
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

Role of Software Metric in Software

Development

[1]K Suresh
[1] Department of Computer Science and Engineering, Galgotias University, Yamuna Expressway Greater Noida,

Uttar Pradesh

Abstract: The Software system keeps growing in magnitude, making it increasingly difficult to comprehend and handle.

Software metrics are evaluation units of the software. Software metrics provide a quantitative framework for forecasting

and preparing the software's entire process.Thus qualifying software is enhanced and can be regulated beyond

challenge.Software metrics have been described as a technique of quantification of characteristics in software procedures,

product lines and initiatives.Software metrics has a direct link in software development to measurement.Proper

calculation is the typical situation in any engineering area and software development is no exemption, as device volume

and complexity grows, software technical analysis becomes a more challenging task.Many software developers are

concerned about the reliability of the software, how its performance can be evaluated and improved.The paper presents a

summary of the different software quality metrics used in the software development and the paper also emphasizes on the

need for software metrics and its relation to software quality.

Keywords: Software Development, Software Engineering, Software Metric, Software Quality.

INTRODUCTION

The object-oriented application development model

is much more valuable and the "object-oriented

metrics" used are important for quality management

evaluation. Object-oriented layout includes the

software quality and all the attributes associated with

any massive scale or smaller scale task.It's a level

where a device entity carries a specific characteristic

or features.Software metrics are important agent for

the whole development cycle of the

software[1].Software metric gives software

development evaluation through necessary software

documentation, prototypes, applications, and

evaluations.Fast advances in large distributed

software have grown in complexity making it hard to

monitor the performance.Successful outcome of

software quality assurance includes measurements

from software. Software metrics ideas are

meaningful, justifiable, and well-established, and

several commodity quality linked metrics have also

been established and applied.Low size evaluation is

among the key reasons for eventually failure of large

software-intensive development initiatives[2].

Size is the crucial aspect in deciding cost, plan and

initiative.Inability to forecast correctly leads in cost

delays and cancellations that weaken trust in

the system and weaken support.Scale calculation is a

complex operation, the findings of which should be

updated regularly along the development cycle with

real estimates.Measurements for size involve "source

lines of code, function points, and feature

points."Complexity is a size feature that significantly

influences design mistakes and hidden faults,

eventually leading to quality issues, inefficiencies,

and scheduling drops.Complexity has to be evaluated,

monitored, and regulated constantly.Another aspect

that leads to size estimation errors is creeping

specifications that also need to be standard and

carefully monitored. Software metrics evaluate

various elements of software intricacy and thus

performs a key function in examining and enhancing

software quality.Recent previous analysis has shown

that software metric provides useful details on

software's existing performance elements, including

its maintenance, scalability and efficiency.

SOFTWARE METRIC

 501

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

Proper calculation is the previous state in any area of

engineering and software engineering is no

exemption. Software measurements have a

strong association with software engineering

evaluation[3].Software metrics can decrease the

rationality of errors during software quality

evaluation as well as provide a numerical framework

for software quality governance.Metrics are the

software's mathematical quality, which are used to

determine the error.File-level, class-level, element-

level, process-level, application-level, and numerical

value-level metrics exist in the software.This enables

the project leader and software developers find errors

and make the flaw avoidance technique.Software

metrics can be used for every step of software

engineering.Software metrics may be created during

requirement evaluation, for example, to assess the

cost estimate and the resource required. There is a

need to develop metrics to count function points at

the moment of system design. Metrics extended at the

application stage are also used to evaluate software

size[4].

Software Metrics provides an estimate for the

software and software manufacturing process.The

software metrics are to provide certain numerical

explanations of the characteristics.Such

characteristics obtain from the software product, the

method of software development and the connected

assets. They are "product, process and

resources."Measurement of software offers consistent

metrics for the product development method and

similar products.It identifies gathers and examines

observable process information, thus promoting the

awareness, assessment, monitoring and enhancement

of the software application system.Software metrics

is a feature with software data processing, and

throughput is a value that might evaluate how the

software is influenced by the given

characteristic.Useful metrics should allow design

advancement that is effective in estimating method or

product range. So appropriate metrics are supposed to

be:

• Easy, accurate interpretation such that it is

evident how well the metric can be assessed.

• Objective, to the maximum extent possible.

• Easy to acquire (i.e. at low cost).

• Robust that is comparatively indifferent to

(logically) unimportant process or product

modifications.

