

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018
A Framework Designing For RDF Smart Crawler

for Extracting Semantic Information

[1]
 Gurdas Singh,

[2]
 Brijesh Bakariya

 [1]
 Research Scholar, IKGPTU, Kapurthala, Punjab,India

[2]
 Asst. Prof., IKGPTU Campus, Hoshiarpur, Punjab, India

Abstract: - Currently Search engines only provide URL links for search queries. Crawling strategy adopted by most search engines

only search on html keywords and index the pages, but semantic web retains most rich information in RDF files and crawlers don’t

index the RDF. In this work, we deal with problem and design a smart crawler which can retrieve semantic information for

keyword queries. In addition to retrieving the information, the proposed solution also focus on ranking the semantic information.

Ordinarily, a covetous framework is used to pick the terms that enlarge the new returns each cost unit. We comprehended that not

each record is square with while selecting the request to cover them. Broad reports can be secured by various requests, paying little

respect to how the inquiries are picked. In like manner the criticalness of a record is then again with respect to its size. Our further

examination in this issue finds that the noteworthiness of the record depends not simply on the amount of the terms it contains,

furthermore the sizes of those terms.

Keywords: Crawling, Query analysis, RDF, semantic approach and smart crawler

I. INTRODUCTION

The deep (or hidden) web refers to the contents lie behind

searchable web interfaces that cannot be indexed by

searching engines. Semantic web falls under the category

of deep web as search engines don’t index the semantic

web contents. To locate deep web contents, earlier two

types of crawler’s generic crawler and focused crawler

were proposed. Generic crawlers [1], [2], [3], [4], [5]

fetch all searchable forms and cannot focus on a specific

topic. Focused crawlers such as Form-Focused Crawler

(FFC) [6] and Adaptive Crawler for Hidden-web Entries

(ACHE) [7] can automatically search online databases on

a specific topic. FFC is designed with link, page, and

form classifiers for focused crawling of web forms, and is

extended by ACHE with additional components for form

filtering and adaptive link learner. The link classifiers in

these crawlers play a pivotal role in achieving higher

crawling efficiency than the best-first crawler [8]. Both

of these crawlers focused on extracting Forms and could

not work for semantic web information. One another

challenge is ranking the search results. If the semantic

results can be ranked and displayed, it would reduce the

time for retrieving most important information to the

users. This we refer to as relevance. Web contents can be

ranked based on hit count and relative word occurring

frequency but semantic information ranking is a totally

new area and no other previous works on it exist.

In this paper, we propose an adaptive smart crawling

algorithm to extract semantic information from internet.

Also the improvement issue, request assurance has

similarly been shown as bolster learning issue. In this

model, a crawler and an objective data source are

considered as an administrators and nature

independently. By then its assurance framework will be

quickly adjusted by learning past addressing results and

makes note of at most two-phase long two-stage

remunerate.

II. LITERATUR REVIEW

Brin and Page's 1998 paper plotting the engineering of

the original Google [9] framework contains a short

depiction of their crawler. The first Google crawling

framework comprised of a solitary URL server prepare

that kept up the condition of the creep, and around four

searching forms that downloaded pages. Both URL

server and crawlers were executed in Python. The

searching procedure utilized non-concurrent I/O and

would commonly perform around 300 downloads in

parallel. The pinnacle download rate was around 100

pages for every second, with a normal size of 6 KB for

each page. Brin and Page distinguished social parts of

searching (e.g., managing website admins' complaints) as

a noteworthy test in working a crawling framework.

Recently, Yan et al. described IRLbot [10], a single-

process web crawler that is able to scale to extremely

large web collections without performance degradation.

IRLbot features a ―seen-URL‖ data structure that uses

only a fixed amount of main memory, and whose

performance does not degrade as it grows. The paper

 34

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

describes a crawl that ran over two months and

downloaded about 6.4 billion web pages. In addition, the

authors address the issue of crawler traps, and propose

ways to ameliorate the impact of such sites on the

crawling process. Finally, there are various open-source

crawlers, two of which merit extraordinary specify.

Heritrix [11] is the crawler utilized by the Internet

Archive. It is composed in Java and exceedingly

componentized, and its outline is very like that of

Mercator. Heritrix is multithreaded, however not

circulated, and all things considered appropriate for

directing reasonably measured creeps. The Nutch crawler

[12] is composed in Java also. It underpins conveyed

operation and ought to along these lines be appropriate

for extensive crawlers; however as of the composition of

[13] it has not been scaled past 100 million pages. Below

is the explanation of existing model for information

extraction from smart web crawler is shown fig. 1.

