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Abstract – In mobile wireless networks, the developing vicinity based applications have prompted the requirement for very 

compelling and vitality productive neighbor disclosure conventions. The Primary worry in a Wireless Sensor Network is Energy 

utilization. The primary issue in the system is the point at which the information is sent from hub to sink, the information will be 

lost because of low vitality of node.The structure utilizes dispersed load adjusted grouping and double information transferring, 

which is alluded to as LBC-DDU. It comprises of three-layer (I) sensor layer (ii) group head layer, and (iii) portable gatherer (called 

SenCar layer). At the sensor layer, a disseminated stack adjusted grouping (LBC) calculation is proposed for sensors to self-arrange 

themselves into bunches. At the bunch head layer, the between group transmission extend is deliberately ensured the network 

among the bunches. Numerous group heads inside a bunch participate with each other to perform vitality sparing between bunch 

correspondences. 

 

Index Terms—Mobile wireless network, neighbor discovery, protocol design , dual data . 

 

 INTRODUCTION 
 

NOWADAYS, the transfer of data between neighboring 

nodes in mobile wireless networks has been increasingly 

indispensible  owing  to  the  rapid  growth  of  diverse 

demands  in  people's  everyday  life.  For  instance,  a  

college student may want to discuss a math problem with 

other students in the library using his/her tablet; a video 

game fan is likely to have  a car race on the smartphone  

with other people in a Starbucks  coffee  shop.  These  

motivate  the  appearance  of proximity-based 

applications. Although central servers can be employed, 

proximity-based applications' potential can be better 

exploited providing the ability of discovering nearby 

mobile devices in one's wireless communication vicinity 

due to four reasons. First, users can enjoy the convenience 

of local neighbor discovery at any time, while the 

centralized service may be unavailable  due  to  

unexpected  reasons.  Second,  a  single neighbor 

discovery protocol can benefit various applications by 

providing more flexibility than the centralized approach. 

Third, communications between a central server and 

different mobile nodes may induce problems, such as 

excessive transmission overheads, congestion, and 

unexpected reaction delay. Last but not least, searching 

for nearby mobile  

 

Therefore, a distributed neighbor discovery protocol for 

mobile wireless networks is highly needed in practice. 

 

 

Generally, there are three challenges in designing such a 

neighbor discovery protocol. 

 

• The first one is energy efficiency. It is known 

that it takes the mobile devices almost a similar amount of 

energy to transmit and to listen to the wireless media. Due 

to limited battery power, a mobile node can only 

periodically turn on its wireless interface with a certain 

duty cycle. In some applications, nodes may agree on the 

same duty cycle for fast neighbor discovery (symmetric 

case). However, mobile nodes may need to adopt different 

duty cycles independently, according to their remaining 

battery power levels (asymmetric case). Therefore, both 

the symmetric and asymmetric neighbor discovery should 

be considered. 

 

• The second challenge is effectiveness, i.e., the 

neighbor discovery protocol should not only guarantee 

successful discovery between neighboring nodes, but also 

realize a short latency at the same time. On one hand, the 

probabilistic approach in static sensor networks does not 

meet this requirement because it fails to provide a worst-

case discovery latency bound, and thus leads to confusion 

between discovery failure and nonexistence of neighbors. 

On the other hand, the discovery latency should be short 

enough, so that the users will not lose patience before 

finding a neighbor, and the interval when two mobile 
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nodes are within each other's communication range can be 

captured. 

 

• In an ideal case, neighboring nodes can discover 

each other immediately if they turn to awake 

simultaneously upon synchronized clocks. Without a 

central server, the synchronization can be achieved 

through GPS [23]. Nevertheless, it is too energy-

consuming for mobile devices. Thus, how to deal with 

asynchronization is the third challenge to the design of a 

neighbor discovery protocol. 

