

SSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

 38

Run Time Investigation of Android Application

[1]
 T. A. MohanaPrakash,

[2]
 K. Sathyamoorthy,

[3]
 M. Jijendira Prasath

[1][2]
 Associate Professor, Department of Computer Science and Engineering, Panimalar Institute of Technology,

391, Bangalore Trunk Road
[3]

 Student, Department of Computer Science and Engineering, Panimalar Institute of Technology, 391, Bangalore Trunk

Road

Abstract- Since Modern computing systems are adopted with Android operating systems there always a Need for runtime analysis

in android, to reduce the gap of suitability with the real-time environments of android. It uses an agreement-based security model

to prevent malware from accessing private data and prerogatives. Android universe dominates the many solutions that bear no

resemblance. Underlying operating systems requires the analysis of the software platform, with the virtual machines. This paper

also presents Android, a variation of Android that aims to provide real-time capabilities to Android as a whole system and the

design AppAudit, an efficient analysis framework that can deliver high detection accuracy with significantly less time and memory.

This paper presents a new architecture for scheduling and managing time and accuracy.

Keywords: Android, real-time environment, mobile applications, embedded systems.

I. INTRODUCTION

The Android OS Oh et.al,[4] is an operating system

designed for mobile platforms by Google. Android Cláudio

Maia et.al, 2010[1] was made available publicly during the

fall of 2008. Android is gaining strength both in the mobile

industry and in other industries with different hardware

architectures. The increasing interest from the industry

arises from two core aspects, one is its open source nature

another one is its Architectural model. Its Linux kernel-

based architecture model also adds the use of Linux to the

mobile industry, because of its architecture nature the

knowledge and features offered by Linux are gained by

android. Another important aspect is Android’s own Virtual

Machine (VM) environment. Android applications are Java-

based. It also supports multiple real-time applications. First

analyze the real-time capabilities of Android and identify

limitation, then propose and implement redesigns of several

internal components of Android to provide real-time

support. Finally, recognize Android components, and its

difficulties to evaluate every aspect of Android. Thus, the

goal for this paper is to identify and redesign core

components central to Android, in order to support the

single real-time application. As a result of this paper

discusses the potential of Android and the implementation

directions to make it possible to be used in Open Real-Time

environments. Wolfgang Mauerer et.al [2] said that the

combined real-time Android system is able to provide

remedies for both, users and programmers of embedded

real-time systems.

II: ANDROID ARCHIETECTURE

Android Wolfgang et.al,[3] is an open-source software

architecture. The Android platform includes an operating

system, middleware and applications. Regarding the

Android Runtime, besides the internal core libraries,

Android provides its own VM, as previously stated, named

Dalvik. Dalvik was designed from scratch and it is

specifically targeted for memory-constrained and CPU

constrained devices. It runs Java applications on top of it

and unlike the standard Java VMs, which are stack-based,

Dalvik is an infinite register-based machine. Being a register

machine, it presents two advantages when compared to

stack-based machines.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

 39

Figure 1. Android Architecture Namely, it requires 30% less

computation time to perform instruction, which is also

derived from the elimination of common expressions from

the instructions. Nevertheless, Dalvik presents 35% more

bytes in the instruction stream than a typical stack machine.

Dalvik uses its own byte-code format name Dalvik

Executable (.dex), with the ability to include multiple

classes in a single file. The bottommost layer and is also a

Hardware abstraction layer that enables the interaction of

the upper layers with the hardware layer via device drivers.

Furthermore, it also provides the most fundamental system

services such as security, memory management, process

management and network stack.

III: METHODILOGIES

In sections contains láudio Maia et.al, 2010[1] four possible

directions to incorporate the desired real-time behavior into

the android architecture. The first approach considers the

system replacement of the Linux operating by one that

provides real-time features and, at the same time, it

considers the inclusion of a real-time VM. The second

approach respects the Android standard architecture by

proposing the extension of Dalvik as well as the substitution

of the standard operating system by a real-time Linux-based

operating system. The third approach simply replaces the

Linux operating system for a Linux real-time version and

real-time applications use the kernel directly. Finally, the

fourth approach proposes the addition of a real-time

hypervisor that supports the parallel execution of the

Android platform in one partition while the other partition is

dedicated to the real-time applications. Regarding the first

approach, depicted in Figure 4, this approach replaces the

standard Linux kernel with a real-time operating system.

