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Abstract: Secure data deduplication can significantly reduce the communication and storage overheads in cloud storage services, 

and has potential applications in our big data-driven society. Existing data deduplication schemes are generally designed to either 

resist brute-force attacks or ensure the efficiency and data availability, but not both conditions. We are also not aware of any 

existing scheme that achieves accountability, in the sense of reducing duplicate information disclosure (e.g., to determine whether 

plaintexts of two encrypted messages are identical). In this paper, we investigate a three-tier cross-domain architecture, and 

propose an efficient and privacy-preserving big data deduplication in cloud storage (hereafter referred to as EPCDD). EPCDD 

achieves both privacy-preserving and data availability, and resists brute-force attacks. In addition, we take accountability into 

consideration to offer better privacy assurances than existing schemes. We then demonstrate that EPCDD outperforms existing 

competing schemes, in terms of computation, communication and storage overheads. In addition, the time complexity of duplicate 

search in EPCDD is logarithmic. 

 

INTRODUCTION 

 

CLOUD storage usage is likely to increase in our big 

datadriven society. For example, IDC predicts that the 

amount of digital data will reach 44 ZB in 2020 [1]. Other 

studies have also suggested that about 75% of digital data 

are identical (or duplicate) [2], and data redundancy in 

backup and archival storage system is significantly more 

than 90% [3]. While cost of storage is relatively cheap 

and advances in cloud storage solutions allow us to store 

increasing amount of data, there are associated costs for 

the management, maintenance, processing and handling 

of such big data [4], [5]. It is, therefore, unsurprising that 

efforts have been made to reduce overheads due to data 

duplication. The technique of data deduplication is 

designed to identify and eliminate duplicate data, by 

storing only a single copy of redundant data. In other 

words, data deduplication technique can significantly 

reduce storage and bandwidth requirements [6]. However, 

since users and data owners may not fully trust cloud 

storage providers, data (particularly sensitive data) are 

likely to be encrypted prior to outsourcing. This 

complicates data deduplication efforts, as identical data 

encrypted by different users (or even the same user using 

different keys) will result in different cipher texts [7], [8]. 

Thus, how to efficiently perform data deduplication on 

encrypted data is a topic of ongoing research interest. 

Next, we will introduce the system model, threat model 

and design goals in Section 2, before describing notations 

and bilinear groups of Composite order in Section 3. We 

then present the proposed EPCDD scheme in Section 4, 

analyze the scheme’s privacy-preserving capability and  

 

security strength (data availability, accountability, and 

brute-force attack resilience) of the EPCDD scheme in 

Section 5, and demonstrate the efficiency of our EPCDD 

scheme in comparison to state-of-the-art schemes of [12], 

[14] in terms of computation, communication and storage 

overheads in Section 6. Related work is discussed in 

Section 7. We conclude this paper in Section 8. 

 

MODELS AND DESIGN GOALS 

 

In this section, we formalize the system model and threat 

model used in this paper, and identify our design goals. 

 

System Model 

The system model (see Fig.1) is a three-tier cross-domain 

big data deduplication system, which comprises a key 

distribution center (KDC), a cloud service provider 

(CSP), clients from different domains and the 

corresponding local managers, denoted as LMA and 

LMB. _ KDC: The trusted KDC is tasked with the 

distribution and management of private keys for the 

system.  

 

CSP: The first tier is a CSP, which offers data storage 

services for clients. While the CSP is capable of 

supporting the storage needs of clients, it is financially 

vested to reduce the expensive big data management and 

maintenance overheads. Therefore, the CSP needs to 

perform inter-deduplication, which means that messages 

for deduplication are from different domains, to decrease 

the corresponding overhead.  

                                                                                                                              219



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 4, April 2018 
 

 

 

 LMA (LMB): The second tier consists of domains (e.g., 

organizations such as companies or universities), which 

have cloud storage contracts with the CSP. Each domain 

maintains a local manager (e.g., LMA or LMB), which is 

responsible for intra-deduplication, and forwarding 

messages from clients in domain A (or B).  

