
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 548

Energy Efficiency Using Load Balanced Clustering

- Dual Data Uploading In Wireless Sensor

Networks

[1]
D.Iswarya,

[2]
G.Rajeswari

[1]
Final Year PG Computer Science Student,

[2]
Asst. Prof of CSE

[1][2]
Sree Sowdambika College of Engineering

Abstract – In mobile wireless networks, the developing vicinity based applications have prompted the requirement for very

compelling and vitality productive neighbor disclosure conventions. The Primary worry in a Wireless Sensor Network is Energy

utilization. The primary issue in the system is the point at which the information is sent from hub to sink, the information will be

lost because of low vitality of node.The structure utilizes dispersed load adjusted grouping and double information transferring,

which is alluded to as LBC-DDU. It comprises of three-layer (I) sensor layer (ii) group head layer, and (iii) portable gatherer (called

SenCar layer). At the sensor layer, a disseminated stack adjusted grouping (LBC) calculation is proposed for sensors to self-arrange

themselves into bunches. At the bunch head layer, the between group transmission extend is deliberately ensured the network

among the bunches. Numerous group heads inside a bunch participate with each other to perform vitality sparing between bunch

correspondences.

Index Terms—Mobile wireless network, neighbor discovery, protocol design , dual data .

 INTRODUCTION

NOWADAYS, the transfer of data between neighboring

nodes in mobile wireless networks has been increasingly

indispensible owing to the rapid growth of diverse

demands in people's everyday life. For instance, a

college student may want to discuss a math problem with

other students in the library using his/her tablet; a video

game fan is likely to have a car race on the smartphone

with other people in a Starbucks coffee shop. These

motivate the appearance of proximity-based

applications. Although central servers can be employed,

proximity-based applications' potential can be better

exploited providing the ability of discovering nearby

mobile devices in one's wireless communication vicinity

due to four reasons. First, users can enjoy the convenience

of local neighbor discovery at any time, while the

centralized service may be unavailable due to

unexpected reasons. Second, a single neighbor

discovery protocol can benefit various applications by

providing more flexibility than the centralized approach.

Third, communications between a central server and

different mobile nodes may induce problems, such as

excessive transmission overheads, congestion, and

unexpected reaction delay. Last but not least, searching

for nearby mobile

Therefore, a distributed neighbor discovery protocol for

mobile wireless networks is highly needed in practice.

Generally, there are three challenges in designing such a

neighbor discovery protocol.

• The first one is energy efficiency. It is known

that it takes the mobile devices almost a similar amount of

energy to transmit and to listen to the wireless media. Due

to limited battery power, a mobile node can only

periodically turn on its wireless interface with a certain

duty cycle. In some applications, nodes may agree on the

same duty cycle for fast neighbor discovery (symmetric

case). However, mobile nodes may need to adopt different

duty cycles independently, according to their remaining

battery power levels (asymmetric case). Therefore, both

the symmetric and asymmetric neighbor discovery should

be considered.

• The second challenge is effectiveness, i.e., the

neighbor discovery protocol should not only guarantee

successful discovery between neighboring nodes, but also

realize a short latency at the same time. On one hand, the

probabilistic approach in static sensor networks does not

meet this requirement because it fails to provide a worst-

case discovery latency bound, and thus leads to confusion

between discovery failure and nonexistence of neighbors.

On the other hand, the discovery latency should be short

enough, so that the users will not lose patience before

finding a neighbor, and the interval when two mobile

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 549

nodes are within each other's communication range can be

captured.

• In an ideal case, neighboring nodes can discover

each other immediately if they turn to awake

simultaneously upon synchronized clocks. Without a

central server, the synchronization can be achieved

through GPS [23]. Nevertheless, it is too energy-

consuming for mobile devices. Thus, how to deal with

asynchronization is the third challenge to the design of a

neighbor discovery protocol.

II. PURPOSE

The detailed contributions of this work are listed as

follows.Load balanced clustering - dual data uploading

consists of three-layer

 (i) sensor layer

 (ii) cluster head layer

 (iii) mobile collector (called SenCar layer).

i. sensor layer:

In the sensor layer, the distributed LBC algorithm used to

self organize the sensors are into the cluster.

ii.cluster head layer:

 In the cluster head layer, the sensors which have

high residual energy are elected as cluster head. Each

cluster consists of two cluster heads called Cluster Head

Groups (CHGs). The cluster head collects the data from

the sensors and it transfer the data to the sink through the

neighbour cluster heads by Adhoc On-demand Multipath

Distance Vector (AOMDV) routing protocol.

iii. SenCar layer:

 Whenever the energy level reaches below the

threshold level, SenCar starts to collects the data by

selecting the polling points in the SenCar layer by the two

antennas and it transfers to the sink simultaneously .