This modification introduces predictability and determinism

in the Android architecture. Therefore, it is possible to

introduce new dynamic real-time scheduling policies

through the use of scheduling classes; predict priority

inversion and to have better resource management

strategies. However, this modification entails that all the

device drivers supported natively need to be implemented in

the operating system with predictability in mind. This task

can be painful, especially during the integration phase.

Nevertheless, this approach also leaves space for the

implementation of the required real-time features in the

Linux kernel. Implementing the features in the standard

Linux kernel requires time, but it has the advantage of

providing a more seamless integration with the remaining

components belonging to the architectures involved. The

second modification proposed, within the first approach, is

the inclusion of a real- time Java VM. This modification is

considered advantageous as, with it, it is possible to have

bounded memory management. Real-time scheduling within

the VM, depending on the adopted solution for better

synchronization mechanisms and finally to avoid priority

inversion. These improvements are considered the most

influential in achieving the intended deterministic behavior

at the VM level. It is important to note that the real-time

VM interacts directly with the operating system’s kernel for

features such as task scheduling or bounded memory

management. Advantages: Most of the operations provided

by real-time Java VMs are limited to the integration

between the VM’s supported features and the supported

operating system’s features. Other advantage from this

approach is that it is not necessary to keep up with the

release cycles of Android, although some integration issues

may arise between the VM and the kernel. Disadvantages:

The impact of introducing a new VM is related to the fact

that all the Android specificities must be implemented as

well as decks support in the interpreter. Besides this is

advantage, other challenges may pose such as the

integration between both VMs. This integration possibly

entails the formulation of new algorithms to optimize

scheduling and memory management in order to be possible

to have an optimal integrated system as a whole and also to

treat real-time applications in the correct manner. The

second proposed approach, presented in Figure 5, also

introduces modifications in the architecture both in the

operating system and virtual machine environments. As for

the operating system layer, the advantages and

disadvantages presented in the first approach are considered

equal, as the principle behind it is the same. The major

difference lies on the extension of Dalvik with real-time

capabilities based on the Real-Time Specification for Java

(RTSJ). By extending Dalvik with RTSJ features we are

referring to the addition of the following API classes:

RealTimeThread, NoHeapRealTimeThread, as well as the

implementation of generic objects related to real-time

scheduling and memory management such as Scheduler and

Memory Areas. All of these objects will enable the

implementation of real-time garbage collection algorithms,

synchronization algorithms and finally, asynchronous event

handling algorithms. However, its implementation only

depends on the extent one wishes to have, meaning that a

full compliant implementation may be achieved if the

necessary implementation effort is applied in the VM

extensions and the operating system’s supported features.

This extension is beneficial for the system as with it, it is

possible to incorporate a more deterministic behavior at the

VM level without the need of concerning about the

particularities of Dalvik. Disadvantage: Having to keep up

with the release cycles of the Android, especially the VM

itself, if one wants Figure 5. Android Extended to add these

extensions to all the available versions of the platform. Two

examples of this direction are the work in states that the

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

 40

implementation of a resource management framework is

possible in the Android

Platform with some modifications in the platform. Although

the results presented in this work are based on the CFS

scheduler, work is being done to update the scheduler to a

slightly modified version of EDF that incorporates

reservation based scheduling algorithms. The third proposed

approach, depicted in Figure 6, is also based in Linux real-

time. This approach takes advantage of the native

environment, where it is possible to deploy real-time

applications directly over the operating system. This can be

advantageous for applications that do not need the VM

environment, which means that a minimal effort will be

needed for integration, while having the same intended

behavior. On the other hand, applications that need a VM

environment will not benefit from the real-time capabilities

of the underlying operating system. Finally, the fourth

approach, employs a real-time hypervisor that is capable of

running Android as a guest operating system in one of the

partitions and real-time applications in another partition, in a

parallel manner. This approach is similar to the approach

taken by the majority of the current real-time Linux

solutions, such as RTLinux or RTAI. These systems are

able to run real-time applications in parallel to the Linux

kernel, where the real-time tasks have higher priority than

the Linux kernel tasks, which means that hard real-time can

be used. On the other hand, the Linux partition tasks are

scheduled using the spare time remaining from the CPU

allocation. Disadvantage: The main drawback from this

approach is that real-time applications are limited to the

features offered by the real-time hypervisor, meaning that

they cannot use Dalvik or even most of the Linux services.