 

Clients: Every client is affiliated with a domain (e.g., 

employees in the company or students and faculty 

members in the university or university network, say 

University of Texas system). Clients upload and save 

their data with the CSP. In order to protect their data 

privacy and help the CSP to complete data deduplication 

over encrypted data, they encrypt the data and generate 

the corresponding tags. Finally, clients send message 

tuples containing encrypted data and the corresponding 

tags to the LMA or LMB (clients from domains A and B 

send message tuples to the LMA and LMB, respectively). 

 

Threat Model 

In our threat model, the CSP is considered honest but 

curious, which is the most common assumption in the 

literature (see [12], [14], [18]). Specifically, the CSP 

honestly follows the underlying scheme. However, it is 

curious about contents of stored data. Because the CSP 

adopts a pay-as-you-use model, it does not actively 

modify stored messages due to reputation, financial and 

legal implications (e.g. a civil litigation can result in 

significant reputation and financial losses to the provider). 

Hence, active attacks from the CSP are not considered in 

this paper. However, due to the significant amount of data 

stored in the cloud, it may know the plaintext space. 

Hence, according to the ciphertext and corresponding 

tags, the CSP (e.g. a malicious CSP employee) can carry 

out brute-force attacks. Finally, the CSP may obtain the 

plaintext corresponding to the special ciphertext for other 

illicit purposes (e.g. information reselling for financial 

gains). 

 

LMA and LMB are also considered honest but curious. 

However, these entities have very limited computing and 

storage capabilities. Therefore, in practice, they do not 

have sufficient resources to carry out brute-force attacks. 

LMA or LMB may be curious about its affiliated clients’ 

privacy, even though they may not actively seek to 

compromise the privacy of their clients. For example, if 

the domain is a company and LMA (or LMB) is the 

corresponding information manager. LMA (or LMB) is 

curious about the data uploaded by the staff. However, to 

protect the information asset, LMA or LMB does not 

actively attempt to compromise the privacy of clients, or 

collude with the CSP. Clients are considered honest. In 

theory, it is possible that they would collude with the CSP 

to obtain other clients’ privacy. As mentioned in [14], in 

practice, such collusion may result in significant risks to 

the reputation of the CSP, as well as civil litigation or 

criminal investigations. In addition, if the CSP colludes 

with client A to compromise the privacy of client B, the 

CSP is also likely to collude with client B or other clients 

to compromise the privacy of other existing clients. This 

would have serious repercussions for the CSP if such 

collusion is reported or known. Thus, we assume that the 

CSP does not collude with its clients. Other than brute-

force attacks, we do not consider other active attacks. 

 

4. PROPOSED EPCDD SCHEME 

 

In this section, we propose an efficient and privacy-

preserving cross-domain deduplication scheme for big 

data storage (EPCDD). 

 

4.1 Key Generation 

KDC takes a security parameter _ as input, and outputs a 

5-tuple (N; g;G;GT ; e) by running the composite bilinear 

parameter generator algorithm Gen(_). Then, it selects 

four random numbers s; t; a; b 2 ZN, where p j (as + bt), p 

- as and p - bt, and computes yA = gaq 2 G, yB = gbq 2 

G. In addition, KDC chooses three cryptographic hash 

functions h1 : f0; 1g_ ! f0; 1gn, h2 : f0; 1g_ ! Z_ p and h3 

: G ! f0; 1gn, where n is the bit length of symmetric key. 

Finally, KDC sends s and t to all members in domains A 

and B, respectively, and sends yA and yB to the CSP by 

secure channel. KDC publishes parameters pp = (N; 

g;G;GT ; e; e(g; g)s; e(g; g)t; h1; h2; h3). 

 

4.2 Data Encryption and Tags Generation 

For each client in domain A, after receiving the secret key 

s, the client encrypts the data mi and generates 

corresponding tags for data deduplication as follows. 

 

4.2.1 Data Encryption 

With secret key s and parameter e(g; g)t, the client 

computes the message-dependent symmetric key ski = 

h1(mike(g; g)st). Then, this client chooses a random 

number ri 2 ZN, computes the ciphertext Ci = Encski 

(rikmi), where the symmetric encryption algorithm is the 

cipher block chaining (CBC) mode, i.e., AESCBC. 