III. SYSTEM MODEL

Fig.1. Overviewof the LBC-DDU framework

A .Description

The overview of LBC-DDU based mobile data collection

technique is shown in figure 1.

B. Sensor Layer

In the sensor layer, a distributed load balanced clustering

(LBC) algorithm is proposed for sensors to self-organize

themselves into clusters. In contrast to existing clustering

methods, our scheme generates multiple cluster heads in

each cluster to balance the work load and facilitate dual

data uploading. The sensor layer is the bottom and basic

layer. For generality, we do not make any assumptions on

sensor distribution or node capability, such as location-

awareness. Each sensor is assumed to be able to

communicate only with its neighbors, i.e., the nodes

within its transmission range. During initialization,

sensors are self-organized into clusters. Each sensor

decides to be either a cluster head or a cluster member in

a distributed manner. In the end, sensors with higher

residual energy would become cluster heads and each

cluster has at most M cluster heads, where M is a system

parameter. For convenience, the multiple cluster heads

within a cluster are called a cluster head group (CHG),

with each cluster head being the peer of others. The

algorithm constructs clusters such that each sensor in a

cluster is 1-hop away from at least one cluster head. The

benefit of such organization is that the intra-cluster

aggregation is limited to a single hop. In the case that a

sensor may be covered by multiple cluster heads in a

CHG, it can be optionally affiliated with one cluster head

for load balancing.

To avoid collisions during data aggregation, the CHG

adopts time-division-multiple-access based technique to

co-ordinate communications between sensor nodes. Note

that only intra-cluster synchronization is needed here

because data are collected via SenCar. In the case of

imperfectsynchronization, some hybrid techniques to

combine time division multiple access with contention-

based access protocols (Carrier Sense Multiple Access)

that listen to the medium before transmitting are required.

For example, hybrid protocols like Z-MAC can be

utilized to enhance the strengths and offset the

weaknesses of TDMA and CSMA. Upon the arrival of

SenCar, each CHG uploads buffered data via MU-MIMO

communications and synchronizes its local clocks with

the global clock on SenCar via acknowledgement

messages. Finally, periodical reclustering is performed to

rotate cluster heads among sensors with higher residual

energy to avoid draining energy from cluster heads.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 550

C. Cluster Head Layer

 At the cluster head layer, the inter-cluster transmission

range is carefully chosen to guarantee the connectivity

among the clusters. Multiple cluster heads within a cluster

cooperate with each other to perform energy saving

intercluster communications. Through intercluster

transmissions, cluster head information is forwarded to

SenCar for its moving trajectory planning. The cluster

head layer consists of all the cluster heads. As

aforementioned, intercluster forwarding is only used to

send the CHG information of each cluster to SenCar,

which contains an identification list of multiple cluster

heads in a CHG. Such information must be sent before

SenCar departs for its data collection tour. Upon receiving

this information, SenCar utilizes it to determine where to

stop within each cluster to collect data from its CHG. To

guarantee the connectivity for intercluster

communication, the cluster heads in a CHG can

cooperatively send out duplicated information to achieve

spatial diversity, which provides reliable transmissions

and energy saving. Moreover, cluster heads can also

adjust their output power for a desirable transmission

range to ensure a certain degree of connectivity among

clusters.

D. Mobile Collector Layer

The mobile collector layer is SenCar it is equipped with

two antennas, which enables two cluster heads to

simultaneously upload data to SenCar in each time by

utilizing multi-user multiple-input and multiple-output

(MU-MIMO)The first step (lines 1–6) in the algorithm is

to build an initial, but not necessarily feasible, code of the

target length .The active slots in are determined by the

optimal Diff-Code whose length is the largest among all

the optimal DiffCodes shorter than . An intuitive method

of initializing is to assign slot active as long as slot is

active in However, we notice that for , such that the th and

th slots are active in both and , if , code and will both be

feasible under the slot offset of 10.

To collect data as fast as possible, SenCar should stop at

positions inside a cluster that can achieve maximum

capacity. In theory, since SenCar is mobile, it has the

freedom to choose any preferred position. However, this

is infeasible in practice, because it is very hard to estimate

channel conditions for all possible positions. To mitigate

the impact from dynamic channel conditions, SenCar

measures channel state information before each data

collection tour to select candidate locations for data

collection. We call these possible locations SenCar can

stop to perform concurrent data collections polling points.

