

 471

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018
 Modified Map Reduce Algorithm for Frequent

Itemset Mining in Big Data

[1]
 K.Premchander,

[2]
 S.S.V.N.Sarma,

[3]
 Dr.S.Nagaprasad

 [1]
 Research Scholar-Dravidian University, Kuppam, Andhra Pradesh

[2]
 Professor of CSE, Dept.of CSE, Vaagdevi College of Engineering, Warangal, Telangana State,

[3]
 Faculty of Computer Science, Dept. Of Computer Science, S.R.R.Govt.Arts & Science College, Karimnagar,

Telangana State.

Abstract: - Frequent Pattern Mining (FPM) is one of the most well-known techniques to extract frequent patterns from data. It

plays an important role in association rule mining, finding correlations and trends etc. Finding Frequent Patterns becomes a very

difficult task when they are applied to Big Data. Many researchers have proposed many algorithms to generate FIM, but the

execution time and storage space plays a key difference .All the existing algorithms hold well only when the dataset is small. So

there is a need to propose an efficient algorithm to find frequent itemsets from Big Dataset using constraints. In almost all FPM

algorithms, Frequent 1-itemsets are generated to find the support count (occurrences) of each item in the entire database In order

increase the efficiency of generating FIM, cache is introduced so that the support count can be calculated in the cache itself. For

this a Modified Map Reduce algorithm has been proposed.

Keywords: Frequent Pattern Mining, Frequent Itemset Mining, Data Mining, Map Reduce Algorithm.

I. INTRODUCTION

FPM means finding patterns (Itemset, sequence,

structure, etc.) that occurs frequently in a data set. FPM

helps us to identify the relationships or correlations

between items in the dataset. For example, a set of items,

such as paint and brush, which appear frequently together

in a transaction data set, is a Frequent Itemset[1]. This

information helps the shop keeper to arrange these

frequent items together which will induce paint buyer to

buy brush. Another example is Frequent Pattern

discovery from Web Log data which helps to identify the

navigational behaviors of the users. Consider the

scenario, such as buying first a PC, then a Data Card, and

then a Pen Drive, and if this pattern occurs frequently in a

shopping history database, then that pattern is a frequent

sequential pattern. Types of FPM are shown in Figure 1.

Figure 1.Types of FPM

Sequential Pattern Mining: It is concerned with finding

statistically relevant patterns between data examples

where the values are delivered in a sequence. The mining

process finds frequent subsequences from a set of

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

 472

sequential data set, where a sequence records an ordering

of events.

FIM: Extracting sets of products that are frequently

bought together. It aims at finding regularities in the

shopping behavior of customers of supermarkets, mail-

order companies, on-line shops, etc.

Structured Pattern Mining: The mining process searches

for frequent substructures in a structured data set. A

structure is defined as a general concept that covers many

structural forms, such as graphs, lattices, trees,

sequences, sets, single items, or combinations of such

structures.

II. PRESENTED SYSTEM:

FPM has proved to be one of the promising fields in

carrying out the research work because of its wide use in

all Data Mining tasks such as clustering, classification,

and prediction and association analysis. Mining frequent

itemsets enables humans to take better decisions in a

wide range of applications including market basket

analysis, traffic signals analysis and in Bioinformatics

identify frequently co-occurring protein domains in a set

of proteins[2]. Many researchers have proposed many

algorithms to generate FIM, but the execution time and

storage space plays a key difference in different

algorithms means there is no efficiency of generating

FIM.

III. PROPOSED SYSTEM

Modified MapReduce algorithm has been proposed. In

this algorithm cache has been included in the Map phase

to maintain support count tree for calculating the

frequent-1 itemset of each mapper[3]. This reduces the

total time of calculating Frequent-1 itemsets since it

bypasses the shuffle, sort and the combine task of each

Mapper in the original MapReduce tasks. This in-turn

reduces the execution time of generating Frequent

Itemsets of the entire database.

The flow chart of this algorithm is given in Figure 2.

Figure 2. Flow Chart for FIM using Modified

MapReduce

The initial step of frequent itemset generation is to

generate Frequent 1-itemsets for the given database. For

this support count tree algorithm has been proposed

which is explained in detail in further section it has been

shown how MapReduce is used to find frequent 1-

itemsets and to generate frequent itemsets using

constraints[4]. To increase the efficiency of map reduce

task a cache has been included in the map phase to

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

 473

maintain support count tree for calculating the frequent-1

itemset of each mapper which is shown in Figure 3. As

the data in cache can be quickly fetched it reduces the

total time of calculating

Frequent-1 itemsets, since it bypasses the shuffle, sort

and the combine task of each Mapper in the original

MapReduce tasks.

Figure 3. Proposed Architecture of MapReduce for

generating frequent 1-itemsets

IV. MODIFIED MAPREDUCE

In each map function for finding the support count of

each item the support count tree code has been

embedded. The tree is stored in cache. As the items are

read from the transaction database, it becomes easier to

fetch the respective items data, as it is stored in the

cache[8]. Thus at the end of map phase, the support count

of each item is calculated by bypassing the sort and

combine phase of the original MapReduce tasks which is

shown in Figure 4 and Figure 5. The output of each

Mapper is then given to the Reducer which finds the

cumulative Frequent-1 itemsets of all mappers belonging

to the same Data Node. The output is then stored in

HDFS. In HDFS the outputs of the all the reducers are

aggregated which gives the Frequent -1 Itemsets of the

entire database.

