

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018
A Survey on the issues of Refactoring

 [1]

Aparna K S,
[2]

 Sai Deepthi.K,
[3]

 Sharan Kumar.R,
[4]

 Syeda Shameemunnisa,
[5]

 Sree Geethika.M
[1]

 Assistant Professor, Dept. of CSE, RYMEC, Ballari
[2][3][4][5]

 B.Tech 4thSemester, Dept. of CSE, RYMEC, Ballari

Abstract: - In this paper, a tremendous attitude of research towards refactoring the software is presented. This paper presents the

areas where refactoring can be applied. The Scope of refactoring, how to refactor, when to refactor, impact of refactoring an a

quality of software, different methods used, basic principles in refactoring software artifacts and the related work which needs to

improve are presented. This paves the way for improvement, giving rise to many more research fields.

Keywords: - Refactoring, software re-engineering, formal methods.

I. INTRODUCTION

A major part in software life cycle[1], is the software

maintenance and majority of time and budget is invested

in software evolution, which inturn depend on software

maintenance. This software maintenance will be done

using variety of techniques. Refactoring is one of the

technique to improve the internal quality of the software

without changing the external behavior. Refactoring also

plays a vital role in software re-engineering, whose main

objective is to restructure the legacy software. The most

fascinating part is to estimate the parts of legacy

software, which have to undergo changes, considering

the parameter the software re-engineers are facing and

the impact of these on evolving softwares. refactoring has

wide scope in transforming the existing design code into

a form, understandable by the reverse engineering tools

and techniques. Refactoring[2] also fits in model-driven

re-engineering process to implement platform migration

by code generation from basic-modeling methods.

Refactoring also happens to be one of the milestones in

eXtreme-programming which is known to be arethe main

proponent in ajile softwares are rapid application

software development .Refactoring plays a quality

improving role in software evolution, which plays a

major role in software industries.

The remainder of the paper is structured as follows

section II explains the stagesof refactoring and catagories

of refactoring such as class method and attribute

refactoring. Section III identifies the various issues

involved like effects of refactoring on quality. Section IV

discusses the impact of refactoring on software process,

advantages and disadvantages

Basic principles used in Refactoring:-

1) The Dependency Inversion Principle: The states that

depend an abstraction (interface) not an implementation.

2) The Interface Segregation Principle:This states that

multiple small interfaces are better than one ' fat '

interface (big).

3) Acyclic Dependencies Principle: Dependencies

between packages, classes or any resources should not

form a cycle leading to a deadlock.

4) Common Closure Principle: States that any change

made at one point should be reflected at all points, which

-dependent.

5) Common Reuse Principle:If any subcomponent of the

main component is used, then all other sub-components

belonging to the main should be used.

II SOFTWARE REFACTORINGPROCESS

Commonly, the software refactoring process includes the

following steps and activities.

1. Apply unit test to the program.

2. Identify which part of the code needs the refactoring

using code smells.

3. Select a refactoring technique to remove the identified

code smell.

4. Apply the selected refactoring technique.

5. Apply regression testing to the refactored code.

 682

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

6. Assess the effect of the refactoring using software

quality characters or the process.

7. Maintain consistency between the program and the

other artifacts.

Figure1. The Steps in Refactoring Process

Refactoring Activities

1. Identification where the software has to be

refactored,

2. Determination of which refactoring shall be

applied.
3. Behavioralpresentation.
4. Apply refactoring.
5. Implement on refactoring on software.

6. Check the consistency between the manufactured

program code and other software artifacts.

CATEGORIES OF REFACTORINGS

Class Refactoring:
 add (sub)class to hierarchy
 rename class
 remove class
 extract class

Method Refactoring:
 add method to class
 rename method
 remove method
 push method down
 push method up
 add parameter to method

 move method
 extract code in new method
 replace parameter with method

Attribute Refactoring:
 add variable to class
 rename variable
 remove variable
 push variable down
 pull variable up
 create accessors
 abstract variable

III. ISSUES IN SOFTWARE REFACTORING

Identifying the areas of applying Refactoring:

The major decision is to identify the level of abstraction,

where the refactoring has to be applied. The dilemma is

whether the refactoring should be applied to the program

itself or to more abstract software design models or

requirement documents.The widespread and popular

approach to detect refactoring areas is to find the bad

smell codes.As per the Kent Back, "bad smells are the

structures that needs to be refactored "[7].Balazinske uses

a clone analysis tool to identify duplicated code ,

suggesting candidates for refactoring [15].The surveys

conclude that extracting duplicate code and inserting an

intermediate subclass to factor out the common code [17]

[18] [19] [20] .

Accessing the effects of refactoring on quality:

The quality attributes of a software such as robustness,

extensibility,performance, allows us to improve the

quality by application of refactoring at relevant

points.Performance of a software can be improved by the

concept of refactoring. Coupling metrics can be used to

determine the effect of refactoring on maintainability of

the program. There are soft goal graphs, depicts design

decisions. These association o refactoring with a possible

effect on soft goals, claims maintainability enhancements

through primitive and non-primitive refactoring.

Causes and solutions for the bad smells in the code:

1. Duplicated code: In this case, we find the same code

structure at several points The solution is to perform

extract method and invoke the code from both places,

using pull-up method.

2. Long method: whose statements operate on different

parameters/ variables. The solution is to extract method

and improve responsibilities distribution.

3. Large class: If a class has too many responsibilities it

often has many instance variables. In such a case,

 683

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

perform extract (sub) class and improve responsibilities

distribution.

4. Long-parameter list: If a method has a very long

parameter list then replace the parameters as an object.

5. Divergent-change: This occurs when class is

commonly changed by different aspects.This class should

be identified and use extract method to put them all

together.