A. The crawler/Spider module

Web searchers use web crawler to gather data for

ordering the pages; Crawlers are the robotized projects

that take after the associations found on the webpage

pages. The program i.e. Web Explorer, sends HTTP

requests (hypertext transfer protocol), the most generally

perceived protocol on the web which is used to

recuperate the webpage pages and to download and

uncover to them on the customer's service end.

B. The repository/database module

The repository or database has an unlimited amassing of

data things. Each site page recouped by the crawler is

pressed and after that set away in the storage facility with

an intriguing ID associated with the URL and a note is

taken of the length of each page [5].

C. The adaptive link analysis module

The information is accessible in the database in sweeping

aggregate so the information of site pages is to be secured

in the most critical demand. It note worthily affects web

look as indexer takes a gathering of data or reports and

makes a searchable record. There could be different

records in light of the substance of the pages so that the

crawler can record the information required by the

customer.

D. The retrieval/ranking module

The recovery means to find the records related with the

request term. It determines the scores for the reports

using a positioning figuring. This module is the inside

fragment of any web searcher. Page positioning

procedures are associated, which plan the reports out and

out of their hugeness, essentialness and rank score

orchestrate the site page [8]. Page rank estimation allots

numerical weight to hyperlinked reports recorded by a

web engine.

E. The user query interface

The customer enters a request related to the information

required by the customer to the graphical customer

interface

gave by the web list. Most web interfaces are amazingly

essential; applications may use structures to make the

customer display a query.

Issues related to motivations behind the proposed work

are as follows:

• Current search engines only fetch relevant pages

for search query, but we propose to search relevant RDF

for the search query.

• As of now there is no real way to execute an

inquiry and get semantic data connected with question.

Prominent web crawlers just give website pages joins

connected with question.

• There is no semantic crawler which record

semantic data like RDF and OWL and after that gives it

as result to search query.

Fig.1. Architecture of existing Smart web crawler

III. PROBLEM STATEMENT

RDF store rich semantic information about contents and

it is distributed on deep web interfaces. Given a search

query, the RDF pertaining to that search query must be

fetched so that in the search result the coverage and

versatility of information must be good.

1) RDF: From the page got the savvy semantic web

crawler includes semantic classifier that implies it brings

the subjective pattern through RDF (Resource

Description Framework) as rdf: sort. For instance in the

event that we bring a search review identified with home

then just links named with home are fetched.

 35

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

2) OWNL: From the page got the savvy semantic web

crawler includes semantic classifier that implies it gets

the semantic outline for subjects through OWNL as

patent sort to specific subject. For instance in the event

that we bring a pursuit question identified with home

then links named with home are brought as well as the

semantic expressions of home related links are likewise

fetched.

Following major problems are formulated from above

discussion of related work section. The Semantic Web is

useful as long as an application can access and merge any

webpage due to following reasons:

• The data can be published anywhere, we cannot find all

the data to answer a query

• People don’t know the schema of each data source so

that we cannot send a precise query to a specific RDF

data source as we use SQL to query relational databases.

• The answer to the client queries should include not only

the explicit information represented in RDF data but also

the implicit information which can be got through data

inference.

IV. PROPOSED ARCHITECTURE DESIGN

We propose a smart semantic crawler which crawls and

index semantic information for search queries. The

architecture of the proposed solution is given below. The

solution consist of two parts Site Locating and In site

Exploring.

A. Module 1: Site Locating

The main aim of Site Locating is find most relevant sites

for given topic. Seed sites must be preconfigured and

added to site database. Venerate Searching creeps seed

locales in the website database and fined as much links

with profound pages and adds all destinations found to

webpage database.

a. Working of Reverse Searching

We randomly pick a known profound site or a seed site

and utilize general web crawler's office to find focus

pages and other significant locales, Such as Google's

"link:" , Bing's "website:", Baidu's "space:". For example,

[link: www.google.com] will list site pages that have

joins

Fig. 2. Architecture of proposed solution

indicating the Google landing page. In our framework,

the outcome page from the internet searcher is first

parsed to concentrate joins. At that point these pages are

downloaded and dissected to choose whether the links are

applicable or not utilizing the accompanying heuristic

rules: –

• If the page contains related searchable

structures, it is significant.

• If the quantity of seed locales or brought

profound sites in the page is bigger than a client defined

limit, the page is important.

