorithm has been proposed. 
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I. INTRODUCTION  

FPM means finding patterns (Itemset, sequence, 

structure, etc.) that occurs frequently in a data set. FPM 

helps us to identify the relationships or correlations 

between items in the dataset. For example, a set of items, 

such as paint and brush, which appear frequently together 

in a transaction data set, is a Frequent Itemset[1]. This 

information helps the shop keeper to arrange these 

frequent items together which will induce paint  buyer to 

buy brush. Another example is Frequent Pattern 

discovery from Web Log data which helps to identify the 

navigational behaviors of the users. Consider the 

scenario, such as buying first a PC, then a Data Card, and 

then a Pen Drive, and if this pattern occurs frequently in a 

shopping history database, then that pattern is a frequent 

sequential pattern. Types of FPM are shown in Figure 1. 

 
Figure 1.Types of  FPM 

 

Sequential Pattern Mining: It is concerned with finding 

statistically relevant patterns between data examples 

where the values are delivered in a sequence. The mining 

process finds frequent subsequences from a set of 
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sequential data set, where a sequence records an ordering 

of events. 

FIM: Extracting sets of products that are frequently 

bought together. It aims at finding regularities in the 

shopping behavior of customers of supermarkets, mail-

order companies, on-line shops, etc. 

 

Structured Pattern Mining: The mining process searches 

for frequent substructures in a structured data set. A 

structure is defined as a general concept that covers many 

structural forms, such as graphs, lattices, trees, 

sequences, sets, single items, or combinations of such 

structures. 

 

II. PRESENTED SYSTEM: 

 

FPM has proved to be one of the promising fields in 

carrying out the research work because of its wide use in 

all Data Mining tasks such as clustering, classification, 

and prediction and association analysis. Mining frequent 

itemsets enables humans to take better decisions in a 

wide range of applications including market basket 

analysis, traffic signals analysis and in Bioinformatics 

identify frequently co-occurring protein domains in a set 

of proteins[2]. Many researchers have proposed many 

algorithms to generate FIM, but the execution time and 

storage space plays a key difference in different 

algorithms means there is no efficiency of generating 

FIM. 

 

III. PROPOSED SYSTEM 

 

Modified MapReduce algorithm has been proposed. In 

this algorithm cache has been included in the Map phase 

to maintain support count tree for calculating the 

frequent-1 itemset of each mapper[3]. This reduces the 

total time of calculating Frequent-1 itemsets since it 

bypasses the shuffle, sort and the combine task of each 

Mapper in the original MapReduce tasks. This in-turn 

reduces the execution time of generating Frequent 

Itemsets of the entire database. 

 

The flow chart of this algorithm is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Flow Chart for FIM using Modified 

MapReduce 

 

The initial step of frequent itemset generation is to 

generate Frequent 1-itemsets for the given database. For 

this support count tree algorithm has been proposed 

which is explained in detail in further section it has been 

shown how MapReduce is used to find frequent 1-

itemsets and to generate frequent itemsets using 

constraints[4]. To increase the efficiency of map reduce 

task a cache has been included in the map phase to 
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maintain support count tree for calculating the frequent-1 

itemset of each mapper which is shown in Figure 3. As 

the data in cache can be quickly fetched it reduces the 

total time of calculating 

Frequent-1 itemsets, since it bypasses the shuffle, sort 

and the combine task of each Mapper in the original 

MapReduce tasks. 

 
Figure 3. Proposed Architecture of MapReduce for 

generating frequent 1-itemsets 

 

IV. MODIFIED MAPREDUCE 

 

In each map function for finding the support count of 

each item the support count tree code has been 

embedded. The tree is stored in cache. As the items are 

read from the transaction database, it becomes easier to 

fetch the respective items data, as it is stored in the 

cache[8]. Thus at the end of map phase, the support count 

of each item is calculated by bypassing the sort and 

combine phase of the original MapReduce tasks which is 

shown in Figure 4 and Figure 5. The output of each 

Mapper is then given to the Reducer which finds the 

cumulative Frequent-1 itemsets of all mappers belonging 

to the same Data Node. The output is then stored in 

HDFS. In HDFS the outputs of the all the reducers are 

aggregated which gives the Frequent -1 Itemsets of the 

entire database. 