6. Shotgun surgery: A Small modification in a program

leads to lot of little change to a lot of different classes.

The solution is to use either move method or move field

to segregate all changes in a single class.

7. Feature envy: Any method making heavy use of data

from another class. This can be solved using

move/extract method to put in single class.

8. Lazy class: If a class is not doing good job, then use

collapse hierarchy concept and all useless components

should be subjected to inline –class.

IV. SOFTWARE PROCESS SUPPORT BY

REFACTORING

The following Implications are made in Refactoring-

 Refactoring doesn't change the system.

 Refactoring doesn't mean rewriting from

scratch.

 Refactoring is not just any restricting method to

improve the code.

The goals of refactoring are to remove code duplication

and improve comprehension and maintenance, reducing

coupling. Refactoring uses ' the rule of three ' - defined

by fowler is ' The first time you do something, you just

do it. The second time you do something similar, you

look at the duplication but you still do the duplication

anyway. The third time you do something similar - you

refactor. Refactoring supports the following research

areas. In the process of Software Re-engineering,

Refactoring fits very well in the process of software re-

engineering,where it modifies the software to implement

a new solution. Refactoring helps to identify parts of the

legacysoftware to be converted and the process of

conversion. Refactoring also supports model-driven re-

engineering process,(which facilitates platform migration

by code generation from abstract model).In this case,

refactoring transform the design of existing code into

form, understandable by MDA tools.Refactoring

programs written in object-oriented language is more

difficult to restructure because of tight data flow and

control flow. The object-oriented

principles face difficulty due to inheritance mechanism,

dynamic binding, overriding, polymorphism. Refactoring

software artifacts has made the following assumptions

• Refactoring at design level can be done for class

diagrams and activity diagrams.

• Design-patterns provides program description at high

level of abstraction. Refactoring introduce new design-

pattern instances into the software.

• Object oriented database schemes are ideal points for

refactoring.

• Software architecture are refactored directly on the

graphical representation of system architecture.

The Code refactoring has the following

Advantages:

 Makes code more readable

 Removes redundant, unused code and comments

 Improves performance

 Creates reusable code and is easier to maintain

Disadvantages:

 Database migration

 Published interfaces

V. CONCLUSION

Refactoring is a well-defined process that improves the

quality of systems and allows developers to repair code

that is hard to maintain. By careful application of

refactoring the system’s behavior will be same. Use of

automated refactoring tools makes the developer perform

necessary refactoring since tools are much quicker and

reduce the bugs, but still there are many research issues

to be tackled in using the refactoring tools. In each of

these categories there are important open issues that

remain to be solved. In general, a small approach was

made to find the formalisms, processes, methods and

tools that address refactoring in a more consistent,

generic, scalable and flexible way. By the end of the

paper we conclude that there is a lot of scope in

restructuring and refactoring areas.

 684

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

REFERENCES

[1]. MesfinAbebe and Cheol-Jung Yoo. Trends,

Opportunities and Challenges of Software Refactoring: A

Systematic Literature Review.

[2]. M. Fowler, “Refactoring: Improving the Design of

Existing Programs”, Addison-Wesley, (1999).

[3].http://sourcemaking.com /refactoring /defining-

refactoring.

[4]. H. Liu, Z. Ma, W. Shao and Z. Niu, “Schedule of

Bad Smell Detection and Resolution: A New Way to

Save Effort”, IEEE Transactions on Software

Engineering, (2012).

[5]. [1] D. M. Coleman, D. Ash, B. Lowther, and P. W.

Oman, “Using metrics to evaluate software system

maintainability,” IEEE Computer, vol. 27, no. 8, pp. 44–

49, August 1994.

[6]. T. Guimaraes, “Managing application program

maintenance expenditure,” Comm. ACM, vol. 26, no.

10, pp. 739–746, 1983.

[7]. B. P. Lientz and E. B. Swanson, Software

maintenance management: a study of the maintenance of

computer application software in 487 data processing

organizations, Addison-Wesley,1980

[8]. M. Fowler, Refactoring: Improving the Design of

Existing Programs,Addison-Wesley, 1999.

[9]. M. Balazinska, E. Merlo, M. Dagenais, B.

Lag¨ueandKostas Kontogiannis, “Advanced clone-

analysis to support objectoriented system refactoring,” in

Proc. Working Conf. Reverse Engineering. 2000, pp. 98-

107, IEEE Computer Society.

[10]. S. Ducasse, M. Rieger, and S. Demeyer, “A

language independent approach for detecting duplicated

code,” in Proc. Int’l Conf.Software Maintenance, 1999,

pp. 109–

118, IEEE Computer Society.

[11]. T. Tourw´e and T. Mens, “Identifying refactoring

opportunities using logic meta programming,” in Proc.

Int’l Conf. Software Maintenance and Re-engineering.

2003, pp. 91–100, IEEE Computer Society.

[12]. E. van Emden and L. Moonen, “Java quality

assurance by detecting code smells,” in Proc. Working

Conf. Reverse Engineering 2002, pp. 97-108, IEEE

Computer Society.

[13]. T. Dudziak and J. Wloka, “Tool-supported

discovery and refactoring Computer Science, Technical

University of Berlin, February 2002.

[14]. F. Simon, F. Steinbr¨uckner, and C. Lewerentz,

“Metrics based refactoring,” in Proc. European Conf.

Software Maintenance and Reengineering. 2001, pp. 30–

38, IEEE Computer Society.

[15]. L. Tahvildari and K. Kontogiannis, “A

methodology for developing transformations using the

maintainability soft-goal graph,” in Proc. Working Conf.

Reverse Engineering. 2002, pp. 77–86, IEEE Computer

Society.

 685