• Finally, the discovered significant links are

added to site database.

a. Working of Site Frontier

Site Frontier peruses the links from the site database and

gives to Site Ranker module. In the second stage, Smart

Crawler accomplishes quick in-site looking by

uncovering most important links with a versatile link

positioning. To kill inclination on going to some

exceedingly pertinent links in concealed web registries,

we outline a link tree information structure to accomplish

more extensive scope for a site

b. Working of Site Ranker

Site Ranker gets all url from Site Frontier positions site

URLs to organize potential profound destinations of a

 36

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

given theme. To this end, two elements, site similitude

and site recurrence, are considered for positioning.

Webpage likeness measures the theme comparability

between another website and known profound sites. Site

recurrence is the recurrence of a site to show up in

different destinations, which demonstrates the prevalence

and power of the site — a high recurrence site is possibly

more vital. Versatile Site learner discovers site similitude

and site recurrence. In view of this site ranker figures the

score of every sites.

c. Working of Site Classifier

Site Classifier decides the topical significance of a site in

view of the substance of its landing page. At the point

when another site originates from site ranker, the landing

page substance of the site is separated and parsed by

expelling stop words and stemming. At that point we

develop a component vector for the site and the

subsequent vector is nourished into a Naıve Bayes

classifier to figure out whether the page is theme

significant or not.

A. Module 2: Insight Exploring

The main aim of Insight Exploring is to find searchable

forms. During the knowledge investigating stage,

important links are organized for quick in-site looking.

We have played out a broad execution assessment of

Smart Crawler over genuine web information in

1representativedomains and contrasted and ACHE and a

webpage based crawler.

a. Working of Link Frontier

Link Frontier gets each one of the associations from the

Site Classifier and goes to Page fetcher. The link

classifiers in these crawlers assume a vital part in

accomplishing higher searching productivity than the

best-first crawler However, these link classifiers are

utilized to anticipate the separation to the page containing

searchable structures, which is hard to appraise,

particularly for the postponed advantage joins (interfaces

in the end prompt pages with structures). Therefore, the

crawler can be wastefully prompted pages without

focused structures.

b. Working of Page Fetcher

Page fetcher read the website page from the url connect

given by Link Fronties. We utilize Http to download the

website pages. For links that only differ in the query

string part, we consider them as similar URL. Since links

are regularly appropriated unevenly in server catalogs,

organizing joins by the importance can conceivably

inclination toward a few indexes. For example, the links

under books may be allocated a high need, since "book"

is an essential element word in the URL.

c. Working of Semantic Classifier

From the page fetched, Semantic classifier discovers

RDF and OWNL and groups them to important and

immaterial Forms. HIFI system is received by Semantic

Classifier. Semantic Classifier judges whether a shape is

point significant or not in light of the content element of

the RDF that comprises of space related terms. The

methodology of parceling the element space permits

choice of more successful learning calculations for every

feature subset. The basic web crawling calculation is

straightforward: Given an arrangement of seed Uniform

Resource Locators (URLs), a crawler downloads all the

pages tended to by the URLs, separates the hyperlinks

contained in the pages, and iteratively downloads the

website pages tended to by these hyperlinks.

V. PROPOSED ALGORITHM

A. Site Locating

When a search query is issued, Google search is invoked

with the keyword of query to get the relevant sites. The

relevant sites are stored in Sites Database. Reverse

Search modules takes the sites from sites database and

does reverse search on Google to get the pages where the

sites are referred and populates those pages also into Site

Database. Site Frontier extracts each link from Site

Database and provides to Site Ranker for lookup on RDF

content in it and ranks the Site based on the number of

RDF located in the Site. The links on the Site where RDF

are present is provided to the Link Frontier.

B. In Site Exploring

Link frontier traverses the link and extracts the pages

from internet for that link. It then orders the Links based

on the RDF content relevant to the search query and

highly relevant links are provided Semantic Classifier.

Semantic Classifier classifies the RDF present in the

pages to three levels of High, Medium and Low

relevance to the search query. The classified RDF is

stored in the Semantic database. In the Post Query, users

can give extra preference on the search query and based

on the preferences the RDF is fetched from the Semantic

database and the result is provided to the user.

The algorithm steps for Semantic crawling is below

Input: Keyword

Output: RDF pages

• Step1: Using the keyword, Google search is

done and the output links are got.

• Step2: Each of the output links is taken and

deep crawling on site is done to extract any RDF or OWL

links.

• Step3: Conceptually similar RDF is grouped by

using clustering algorithm (k means clustering is used).

 37

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

Each of clusters is displayed to user and user must select

the cluster which is most relevant to his search.

<Clustering of RDF by using K means is a separate

algorithm>

• Step4: From RDF cluster selected by user all

subjects and objects are extracted. Using the dictionary, a

concept keyword table is created by learning all

synonyms for subjects and objects.