 

4.2.2 Tags Generation 

The client generates two tags for data mi as _ 1 

i = gs_h2(mi), 
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_ 2 i = ski mod !, where ! is a random integer that not only 

ensures the security of ski but also meets the storage 

capacity of the CSP. For example, we can set j!j = 128 

bits, thus, ski does not be disclosed by guessing attack if 

we set n = 256 bits (jskij=256 ), and it can represent up to 

2128 data. 

Similarly, clients in domain B execute same operations to 

generate ciphertexts and tags, e.g., for mj , encrypt it as Cj 

= Encskj (rjkmj), where skj = h1(mjke(g; g)st), and the 

corresponding tags are computed as _ 1 

j = gt_h2(mj ) 2 G, 

_ 2 

j = skj mod !. 

 

PERFORMANCE EVALUATION 

 

In this section, we evaluate the performance of the 

proposed EPCDD scheme in terms of the computational, 

communication and storage overheads. Moreover, we 

give a comparison with the R-MLE2 (Dynamic) scheme 

[12] and Yan’s scheme [14]. 

 

6.1 Computational Overheads 

There are four entities in our EPCDD scheme, namely: 

clients, KDC, CSP and LMA (LMB). Under the 

aforementioned system model, KDC is responsible for 

generation of system parameters, which does not 

participate in the data deduplication. Thus, the 

computational overhead of the KDC can be ignored. We 

analyze the computational overhead of uploading one data 

in two cases: the data is duplicate and the data is new. 

For data mi, the client first generates two tags _ 1 i and _ 

2 to help the CSP to complete the deduplication. This 

operation requires one exponentiation in G, one 

multiplication in ZN, and one module in Z!. Since the 

multiplication in ZN and module in Z! are considered 

negligible compared to the exponentiation and pairing, the 

computational overhead of tag generation requires one 

exponentiation in G and one exponentiation in GT . If the 

duplication is found, the client does not need to do 

anything else. Otherwise, it needs to encrypt the data mi 

by symmetric encryption, i.e., AES-CBC. As shown in 

[14], the computational overhead of data encryption using 

symmetric encryption depends on the size of data, which 

is inevitable for protecting the data. Therefore, we can 

ignore the computational overhead of the encryption in 

the comparison of these three schemes. In addition, 

regardless of whether duplicate data exist, the client needs 

to generate the message-dependent key ski for data 

availability, which costs one hash and one exponentiation 

in GT . It is worth noting that the computational overhead 

of hash depends on the size of data, but it is very fast, 

which can be ignored. Therefore, this computation only 

needs one exponentiation in GT . After receiving tags _ 1i 

and _ 2i , CSP compares _ 2i and current node ! _ 2 

according to the DDT shown in Fig. 2. If _ 2i = current 

node ! _ 2, it needs to verify the Eq. (1), which requires 

two pairings and one multiplication in GT . As 

shown in Algorithm 2, the CSP needs to verify the Eq. (1) 

if and only if _ 2 

i = current node ! _ 2, which is independent of the search 

complexity. Hence, the computational complexity for 

finding duplication is O(1). Moreover, for the intra-

deduplication, LMA and LMB just compute the hash 

value h3(_ 1 i ), and then check whether the same hash 

value exists (by comparing the value with the records in 

LMA or LMB). Obviously, the computational overhead 

for the LMA and LMB can be ignored. 

 

CONCLUSION 

Cloud storage adoption, particularly by organizations, is 

likely to remain a trend in the foreseeable future. This is, 

unsurprising, due to the digitization of our society. One 

associated research challenge is how to effectively reduce 

cloud storage costs due to data duplication. 

In this paper, we proposed an efficient and privacy-

preserving big data deduplication in cloud storage for a 

three-tier cross domain architecture. We then analyzed the 

security of our proposed scheme and demonstrated that it 

achieves improved privacy preserving, accountability and 

data availability, while resisting brute-force attacks. We 

also demonstrated that the proposed scheme outperforms 

existing state-of-the-art schemes, in terms of computation, 

communication and storage overheads. In addition, the 

time complexity of duplicate search in our scheme is an 

efficient logarithmic time. 
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