TYPES OF SOFTWARE METRICS

There are three types of Software Metrics:Process

Metric, Product Metric and Project Metric and

Process Metric[5].The different types of Software

Metrics is shown below in figure 1.

Process Metrics:Process metrics demonstrates the

"software development" mechanism.It is primarily

aimed at the length of the project, the expenses

incurred and the form of technique used.The process

metrics can be used to increase the creation and

maintenance of software.Instances include the

usefulness of the elimination of defects during

creation, the patterning of the emergence of test

defects and the response time of the repair phase.This

is the software metric used only to evaluate the

quality of the software system[6]. This tests the

lifespan of software development like the type of

process, the role of the personnel and the duration

required to complete the system.Process metrics help

to determine the final system dimensions &

determine whether a project will operate as per

timetable.Process metrics are regarded as

management metrics, which are used to calculate the

process characteristics used to get the software.

Process metrics involve indicators of costs, metrics of

attempt, metrics of development and metrics of

manufacture.

Product Metrics:Product metrics are also called

quality metrics, which are used to calculate the

software's features. Product metrics involve metrics

of "product no reliability", metrics of usability,

metrics of consistency, metrics of reliability, expense

metrics, and metrics of scale, metrics of difficulty,

and metrics of design.Product metrics supports

improve the quality of the various components of the

framework & correlations between current

systems[7].It's one of the software metrics which we

use to evaluate the quality of the software systems;

mainly, it analyses the finished product of the

framework like computer code or documents of

layout.The outside parameters include the metric to

be measured: accessibility and scalability of the

program, functionality and performance, and the

 502

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

individual parameter includes software scale,

accuracy, sophistication, bugs and testing.

Project Metrics:The project metrics are used for

monitoring the situation and progress of the project.

Through adjusting the task, project metrics mitigate

issues or potential risks and help refine the software

design program[8]. Project metrics explain the nature

and implementation of the project.Examples cover

software engineer amount, personnel trend over the

software's development cycle, expense, plan, and

profitability.

CLASSIFICATION OF SOFTWARE

METRICS

The Classification of different types of software

quality metrics is shown below in Fig. 2.

Size Metric:Size related metrics are the form of

metrics that enables to determine the size of the

software. There are several forms of software metrics

for determining the software dimensions[9].The size

metrics is an attempt to measure the program’s

Length, and the extensively utilized metrics are a

"Line of Code (LOC)."The size metrics have

several drawback since the production process is

done that could not be calculated.Software Metric

tests just project execution.The size metrics are being

used to calculate "software product width, size,

volume and total significance". The different types of

Size Metric are:

• Line of Code (LOC):LOC is among the earliest

types of metrics used to determine the size of the

device; however the biggest problem created in

LOC is "What should be included analysis."A

line of code is any line of software document

which is not a remark or an empty line,

irrespective of the number of documents or

pieces on the line.It specifically includes all

lines containing file headers, definitions, and

executable and non-executable statements. One

of the main drawbacks with Line of Code is that

it does not take into account the code's

goodness: if one uses Line of Code to calculate

efficiency, such a metric would punish a simple,

excellently-designed program.LOC has been

used in software development for a range of

tasks: preparation, tracking of project

development, prediction.From the measurement

analysis point of view, LOC is a meaningful

metric for a project's length characteristic

because the experimental relationship "is shorter

than" is accurately expressed by the lines-of-

code relationship.

• Function Point (FP) Metrics: Function point

metrics is the form of measures used to measure

the line of code when code usability is present

and therefore cannot be used earlier. There is a

strategy for addressing software size

measurement earlier in the development

expansion.It depends primarily on

investigations, user inputs, user feedback and the

factors used to determine the value in

determining the size of the system and therefore

the purpose necessary for the growth[10].These

thus include an objective development

calculation of the scale of the final system and

are possibly the only indicator of scale not

linked to code. Measuring function points is

predicated on recognizing and tallying the tasks

that must be performed by the system.

• Bang: Such a feature metrics can be determined

using the appropriate type of the information

basic set of structured software description and

maybe some implementations. This provides

overall output assessment and is delivered to the

customer.