In fact, SenCar does not have to visit all the polling

points. Instead, it calculates some polling points which are

accessible and we call them selected polling points. In

addition, we need to determine the sequence for SenCar to

visit these selected polling points such that data collection

latency is minimized. Since SenCar has pre-knowledge

about the locations of polling points, it can find a good

trajectory by seeking the shortest route that visits each

selected polling point exactly once and then returns to the

data sink.The proposed framework aims to achieve great

energy saving and shortened data collection latency,

which has the potential for different types of data

services. Although traditional designs of WSNs can

support low-rate data services, more and more sensing

applications nowadays require high-definition pictures

and audio/video recording, which has become an

overwhelming trend for next generation sensor designs

Using MU-MIMO can greatly speed up data collection

time and reduce the overall latency. The application

scenario emerges in disaster rescue. For example, to

combat forest fire, sensor nodes are usually deployed

densely to monitor the situation. These applications

usually involve hundreds of readings in a short period a

large amount of data and are risky for human being to

manually collect sensed data. A mobile collector equipped

with multiple antennas overcomes these difficulties by

reducing data collection latency and reaching hazard

regions not accessible by human being. Although

employing mobility may elongate the moving time, data

collection time would become dominant or at least

comparable to moving time for many high-rate or densely

deployed sensing applications. In addition, using the

mobile data collector can successfully obtain data even

from disconnected regions and guarantee that all of the

generated data are collected.

V. EVALUATION

We not only conducted comprehensive simulations, but

also prototyped our designs on a USRP-N210 testbed, to

evaluate

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 551

Worst-case latency bound versus duty cycle.he discovery

latencies with various specific symmetric and asymmetric

pattern codes. For comparison, we used deterministic

protocols, including Disco, U-Connect, and Searchlight-S,

and a probabilistic protocol, Birthday. In this section, we

first present how the worst-case latency bound changes

with the symmetric duty cycle for various deterministic

neighbor discovery protocols. Then, we compare both

symmetric and asymmetric discovery latencies of

different neighbor discovery protocols in two scenarios:

one-to-one neighbor discovery and clique neighbor

discovery. We compare different neighbor discovery

protocols using similar duty cycles as in previous works

(e.g., Disco, U-Connect , and Searchlight).

A. Worst-Case Bound of Symmetric Discovery Latency

Worst-case latency bound versus duty cycle

demonstrates the

worst-case latency bound of various neighbor discovery

protocols restricted by symmetric duty cycle. Note that

there may exist more than one pattern yielding the same

duty cycle for Disco and Diff-Codes. We use adjacent

prime numbers to generate Disco patterns, in which case

Disco achieves better symmetric-case performance. As

for Diff-Codes, we select the pattern with the smallest

worst-case bound regarding each duty cycle. We observe

that Diff-Codes achieve tremendously tighter worst-case

latency bounds compared to the other protocols.

Reduction of worst-case latency bound shows the

improvements of worst-case latency bound achieved by

Diff-Codes compared to the other protocols. We note that

we compare Diff-Codes to other neighbor discovery

protocols under exactly the same duty cycles. Compared

to Searchlight-S, with the same symmetric duty cycle,

Diff-Codes can lower the worst-case latency bound by

more than 20% in most cases, and the maximum

reduction is as high as 50 %. Specifically, those cases of

maximum reduction in correspond to optimal Diff-Codes,

which are in correspondence to Table I, as well. The

average worst-case latency bound we compare multiple

setups of ADiff-Codes, which have the same set of

asymmetric duty cycles, as well.

CDF of one-to-one discovery latencies for asymmetric

duty cycles 5 %–1% shows the evaluation results for

various neighbor discovery protocols. The simulated

ADiff-Codes outperform Searchlight-S and Disco all

along. Specifically, ADiff-Codes CDF of one-to-one

discovery latencies for symmetric duty cycle 5%.

reductions of Diff-Codes over Searchlight-S, U-Connect,

and Disco are 23.9%, 65.7%, and 80.8%, respectively.

The above numerical results verify the effectiveness of

Diff-Codes.

B. One-to-One Neighbor Discovery Latencies

1) Discovery Latencies in Symmetric Case: In this

set of simulations, we set the duty cycle at 5% and

compare the performance of two different Diff-Codes to

existing protocols. We set the cycle lengths of the two

Diff-Codes at 280 and 320, the pair of primes in Disco at

(37, 43), the prime of U-Connect at 31, the probing period

of Searchlight-S at 40 slots, and the active probability of

Birthday protocol at 5%. From the cumulative distribution

of discovery latencies, we can see that Diff-Codes

perform the best in both the median case and worst case.

Specifically, both of the two evaluated Diff-Codes realize

a median gain of nearly 30% over Searchlight-S; the

minimum worst-case latency of Diff-Codes is 280 slots,

which is also 30% less than that of Searchlight-S.