Other limitation known lies on the fact that if a real-time

application hangs, all the system may also hang.

IV: RTDROID ARCHIETECTURE

In Yin et.al,[4] order to provide real-time support in all three

layers depicted in, we advocate a clean-slate redesign of

Android in Figure.2 Our redesign starts from the ground up,

leveraging an established RTOS (e.g., RT Linux or

RTEMS) and an RT JVM (e.g., Fiji VM). Upon this

foundation we build Android compatibility. In other words,

our design provides a faithful illusion to an existing Android

application running on our platform that it is executing on

Android.

Figure 2. RTDroid Architecture This entails providing the

same set of Android APIs as well as preserving their

semantics for both regular Android applications and real-

time applications. For real-time applications, Android

compatibility means that developers can use standard

Android APIs in addition to a small number of additional

APIs our platform provides to support real-time features.

These additional APIs provide limited Real-Time

Specification for Java (RTSJ) Claudio Maia et.al,2010[1]

support without scoped memory. This goal of providing

Android compatibility makes our architecture unique and

different from potential architecture.

V: SUSTAINABILITY

This section discusses the suitability of Android for open

embedded real-time systems, Cláudio Maia et.al, 2010[1]

analyses its architecture internals and points out its current

limitations. Android was evaluated considering the

following topics: Its VM environment, the underlying Linux

kernel, Its resource management capabilities. Dalvik VM is

capable of running multiple independent processes, each one

with a separate address space and memory. Therefore, each

Android application is mapped to a Linux process and able

to use an inter-process communication mechanism, based on

Open-Binder, to communicate with other processes in the

system. The ability of separating each process is provided

by Android’s architectural model. During the device’s boot

time, there is a process responsible for starting up the

Android’s runtime, which implies the startup of the VM

itself. Inherent to this step, there is a VM process, the

Zygote, responsible for the pre-initialization and pre-loading

of the common Android’s classes that will be used by most

of the applications. Afterwards, the Zygote opens a socket

that accepts commands from the application framework

whenever a new Android application is started. This will

cause the Zygote to be forked and create a child process

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

 41

which will then become the target application. Zygote has

its own heap and a set of libraries that are shared among all

processes, whereas each process has its own set of libraries

and classes that are independent from the other processes.

This model is presented in Figure 2. The approach is

beneficial for the system as, with it, it is possible to save

RAM and to speed up each application startup process.

Figure 8. Zygote Heap Android applications provide the

common synchronization mechanisms known to the Java

community. Technically speaking, each VM instance has at

least one main thread and may have several other threads

running concurrently. The threads belonging to the same

VM instance may interact and synchronize with each other

by the means of shared objects and monitors. The API also

allows the use of synchronized methods and the creation of

thread groups in order to ease the manipulation of several

thread operations. It is also possible to assign priorities to

each thread. When a programmer modifies the priority of a

thread, with only 10 priority levels being allowed, the VM

maps each of the values to Linux nice values, where lower

values indicate a higher priority. Dalvik follows the threads

model where all the threads are treated as native threads.

Internal VM threads belong to one thread group and all

other application threads belong to another group.

According to source code analysis, Android does not

provide any mechanisms to prevent priority inversion

neither allow threads to use Linux’s real-time priorities

within Dalvik.

VI: FINDING OF REAL-TIME ANDROID

5.1 Finding 1: Mingyuan et.al, [5] Most data leaks are

caused by 3rd-party advertising libraries: From Table 1.1,

we found that 28 out of the 30 (93.3%) detected data leaks

are caused by 3rdparty advertising libraries. As previous

research [9], has pointed out, 3rd-party advertising Modules

aggressively request application permissions to access

various personal data. If an advertising library leaks data, it

can potential affect lots of apps. Meanwhile, hackers have

started to exploit advertising libraries to spy on users. We

believe that privilege separation and fine-grained privilege

control will help to prevent the threats caused by these

problematic libraries. From the perspective of app

developers, App Audit can help check their apps before

publishing to the market, which could effectively detect data

leaks beforehand and avoid accidentally using data-leaking

3rd-party modules.