Figure 4.Flow Diagram of Map Reduce Task

Figure 5 .Flow Diagram of Modified Map Reduce Task

Thus using cache and Support count tree the support

count of each item is calculated quickly without

undergoing sorting and combining steps[5]. Hadoop

combiners require all map outputs to be serialized, sorted,

and possibly written to disk. To overcome this, a cache

has been introduced to store the frequent 1-itemset

values.

Table1. Transaction Database 2

If the transaction database is given the item number, then

the support count tree can be formed immediately. If not

each item has to be numbered and then the support count

tree has to be formed[9]. After finding the support count

each item name has to be mapped to the item name and

an example is shown below:

Table2. Numbering each item

Next step is to form a support count tree. A support count

tree for the above Table 2.is shown in Figure 5.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

 474

Figure 6. Support Count Tree

Each node in the support count tree has a count value

associated with it. This gives the frequent 1-itemset of

each item. Items whose support count is less than the

minimum support threshold are removed and a Support

Count Table (SCT) is formed which is shown in table 3.

Table 3 Support Count Table

V. RESULTS

The dataset which is being considered is T10I4D100K

[36]. It contains 100,000 transactions of 3.93 MB with

999 different items. Each unique item in the dataset is

considered as a node in the support count tree which has

four attributes namely the name, count value, left link

and the right link. The cache sizes for storing various

numbers of items are given in Figure 7.

Figure7. Cache size required for storing different

number of items

From Figure 8 and Table 4, it is clearly shown that the

execution time to generate Frequent Itemsets using

modified MapReduce is less when compared to the

original MapReduce method[6]. The graph clearly shows

that as the number of cores increases the execution time

decreases considerably because the database is split

evenly among the cores. So each core has fewer amounts

of transactions to find frequent itemsets as the number of

cores are increased. This in turn reduces the total

execution time.

Table 4.Comparison of MapReduce and Modified

MapReduce with respect to the execution time

Figure8. Performance Comparison of MapReduce and

Modified MapReduce

The database can be a single file or it can be from

multiple files. If cumulative frequent itemsets are to be

generated from multiple files that can also be done by

appending the second file with the first file and the rest of

the procedure is the same[7]. Two files namely

T10I4D100K and T10I4D1000K have been considered.

These two files are merged into a single file. Cumulative

frequent itemsets for 1100000 transactions are generated

which is shown in Figure 9.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

 475

Figure9. Performance Comparison of MapReduce and

Modified MapReduce for merged files

VI. CONCLUSIONS

In this paper we proposed a Modified Map Reduce

algorithm in order increase the efficiency of generating

FIM. In terms of memory as well as in execution speed,

tree based Pattern growth algorithm is considered more

most efficient than the other Frequent Itemset Mining

(FIM) methods. Another important thing which is to be

considered in Frequent Itemset Mining is that it often

generates a very large number of itemsets, which reduces

not only the efficiency but also the effectiveness of

mining. So Constraint-based FIM has been proved to be

effective in reducing the search space in the FIM task and

thus improves the efficiency. In addition to this, in almost

all Frequent Pattern Mining algorithms generates

frequent 1-itemsets inorder to find the support count

(occurrences) of each item in the entire transactions.

Modified MapReduce algorithm has been proposed. In

this algorithm cache has been included in the Map phase

to maintain support count tree for calculating the

frequent-1 itemset of each mapper. This reduces the total

time of calculating Frequent-1 itemsets since it bypasses

the shuffle, sort and the combine task of each Mapper in

the original MapReduce tasks. This in-turn reduces the

execution time of generating Frequent Itemsets of the

entire database.

REFERENCES

1. Agrawal, R. and Shafer, J. C. "Parallel Mining of

Association Rules", IEEE Transaction on Knowledge and

Data Eng. , Vol. 8, No. 6, pp. 962- 96, 1996.

2. Agrawal, R. and Srikanth, R. “Fast algorithm for

mining association rules”, International conference on

Very large databases, 1994.

 3. Alzoubi, W. A., Abu, Bakar, A. and Omar, K.

“Scalable and Efficient Method for Mining Association

Rules” International Conference on Electrical

Engineering and Informatics, pp. 5-7, 2009.

4. Bakshi, K. “Considerations for Big Data: Architecture

and approach”, in Aerospace conference, IEEE

Aerospace Conference, pp. 1-7, 2012.

5. Banga, Devender and Cheepurisetti, S. “Proxy Driven

FP growth based Prefetching”, International Journal of

Advances in Engineering and Technology, 2014.

6. Do, T. D., Hui, S. C. and Fong, A. C. M. “Mining

FequentItemsets with Category-Based Constraints”, In

the proceedings of 6th International Conference on

Discovery Science, 2003.

7. Dong, Jie and Han, M. “BitTableFI: An efficient

mining frequent itemsets algorithm”, Knowledge based

Systems, Elsevier, 2006.

8. Duggal, Puneet, Singh and Paul, S. “Big Data

Analysis: Challenges and Solutions” in International

Conference on Cloud, Big Data and Trust, RGPV, pp.

269-276, 2013.

9. Elteir, M., Lin, H. and Chun, Feng, W. “Enhancing

MapReduce via asynchronous data Processing” in IEEE

16th International Conference on Parallel and Distributed

Systems, pp. 397–405, 2010.