• Step5: By taking most occurring words from

the concept keyword table, a new keyword is created and

Google search is done with new keyword and from the

resulting links, deep crawling is done to extract pages

with RDF.

• Step6: The RDF concept distance similarity to

selected RDF concept by user is measured, if the distance

is less than a threshold i.e. 1000 taken in this project, then

those RDF page is selected.

RDF similarity measurement is done by a separate

algorithm named as DSFC (Domain Specific form

classifier). This algorithm classifies the forms structure

on the basis of topic domains.

• Step7: All the selected RDF pages are then

displayed to user.

VI. IMPLEMENTATION PROCESS

The proposed semantic crawler was implemented in

JAVA. Parameters to be used to implement and generate

the outcomes of proposed solution are as follows:

1) Accuracy: Accuracy is measured as the number of

relevant out of the total RDF fetched. Relevant is judged

by human user after fetching of RDF.

Accuracy= total relevant pages/total RDF fetched pages

2) Information depth: Information depth is measured in

terms of non-duplicated information present in RDF out

of total RDF extracted.

Information depth= non-duplicated information in RDF/

Total RDF extracted

3) Harvest rate: Harvest rate is defined as number of

RDF searched as per number of pages.

Harvest rate= Total RDF searched pages/Total number of

pages

4) Running time: Running time is defined total time

taken in running process to search as per number of

RDFs.

Running time= total time of search process/ Total number

of RDFs

5) Preference impact: Preference impact is defined as

number of filtered forms as per number of matched forms

Preference impact= Total number of filtered forms/ total

number of matched forms

We tested for different keywords and the snapshots for

whole process for one of the queries are given below:

Fig 3: GUI proposed solution

Fig.3 shows the GUI of proposed solution. The seed site

for the query is added and after adding reverse search is

launched.

Fig 4: Reverse search process in proposed solution

Fig.4 shows the reverse search process that fetches more

sites relevant to the keyword and the result is shown

below in fig.4. Once reverse search is complete, crawling

is done to fetch the Semantic pages that is presenting

through fig.5.

 38

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

Fig 5: Semantic crawling in proposed solution

Fig 6: RDF extraction process in proposed solution

Fig.6 shows the complete crawling process using RDF

extraction process. Crawling completes when threshold

limit of RDF are extracted

Fig 7: Completion of Search process

Fig.7 shows the results of searching process. The RDF

results can be viewed using the form shown in fig.8.

Fig 8: Search results (RDF) for books

The solution was tested for accuracy and information

depth of the proposed solution with Google Search.

VII. SRESULTS AND DISCUSSION

The results from the proposed semantic crawler for

different parameters are shown below:

Accuracy: The accuracy is measured for different length

of keywords and the result is below. From the result

shown in fig. 9 we see that accuracy of Semantic crawler

is better than Google Search.

Fig 9: Comparative results of accuracy for proposed

semantic crawler and Google search

 39

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

Table 1: Comparative results of accuracy for proposed

semantic crawler and Google search

No. of

keywords

(in

thousands)

Accuracy in percentage

Proposed

semantic

crawler

Google

search

1 68 70

2 75 72

3 80 75

4 85 79

5 95 85

Information depth: Information depth is measured for

different length of keyword and the result is shown in fig.

10 we see that the information depth ratio is higher in

Semantic crawler when compared to Google Search.

Fig 10: Comparative results of information depth for

proposed semantic crawler and Google search

Table 2: Comparative results of information depth ratio

for proposed semantic crawler and Google search

No. of

keywords

(in

thousands)

Information depth ratio

Proposed

semantic

crawler

Google

search

1 6 3

2 9 4

3 14 6

4 16 8

5 18 10

Harvest rate: Harvest rate can be measured by dividing

total number of RDF searched pages by total number of

pages and the result is shown from fig. 11. From the

result shown in fig. 11 we see that the harvest rate is

higher in Semantic crawler when compared to Google

Search.

Fig 11: Comparative results of harvest rate for proposed

semantic crawler and Google search

Table 3: Comparative results of harvest rate for

proposed semantic crawler and Google search

No. of pages

(in

hundreds)

Harvest rate

Proposed

semantic

crawler

Google

search

10 0.9 0.4

20 0.7 0.3

30 0.667 0.3

40 0.625 0.3

50 0.68 0.28

Running time: Running time can be measured by

dividing total time taken in searching process by total

number of RDFs and the result is shown from fig. 12.

From the result shown in fig. 8 we see that the running

time is higher in Google Search when compared to

Semantic crawler.