Complexity Metric:The Complexity Metric is used to

measure the complexity of the software. The various

types of Complexity metric are:

 503

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

Cyclomatic Complexity:The term Cyclomatic comes

from a variety of essential cycles in linked,

undirected charts. If the software's length is high, it is

hard to track the number of directions easily. Because

of the above explanation, “McCabe” recommends

looking at the number of simple routes, which is also

the number of cyclomatics[11].A program controlling

loop can be described by a map that has a specific

input point and escape point, and where all nodes can

be reached from the input and the escape from all

nodes is available.The aim is to calculate the

complexity, taking into account the amount of

directions in the program's control chart. The

Cyclomatic Complexity is given by the following

equation:

V (G) = E - N + 2P or V (G) =E-N+2

Where V (G) = Cyclomatic Complexity, E =Number

of edges, N =Number of nodes, P =Number of

connected components or parts

Extended Cyclic Complexity (ECC): “Mc. Cabe”

assesses the program's intricacy with Extended

Cyclomatic Complexity. But it completely

misrepresents the distinction with specific condition

in variability situations involving the conditional

comment. “Myers” indicate ECC which could be

explained as,

ECC=e V (G) =Pe+1, where Pe is the number of

predicate nodes.

Halstead Metrics:Halstead is predicated on the

idea that a program is composed of "operators and

operands only", and that awareness of the quantities

of separate and replicated operators and operands is

necessary to present a variety of software

characteristics like program length, duration, degree,

programming ability.The main objective of such a

theory is to completely discover the "software

production effort that consists of some length (N),

volume (V) and vocabulary (n)." It defines the

following parameters-

Program Vocabulary (n): Throughout computer

languages, the software can usually be interpreted as

some collection of symbols and those symbols that

relate to "operators and operands." Halstead defined

vocabulary (n) as,

 n = n1+n2 Where n1= the no of specific operators in

the code. n2= the no of specific operands in the code.

Volume of program (V): The program volume (V)

can be calculated as the necessary volume of space in

the system.

Quality Metric:The Software Metric defines the

quality of the software product. The various types of

software metric are-

Defect Metrics:There is no efficient method for

calculating the overall number of mistakes, the

number of modifications, the software with the

number of expected errors, the mistakes found by the

software audits and the amount of code checks that

can be viewed as a supplement to the errors.

Reliability Metrics:The consistency of the inner

commodity is typically measured in reliability

measures using the no of bugs found in the program

and how long the software performs before the

incident happened.

ADVANTAGES

 The various advantages of software metric are as

follows[12].

• For evaluation, correlation and crucial survey

of different software languages with regard to

the features.

• Equating and assessing skills and effectiveness

of participants in software development.

• Preparing performance requirements for

applications.

• Inspection in conformity with the standards

and parameters of software systems.

• Inferences on the efforts to be taken in the

design and production of software systems.

• Have a concept of the code's difficulty.

• Choices on further separation of complicated

unit should or should not be taken.

• In supplying resource managers with

instructions on the correct use.

• Comparing and making compromises between

software engineering and storage costs.

• In supplying software engineers with input on

success and performance during the different

stages of the development cycle of software

design.

 504

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

• Assignment of software tools to evaluate the

code.

LIMITATIONS

• The implementation of software metrics may

not always be simple and, in some instances,

difficult and expensive.

• Software metrics verification and evidence is

based on actual / scientific data whose

authenticity is impossible to check.

• These are valuable to handle software

applications but not to assess the technological

staff's results.

• Software metrics are commonly defined and

derived on the basis of assumptions that are

not consistent and may rely on the appropriate

tools and operating environment.

• Much of the statistical models depend on

calculations of some parameters that are not

always particularly well known.

• Since software development is a complicated

process, with large variability on both methods

and goals, it is hard to pin down or quantify

software attributes and amounts, and to

establish a reliable and simultaneous

measurement measure, regarding making

certain predictions previous to specification

layout.

• A valid theoretical validity of the metric is

sometimes not feasible even though the metric

characteristics are not well described.

• Empirical verification, a huge number of

metrics was never exposed to quantitative

verification.

• The metrics may sometimes be used in an

improper way within the environment or

background.

• Experimental assumption, sometimes there is

no clear observational hypothesis on the test.

• Calculation objective, metrics are not

necessarily described in a clear, excellently-

defined way.