 

II. PURPOSE 

 

The detailed contributions of this work are listed as 

follows.Load balanced clustering - dual data uploading 

consists of three-layer 

     (i) sensor layer 

     (ii) cluster head layer 

     (iii) mobile collector (called SenCar layer). 

i. sensor layer: 

In the sensor layer, the distributed LBC  algorithm used to 

self organize the sensors are into the cluster. 

ii.cluster head layer: 

             In the cluster head layer, the sensors which have 

high residual energy are elected as cluster head. Each 

cluster consists of two cluster heads called Cluster Head 

Groups (CHGs). The cluster head collects the data from 

the sensors and it transfer the data to the sink through the 

neighbour cluster heads by Adhoc On-demand Multipath 

Distance Vector (AOMDV) routing protocol.  

iii. SenCar layer: 

          Whenever the energy level reaches below the 

threshold level, SenCar starts to collects the data by 

selecting the polling points in the SenCar layer by the two 

antennas and it transfers to the sink simultaneously .  

 

III. SYSTEM MODEL 

 

 
Fig.1. Overviewof the LBC-DDU framework 

A .Description  

The overview of LBC-DDU based mobile data collection 

technique is shown in figure 1.  

 

B. Sensor Layer  

In the sensor layer, a distributed load balanced clustering 

(LBC) algorithm is proposed for sensors to self-organize 

themselves into clusters. In contrast to existing clustering 

methods, our scheme generates multiple cluster heads in 

each cluster to balance the work load and facilitate dual 

data uploading. The sensor layer is the bottom and basic 

layer. For generality, we do not make any assumptions on 

sensor distribution or node capability, such as location-

awareness. Each sensor is assumed to be able to 

communicate only with its neighbors, i.e., the nodes 

within its transmission range. During initialization, 

sensors are self-organized into clusters. Each sensor 

decides to be either a cluster head or a cluster member in 

a distributed manner. In the end, sensors with higher 

residual energy would become cluster heads and each 

cluster has at most M cluster heads, where M is a system 

parameter. For convenience, the multiple cluster heads 

within a cluster are called a cluster head group (CHG), 

with each cluster head being the peer of others. The 

algorithm constructs clusters such that each sensor in a 

cluster is 1-hop away from at least one cluster head. The 

benefit of such organization is that the intra-cluster 

aggregation is limited to a single hop. In the case that a 

sensor may be covered by multiple cluster heads in a 

CHG, it can be optionally affiliated with one cluster head 

for load balancing.  

 

To avoid collisions during data aggregation, the CHG 

adopts time-division-multiple-access based technique to 

co-ordinate communications between sensor nodes. Note 

that only intra-cluster synchronization is needed here 

because data are collected via SenCar. In the case of 

imperfectsynchronization, some hybrid techniques to 

combine time division multiple access with contention-

based access protocols (Carrier Sense Multiple Access) 

that listen to the medium before transmitting are required. 

For example, hybrid protocols like Z-MAC can be 

utilized to enhance the strengths and offset the 

weaknesses of TDMA and CSMA. Upon the arrival of 

SenCar, each CHG uploads buffered data via MU-MIMO 

communications and synchronizes its local clocks with 

the global clock on SenCar via acknowledgement 

messages. Finally, periodical reclustering is performed to 

rotate cluster heads among sensors with higher residual 

energy to avoid draining energy from cluster heads.  
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C. Cluster Head Layer 

 At the cluster head layer, the inter-cluster transmission 

range is carefully chosen to guarantee the connectivity 

among the clusters. Multiple cluster heads within a cluster 

cooperate with each other to perform energy saving 

intercluster communications. Through intercluster 

transmissions, cluster head information is forwarded to 

SenCar for its moving trajectory planning. The cluster 

head layer consists of all the cluster heads. As 

aforementioned, intercluster forwarding is only used to 

send the CHG information of each cluster to SenCar, 

which contains an identification list of multiple cluster 

heads in a CHG. Such information must be sent before 

SenCar departs for its data collection tour. Upon receiving 

this information, SenCar utilizes it to determine where to 

stop within each cluster to collect data from its CHG. To 

guarantee the connectivity for intercluster 

communication, the cluster heads in a CHG can 

cooperatively send out duplicated information to achieve 

spatial diversity, which provides reliable transmissions 

and energy saving. Moreover, cluster heads can also 

adjust their output power for a desirable transmission 

range to ensure a certain degree of connectivity among 

clusters.  