Fig 12: Comparative results of running time for

proposed semantic crawler and Google search

 40

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

Table 4: Comparative results of running time for

proposed semantic crawler and Google search

Total number of

RDFs

Running time (in milli

seconds)

Proposed

semantic

crawler

Google

search

5 125 260

10 175 750

15 240 1000

20 250 1240

25 260 1450

Preference impact: Preference impact can be measured

by dividing total number of filtered forms by total

number of matched forms and the result is shown from

fig. 12. From the result shown in fig. 13 we see that the

preference impact is higher in Semantic crawler when

compared to Google Search.

Fig 13: Comparative results of preference impact for

proposed semantic crawler and Google search

Table 5: Comparative results of preference impact for

proposed semantic crawler and Google search

Total number

matched form

Preference impact

Proposed

semantic

crawler

Google

search

106 0.566 0.235

Overall performance evaluation is presented by

comparing the results of number of relevant forms

harvested by Google search and proposed semantic

crawler for multiple keywords as shown by fig. 14.

Fig 14: Comparative results of number of relevant forms

harvested by Google search and proposed semantic

crawler for multiple keywords

VIII. CONCLUSION

The proposed semantic crawler was able to crawled deep

web and mines the RDF relevant to the search query.

Through our tests, we have proved the coverage and

quality of RDF is good. As noteworthy web makes at an

expedient pace, there has been augmented vitality for

methodologies that assist competently with finding huge

web interfaces. Regardless, because of the expansive

volume of web assets and the dynamic strategy for huge

web, completing wide degree and high effectiveness is an

attempting issue. We propose a two-stage structure,

particularly Smart Crawler, for fruitful get-together

noteworthy web interfaces. As a future work, we will

consider how to extend the crawler to query on OWL

data on internet.

IX. ACKNOWLEDGMENT

We acknowledge the IKGPTU, Kapurthala for given us

an opportunity for the research work.

REFERENCES

1. Kevin Chen-Chuan Chang, Bin He, and Zhen

Zhang. ―Toward large scale integration:

Building a metaquerier over databases on the

web,‖ In CIDR, 2005, pages 44–55.

2. Denis Shestakov. ―Databases on the web:

national web domain survey,‖ Proc. of the 15th

Symposium on International Database

 41

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 4, April 2018

Engineering & Applications, ACM 2011,

pages179–184.

3. Denis Shestakov and Tapio Salakoski. ―Host-IP

clustering technique for deep web

characterization,‖ Proc. of the 12th International

Asia-Pacific Web Conference (APWEB), IEEE

2010, pages 378–380.

4. Denis Shestakov and Tapio Salakoski. ―On

estimating the scale of national deep web,‖

Database and Expert Systems Applications,

Springer 2007, pages 780–789.

5. Shestakov Denis. ―On building a search

interface discovery system,‖ Proc. of the 2nd

international conference on Resource discovery,

Lyon France, 2010 Springer, pages 81–93.

6. Luciano Barbosa and Juliana Freire. ―Searching

for hidden-web databases,‖ WebDB, 2005,

pages 1–6.

7. Luciano Barbosa and Juliana Freire. ―An

adaptive crawler for locating hidden-web entry

points,‖ Proc. of the 16th international

conference on World Wide Web, ACM 2007,

pages 441–450.

8. Soumen Chakrabarti, Martin Van den Berg, and

Byron Dom. ―Focused crawling: a new

approach to topic-specific web resource

discovery,‖ Computer Networks, 31(11): 1999,

1623–1640.

9. S. Brin and L. Page, ―The anatomy of a large-

scale hypertextual web search engine,‖ Proc. of

the 7th International World Wide Web

Conference, 1998.

10. Yahoo! Research Barcelona, ―Datasets for web

spam detection,‖ http://www.yr-

bcn.es/webspam/datasets

11. H.-T. Lee, D. Leonard, X. Wang, and D.

Loguinov, ―IRLbot: Scaling to 6 billion pages

and beyond,‖ Proc. of the 17th International

World Wide Web Conference, 2008.

12. Internet Archive, ―Heritrix home page,‖

http://crawler.archive.org/.

13. G. Mohr, M. Stack, I. Ranitovic, D. Avery, and

M. Kimpton, ―An introduction to Heritrix, an

open source archival quality web crawler,‖ Proc.

of the 4th International Web Archiving

Workshop, 2004.

14. R. Khare, D. Cutting, K. Sitakar, and A. Rifkin,

―Nutch: A flexible and scalable open-source

web search engine,‖ Technical Report,

Commerce Net Labs, 2004.

 42