CONCLUSION

Software metrics have developed rapidly with the

fast development in the technology sectors.Software

metrics become the software management pillar and

essential for application development achievement.It

can be expected that the average success rate in

software efficiency and software performance will

increase with the use of software

metrics.Software metrics improve the software's

scalability and reduce the cost of maintaining the

software.With the fast evolution in software field,

software product evaluation becomes more

complicated and the need for advanced software

metrics has risen through time.There are different

numbers of software metrics present, all of such

metrics rely primarily on software development,

maintenance and development, so to fix and diagnose

different bugs these metrics should be included in the

initial stages of application development life cycles,

thereby avoiding differential mistakes.A

measurement program based on a firm's goals can

help connect, track progress toward and finally

achieve certain objectives. People have to work to

achieve whatever they think is relevant. The paper

highlights the different types of software metrics,

classification of various software metrics followed by

its advantages and disadvantages.

REFERENCES

[1] A. Meneely, B. Smith, and L. Williams,

“Validating software metrics,” ACM Trans.

Softw. Eng. Methodol., 2012.

[2] G. O’Regan, “Software Metrics Software

Metrics,” 2014, pp. 151–183.

[3] K. P. Srinivasan and T. Devi, “Software

Metrics Validation Methodologies in

Software Engineering,” Int. J. Softw. Eng.

Appl., vol. 5, no. 6, pp. 87–102, 2014.

[4] W. Itzfeldt, “Quality metrics for software

management and engineering,” in Managing

Complexity in Software Engineering, 2011,

pp. 127–152.

[5] K. Mordal, N. Anquetil, J. Laval, A.

Serebrenik, B. Vasilescu, and S. Ducasse,

“Software quality metrics aggregation in

industry,” in Journal of software: Evolution

and Process, 2013, vol. 25, no. 10, pp. 1117–

1135.

[6] C. Symons, “metrics Software Industry

Performance,” IEEE Softw., vol. 27, no. 6,

 505

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 5, Issue 4, April 2018

pp. 66–72, 2010.

[7] D. Galin, “Software Product Quality

Metrics,” in Software Quality: Concepts and

Practice, 2018, pp. 346–374.

[8] S. Dhawan and Kiran, “Software Metrics – A

Tool for Measuring Complexity,” Int. J.

Softw. Web Sci., pp. 63–66, 2012.

[9] K. Yamashita et al., “Thresholds for Size and

Complexity Metrics: A Case Study from the

Perspective of Defect Density,” in

Proceedings - 2016 IEEE International

Conference on Software Quality, Reliability

and Security, QRS 2016, 2016.

[10] C. Jones, “Function points as a universal

software metric,” ACM SIGSOFT Softw. Eng.

Notes, 2013.

[11] C. Ebert and J. Cain, “Cyclomatic

Complexity,” IEEE Softw., 2016.

[12] E. Bouwers, A. Van Deursen, and J. Visser,

“Software metrics: Pitfalls and best

practices,” in Proceedings - International

Conference on Software Engineering, 2013.

[13] V.M.Prabhakaran, Prof.S.Balamurugan,

S.Charanyaa," Certain Investigations on

Strate gies for Protecting Medical Data in

Cloud", International Journal of Innovative

Research in Computer and Communication

Engineering Vol 2, Issue 10, October 2014

[14] V.M.Prabhakaran, Prof.S.Balamurugan,

S.Charanyaa," Investigations on Remote

Virtual Machine to Secure Lifetime PHR in

Cloud ", International Journal of Innovative

Research in Computer and Communication

Engineering Vol 2, Issue 10, October 2014

[15] V.M.Prabhakaran, Prof.S.Balamurugan,

S.Charanyaa," Privacy Preserving Personal

Health Care Data in Cloud" , International

Advanced Research Journal in Science,

Engineering and Technology Vol 1, Issue 2,

October 2014

[16] Ishleen Kaur, Gagandeep Singh Narula and

Vishal Jain, “Identification and Analysis of

Software Quality Estimators for Prediction of

Fault Prone Modules”, INDIACom-2017, 4th

2017 International Conference on “Computing

for Sustainable Global Development”.

[17] Ishleen Kaur, Gagandeep Singh Narula, Ritika

Wason, Vishal Jain and Anupam Baliyan,

“Neuro Fuzzy—COCOMO II Model for

Software Cost Estimation”, International

Journal of Information Technology (BJIT),

Volume 10, Issue 2, June 2018, page no. 181 to

187 having ISSN No. 2511-2104.

[18] Ishleen Kaur, Gagandeep Singh Narula, Vishal

Jain, “Differential Analysis of Token Metric and

Object Oriented Metrics for Fault Prediction”,

International Journal of Information Technology

(BJIT), Vol. 9, No. 1, Issue 17, March, 2017,

page no. 93-100 having ISSN No. 2511-2104.

 506