 

D. Mobile Collector Layer  

The mobile collector layer is SenCar it is equipped with 

two antennas, which enables two cluster heads to 

simultaneously upload data to SenCar in each time by 

utilizing multi-user multiple-input and multiple-output 

(MU-MIMO)The first step (lines 1–6) in the algorithm is 

to build an initial, but not necessarily feasible, code of the 

target length .The active slots in are determined by the 

optimal Diff-Code whose length is the largest among all 

the optimal DiffCodes shorter than . An intuitive method 

of initializing is to assign slot active as long as slot is 

active in However, we notice that for , such that the th and 

th slots are active in both and , if , code and will both be 

feasible under the slot offset of 10. 

To collect data as fast as possible, SenCar should stop at 

positions inside a cluster that can achieve maximum 

capacity. In theory, since SenCar is mobile, it has the 

freedom to choose any preferred position. However, this 

is infeasible in practice, because it is very hard to estimate 

channel conditions for all possible positions. To mitigate 

the impact from dynamic channel conditions, SenCar 

measures channel state information before each data 

collection tour to select candidate locations for data 

collection. We call these possible locations SenCar can 

stop to perform concurrent data collections polling points. 

In fact, SenCar does not have to visit all the polling 

points. Instead, it calculates some polling points which are 

accessible and we call them selected polling points. In 

addition, we need to determine the sequence for SenCar to 

visit these selected polling points such that data collection 

latency is minimized. Since SenCar has pre-knowledge 

about the locations of polling points, it can find a good 

trajectory by seeking the shortest route that visits each 

selected polling point exactly once and then returns to the 

data sink.The proposed framework aims to achieve great 

energy saving and shortened data collection latency, 

which has the potential for different types of data 

services. Although traditional designs of WSNs can 

support low-rate data services, more and more sensing 

applications nowadays require high-definition pictures 

and audio/video recording, which has become an 

overwhelming trend for next generation sensor designs 

Using MU-MIMO can greatly speed up data collection 

time and reduce the overall latency. The application 

scenario emerges in disaster rescue. For example, to 

combat forest fire, sensor nodes are usually deployed 

densely to monitor the situation. These applications 

usually involve hundreds of readings in a short period a 

large amount of data and are risky for human being to 

manually collect sensed data. A mobile collector equipped 

with multiple antennas overcomes these difficulties by 

reducing data collection latency and reaching hazard 

regions not accessible by human being. Although 

employing mobility may elongate the moving time, data 

collection time would become dominant or at least 

comparable to moving time for many high-rate or densely 

deployed sensing applications. In addition, using the 

mobile data collector can successfully obtain data even 

from disconnected regions and guarantee that all of the 

generated data are collected. 

 

V. EVALUATION 

 

We not only conducted comprehensive simulations, but 

also prototyped our designs on a USRP-N210 testbed, to 

evaluate 
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Worst-case latency bound versus duty cycle.he discovery 

latencies with various specific symmetric and asymmetric 

pattern codes. For comparison, we used deterministic 

protocols, including Disco, U-Connect, and Searchlight-S, 

and a probabilistic protocol, Birthday. In this section, we 

first present how the worst-case latency bound changes 

with the symmetric duty cycle for various deterministic 

neighbor discovery protocols. Then, we compare both 

symmetric and asymmetric discovery latencies of 

different neighbor discovery protocols in two scenarios: 

one-to-one neighbor discovery and clique neighbor 

discovery. We compare different neighbor discovery 

protocols using similar duty cycles as in previous works 

(e.g., Disco, U-Connect , and Searchlight). 

 

A. Worst-Case Bound of Symmetric Discovery Latency 

Worst-case latency bound versus duty cycle 

demonstrates the 

worst-case latency bound of various neighbor discovery 

protocols restricted by symmetric duty cycle. Note that 

there may exist more than one pattern yielding the same 

duty cycle for Disco and Diff-Codes. We use adjacent 

prime numbers to generate Disco patterns, in which case 

Disco achieves better symmetric-case performance. As 

for Diff-Codes, we select the pattern with the smallest 

worst-case bound regarding each duty cycle. We observe 

that Diff-Codes achieve tremendously tighter worst-case 

latency bounds compared to the other protocols. 