VII: COMPARISON REAL-TIME APPS:

Free apps that spread certain personal information identified

by AppAudit. In the following table, for the “Privacy

Policy” column, a “lib” means that the privacy policy does

not cover the kind of data spread by advertising libraries.

From Table1.1, we found that 28 out of the 30 (93.3%)

detected data leaks are caused by 3rdparty advertising

libraries. As previous research [5], has pointed out, 3rd-

party advertising modules aggressively request application

permissions to access various personal data. If an

advertising library leaks data, it can potential affect lots of

apps.

Meanwhile, Zhang et.al,[7] said that hackers have started to

exploit advertising libraries to spy on users. We believe that

privilege separation and fine- grained privilege control will

help to prevent the threats caused by these problematic

libraries. From the perspective of app developers, AppAudit

can help check their apps before publishing to the market,

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 4, April 2018

 42

which could effectively detect data leaks beforehand and

avoid accidentally using data-leaking 3rd-party modules.

From the table, we can find that, apps (Word Search and

Speed test) are gaining awareness of privacy by removing

problematic advertising libraries. We believe that AppAudit,

when integrated with IDEs, could well assist developers for

this purpose. On the other hand, we discover advertising

libraries are gaining privacy awareness as well. For

example, a newer version of the Tap joy advertising library

hashes. IMEI before sending it to the advertising server.

IX. CONCLUSION

Android OS supports pre-emption and multi-tasking, the

results indicate Android may be seen as a potential target for

real-time environments and there are numerous industry

targets that would benefit from architecture with such

capabilities. Taking this into consideration, this paper

presented the suitability of the Android as a real-time

system. By focusing on the core parts of the system it was

possible to expose the limitations and to present four

possible directions that add real-time behavior to the system.

This paper also presented RTDroid, a variation of Android

that aims to provide real-time capabilities to Android as a

whole system. We have shown that replacing DVM with an

RT JVM and Linux with an RTOS is insufficient to run an

Android application with real-time guarantees. In this paper,

the design AppAudit, an efficient analysis framework that

can deliver high detection accuracy with significantly less

time and memory. AppAudit comprises a static API analysis

that can effectively narrow down analysis scope and an

innovative dynamic analysis which could efficiently execute

application byte code to prune false positive and confirm

data leaks. To address this shortcoming, we have redesigned

Android’s core constructs and system services to provide

tight latency bounds to real-time applications to be useful

for the that propose to use Android OS.

REFERENCE

 [1] Cl ´ audio Maia, Lu´ ıs Nogueira, and Luis Miguel

Pinho, “Evaluating Android OS for embedded real-time

systems”, pages 63–70, 2010

[2] Wolfgang Mauerer, Gernot Hillier, Jan Sawallisch,

Stefan H onick and Simon Oberth,”Real-Time Android:

Deterministic Ease of Use” University of Paderborn,

Germany.

[3] Yin Yan, Shaun Cosgrove, Varun Anand, Amit

Kulkarni, Sree Harsha Konduri, Steven Y. Ko, Lukasz

Ziarek, “Real-Time Android with RTDroid”,University of

New York, avairable @buffalo.edu

[4] Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi,

and Soo-Mook Moon, “Evaluation of Android Dalvik

virtual Machine”, pages 115–124, 2012.

[5] Toward Making jPapaBench Fly: An Experience Report

Shaun Cosgrove, Yin Yan, Sai Tummala, Manish Jain,

Karthik Dantu, Steven Y. Ko, Lukasz Ziarek

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard-real-time environment,”J.

ACM, vol. 20, no. 1, pp. 46–61, 1973.

[7] X.Zhang,A. Ahlawat, and w. Du, “Isolating

advertisements from mobile applications in android”, pages

9-18, 2013.

[8] Coderre, D. G., Computer-Aided Fraud Prevention and

detection: A Step- by-Step Approach , John Wiley and Sons,

2009.