 
Figure 4.Flow Diagram of Map Reduce Task 

 

 

 

 

 
Figure 5 .Flow Diagram of Modified Map Reduce Task 

Thus using cache and Support count tree the support 

count of each item is calculated quickly without 

undergoing sorting and combining steps[5]. Hadoop 

combiners require all map outputs to be serialized, sorted, 

and possibly written to disk. To overcome this, a cache 

has been introduced to store the frequent 1-itemset 

values. 

Table1. Transaction Database 2 

 

 
If the transaction database is given the item number, then 

the support count tree can be formed immediately. If not 

each item has to be numbered and then the support count 

tree has to be formed[9]. After finding the support count 

each item name has to be mapped to the item name and 

an example is shown below: 

Table2. Numbering each item 

 
Next step is to form a support count tree. A support count 

tree for the above Table 2.is shown in Figure 5. 
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Figure 6. Support Count Tree 

Each node in the support count tree has a count value 

associated with it. This gives the frequent 1-itemset of 

each item. Items whose support count is less than the 

minimum support threshold are removed and a Support 

Count Table (SCT) is formed which is shown in table 3. 

Table 3 Support Count Table 

 
 

V. RESULTS 

 

The dataset which is being considered is T10I4D100K 

[36]. It contains 100,000 transactions of 3.93 MB with 

999 different items. Each unique item in the dataset is 

considered as a node in the support count tree which has 

four attributes namely the name, count value, left link 

and the right link. The cache sizes for storing various 

numbers of items are given in Figure 7. 

 
Figure7. Cache size required for storing different 

number of items 

From Figure 8 and Table 4, it is clearly shown that the 

execution time to generate Frequent Itemsets using 

modified MapReduce is less when compared to the 

original MapReduce method[6]. The graph clearly shows 

that as the number of cores increases the execution time 

decreases considerably because the database is split 

evenly among the cores. So each core has fewer amounts 

of transactions to find frequent itemsets as the number of 

cores are increased. This in turn reduces the total 

execution time. 

Table 4.Comparison of MapReduce and Modified 

MapReduce with respect to the execution time 

 

 
 

 

 
Figure8. Performance Comparison of MapReduce and 

Modified MapReduce 

 

The database can be a single file or it can be from 

multiple files. If cumulative frequent itemsets are to be 

generated from multiple files that can also be done by 

appending the second file with the first file and the rest of 

the procedure is the same[7]. Two files namely 

T10I4D100K and T10I4D1000K have been considered. 

These two files are merged into a single file. Cumulative 

frequent itemsets for 1100000 transactions are generated 

which is shown in Figure 9. 
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Figure9. Performance Comparison of MapReduce and 

Modified MapReduce for merged files 

 

VI. CONCLUSIONS 

 

In this paper we proposed a Modified Map Reduce 

algorithm in order increase the efficiency of generating 

FIM. In terms of memory as well as in execution speed, 

tree based Pattern growth algorithm is considered more 

most efficient than the other Frequent Itemset Mining 

(FIM) methods. Another important thing which is to be 

considered in Frequent Itemset Mining is that it often 

generates a very large number of itemsets, which reduces 

not only the efficiency but also the effectiveness of 

mining. So Constraint-based FIM has been proved to be 

effective in reducing the search space in the FIM task and 

thus improves the efficiency. In addition to this, in almost 

all Frequent Pattern Mining algorithms generates 

frequent 1-itemsets inorder to find the support count 

(occurrences) of each item in the entire transactions. 

Modified MapReduce algorithm has been proposed. In 

this algorithm cache has been included in the Map phase 

to maintain support count tree for calculating the 

frequent-1 itemset of each mapper. This reduces the total 

time of calculating Frequent-1 itemsets since it bypasses 

the shuffle, sort and the combine task of each Mapper in 

the original MapReduce tasks. This in-turn reduces the 

execution time of generating Frequent Itemsets of the 

entire database. 
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