Reduction of worst-case latency bound shows the 

improvements of worst-case latency bound achieved by 

Diff-Codes compared to the other protocols. We note that 

we compare Diff-Codes to other neighbor discovery 

protocols under exactly the same duty cycles. Compared 

to Searchlight-S, with the same symmetric duty cycle, 

Diff-Codes can lower the worst-case latency bound by 

more than 20% in most cases, and the maximum 

reduction is as high as 50 %. Specifically, those cases of 

maximum reduction in correspond to optimal Diff-Codes, 

which are in correspondence to Table I, as well. The 

average worst-case latency bound we compare multiple 

setups of ADiff-Codes, which have the same set of 

asymmetric duty cycles, as well. 

 

CDF of one-to-one discovery latencies for asymmetric 

duty cycles 5 %–1% shows the evaluation results for 

various neighbor discovery protocols. The simulated 

ADiff-Codes outperform Searchlight-S and Disco all 

along. Specifically, ADiff-Codes CDF of one-to-one 

discovery latencies for symmetric duty cycle 5%. 

reductions of Diff-Codes over Searchlight-S, U-Connect, 

and Disco are 23.9%, 65.7%, and 80.8%, respectively. 

The above numerical results verify the effectiveness of 

Diff-Codes. 

 

B. One-to-One Neighbor Discovery Latencies 

1) Discovery Latencies in Symmetric Case: In this 

set of simulations, we set the duty cycle at 5% and 

compare the performance of two different Diff-Codes to 

existing protocols. We set the cycle lengths of the two 

Diff-Codes at 280 and 320, the pair of primes in Disco at 

(37, 43), the prime of U-Connect at 31, the probing period 

of Searchlight-S at 40 slots, and the active probability of 

Birthday protocol at 5%. From the cumulative distribution 

of discovery latencies, we can see that Diff-Codes 

perform the best in both the median case and worst case. 

Specifically, both of the two evaluated Diff-Codes realize 

a median gain of nearly 30% over Searchlight-S; the 

minimum worst-case latency of Diff-Codes is 280 slots, 

which is also 30% less than that of Searchlight-S. 

 

2) Discovery Latencies in Asymmetric Case: In the 

simulations for asymmetric one-to-one neighbor 

discovery, we consider the asymmetric duty cycles of 5% 

and 1%. The reduce the median discovery latency by 

26.0% compared to Searchlight-S, and by 47.9% 

compared to Disco. The worst-case gains of ADiff-Codes 

are 15.9% and 28.2% over Searchlight-S and Disco, 

respectively. Moreover, in comparison to U-Connect, 

ADiff-Codes reduce the median case discovery latency by 

as high as 59.3% and achieve smaller latencies for more 

than 99.9% of times, while having a worst-case bound 

that is only 7.1% larger. 

 

In there is only one single series of ADiff-Codes. 

However, for the same set of asymmetric duty cycles, 

many ADiffCodes can be constructed. Hence, we 

compare the discovery latencies of various ADiff-Codes 

setups conforming to the same asymmetric duty cycles of 

5% and 1%. There are seven ADiff-Codes series 

presented in the figure. Even though their worst-case 

latencies show big differences, the latencies in the median 

and the average cases are fairly close. That indicates 

ADiff-Codes can achieve a relatively stable discovery 

latency, despite the combination of duty cycles. 
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Furthermore, from the perspective of practical 

implementation, it tends to be acceptable in mobile 

wireless networks as long as enough neighbors are found. 

For example, even though there may be more than 10 

mobile device users in a coffee bar, a guest is satisfied to 

discover only four of them to start a card game. It is 

different from neighbor discovery in sensor networks, 

where failing to discover a neighbor can result in 

unreachable nodes in transmission. This means that if a 

neighbor discovery protocol has short latencies in most 

cases, it can satisfy a user's demands well most of the 

times in practice. Considering the tremendous latency 

gain in the median case, and the superior performance in 

most of the times, i.e., all along in symmetric case, and 

more than 99% according to the one-to-one asymmetric 

simulation results, our design of (A)Diff-Codes should 

have great advantage in reality. 

 

C. Clique Neighbor Discovery Latencies 

Besides the one-to-one discovery latencies, we also 

examine the performance of our design, when there are 

multiple neighbors within a node's transmission range. 

The discovery latency in the scenario of clique neighbor 

discovery is the number of slots for a node to discover all 

its neighbors. Moreover, as explained in Section VII-B, 

practical applications can be satisfied by discovering 

enough number of neighbors. Thus, we also compare 

different neighbor discovery protocols using 90%-latency, 

i.e., the latency of discovering 90% of neighbors. 

 

1) Discovery Latencies in Symmetric Case: For 

symmetric neighbor discovery with the existence of 

multiple neighbors, we set the duty cycle of all the nodes 

at 5% presents the CDF of discovery latencies when a 

node has 50 neighbors overall. The two simulated Diff-

Codes outperform other neighbor discovery protocols 

significantly. Specifically, the two Diff-Codes achieve 

median gains of 30.7% and 20.8% compared to 

Searchlight-S, respectively. However, in the worst case, 

the evaluated neighbor discovery protocols cannot always 

discover all the 50 neighbors. For example, the two Diff-

Codes can discover all the neighbors in 71.6% and 72.7% 

simulations, respectively, and Searchlight-S only 

converges at 66.7%. This is because the interference of 

concurrent discovery signals cannot be ignored in the 

clique scenario. Therefore, as stated in Section VII-B, we 

focus on the 90% latency in the following simulations of 

clique neighbor discovery. 

 

To obtain how the cumulative distributions of 90% 

latencies change as the number of neighbors increases, we 

compare the CDFs of Diff-Code(14/280) to Searchlight-S, 

which is the best among existing protocols. As shown in, 

Diff-Code has better performance than Searchlight-S in 

all cases. The figures also indicate that both neighbor 

discover protocols can discover at least 90% of all the 

neighbors, regardless of the number of neighbors. Thus, 

although there are interferences among nodes in clique 

neighbor discovery, the user can still discover enough 

neighbors with high possibility. 

 

2) Discovery Latencies in Asymmetric Case: 
Because the duty cycle of a mobile device is 

independently determined by 

 

 
CDF of 90% latency with up to 200 neighbors for 

symmetric duty cycle 5%. 

 

(a) Diff-Code(14/280). (b) Searchlight-S (40). 

 

its energy budget, there may exist various duty-cycled 

neighbors in a node's proximity. That is to say, the node 

may have both symmetric neighbors with the same duty 

cycle and asymmetric neighbors that have different duty 

cycles. Hence, in our simulations, we set the duty cycle of 

node to be 5% and 1 %, respectively, and node has 20 

neighboring nodes. For each duty cycle of node , we 

consider two cases: 1) all of the 20 nodes are asymmetric 

neighbors of node , and 2) half of the neighbors have duty 

cycle of 1%, and the other half have 5 % presents the 

CDFs of 90% latency in different cases. We note that all 

the deterministic neighbor discovery protocols adopt the 

same active-sleep patterns as in the one-to-one case, with 

duty cycles of 5% and 1%. The performance of Disco and 

U-Connect is better than that in the one-to-one case. This 

is because in our setups for clique neighbor discovery, 

most neighbors have nonaligned time-slots with node  . 

Moreover, it is apparent 
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VI. CONCLUSION 

 

In this paper, we have presented a systematic study of 

designing highly effective and energy-efficient neighbor-

discovery protocols in mobile wireless networks. We have 

designed Diff-Codes for the case of symmetric duty cycle 

and extended it to ADiff-Codes to deal with the 

asymmetric case. We have derived a tighter lower bound 

for the worst-case latency by exploiting active slot 

nonalignment. Both our simulation and experiment results 

have shown that (A)Diff-Codes can achieve significantly 

better performance in both one-to-one and clique 

neighbor discovery, compared to state-of-art neighbor 

discovery protocols. Specifically, in the one-to-one 

scenario, Diff-Codes can reduce the worst-case latency by 

up to 50 % and achieve a median gain of around 30%; 

while ADiff-Codes are also 30% better in the median case 

and outperform existing neighbor discovery protocols in 

more than 99% simulations and experiments. In the clique 

scenario, both Diff-Codes and ADiff-Codes have smaller 

latencies to discover 90% of all the neighbors. 
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