2) Discovery Latencies in Asymmetric Case: In the

simulations for asymmetric one-to-one neighbor

discovery, we consider the asymmetric duty cycles of 5%

and 1%. The reduce the median discovery latency by

26.0% compared to Searchlight-S, and by 47.9%

compared to Disco. The worst-case gains of ADiff-Codes

are 15.9% and 28.2% over Searchlight-S and Disco,

respectively. Moreover, in comparison to U-Connect,

ADiff-Codes reduce the median case discovery latency by

as high as 59.3% and achieve smaller latencies for more

than 99.9% of times, while having a worst-case bound

that is only 7.1% larger.

In there is only one single series of ADiff-Codes.

However, for the same set of asymmetric duty cycles,

many ADiffCodes can be constructed. Hence, we

compare the discovery latencies of various ADiff-Codes

setups conforming to the same asymmetric duty cycles of

5% and 1%. There are seven ADiff-Codes series

presented in the figure. Even though their worst-case

latencies show big differences, the latencies in the median

and the average cases are fairly close. That indicates

ADiff-Codes can achieve a relatively stable discovery

latency, despite the combination of duty cycles.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 552

Furthermore, from the perspective of practical

implementation, it tends to be acceptable in mobile

wireless networks as long as enough neighbors are found.

For example, even though there may be more than 10

mobile device users in a coffee bar, a guest is satisfied to

discover only four of them to start a card game. It is

different from neighbor discovery in sensor networks,

where failing to discover a neighbor can result in

unreachable nodes in transmission. This means that if a

neighbor discovery protocol has short latencies in most

cases, it can satisfy a user's demands well most of the

times in practice. Considering the tremendous latency

gain in the median case, and the superior performance in

most of the times, i.e., all along in symmetric case, and

more than 99% according to the one-to-one asymmetric

simulation results, our design of (A)Diff-Codes should

have great advantage in reality.

C. Clique Neighbor Discovery Latencies

Besides the one-to-one discovery latencies, we also

examine the performance of our design, when there are

multiple neighbors within a node's transmission range.

The discovery latency in the scenario of clique neighbor

discovery is the number of slots for a node to discover all

its neighbors. Moreover, as explained in Section VII-B,

practical applications can be satisfied by discovering

enough number of neighbors. Thus, we also compare

different neighbor discovery protocols using 90%-latency,

i.e., the latency of discovering 90% of neighbors.

1) Discovery Latencies in Symmetric Case: For

symmetric neighbor discovery with the existence of

multiple neighbors, we set the duty cycle of all the nodes

at 5% presents the CDF of discovery latencies when a

node has 50 neighbors overall. The two simulated Diff-

Codes outperform other neighbor discovery protocols

significantly. Specifically, the two Diff-Codes achieve

median gains of 30.7% and 20.8% compared to

Searchlight-S, respectively. However, in the worst case,

the evaluated neighbor discovery protocols cannot always

discover all the 50 neighbors. For example, the two Diff-

Codes can discover all the neighbors in 71.6% and 72.7%

simulations, respectively, and Searchlight-S only

converges at 66.7%. This is because the interference of

concurrent discovery signals cannot be ignored in the

clique scenario. Therefore, as stated in Section VII-B, we

focus on the 90% latency in the following simulations of

clique neighbor discovery.

To obtain how the cumulative distributions of 90%

latencies change as the number of neighbors increases, we

compare the CDFs of Diff-Code(14/280) to Searchlight-S,

which is the best among existing protocols. As shown in,

Diff-Code has better performance than Searchlight-S in

all cases. The figures also indicate that both neighbor

discover protocols can discover at least 90% of all the

neighbors, regardless of the number of neighbors. Thus,

although there are interferences among nodes in clique

neighbor discovery, the user can still discover enough

neighbors with high possibility.

2) Discovery Latencies in Asymmetric Case:
Because the duty cycle of a mobile device is

independently determined by

CDF of 90% latency with up to 200 neighbors for

symmetric duty cycle 5%.

(a) Diff-Code(14/280). (b) Searchlight-S (40).

its energy budget, there may exist various duty-cycled

neighbors in a node's proximity. That is to say, the node

may have both symmetric neighbors with the same duty

cycle and asymmetric neighbors that have different duty

cycles. Hence, in our simulations, we set the duty cycle of

node to be 5% and 1 %, respectively, and node has 20

neighboring nodes. For each duty cycle of node , we

consider two cases: 1) all of the 20 nodes are asymmetric

neighbors of node , and 2) half of the neighbors have duty

cycle of 1%, and the other half have 5 % presents the

CDFs of 90% latency in different cases. We note that all

the deterministic neighbor discovery protocols adopt the

same active-sleep patterns as in the one-to-one case, with

duty cycles of 5% and 1%. The performance of Disco and

U-Connect is better than that in the one-to-one case. This

is because in our setups for clique neighbor discovery,

most neighbors have nonaligned time-slots with node .

Moreover, it is apparent

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 553

VI. CONCLUSION

In this paper, we have presented a systematic study of

designing highly effective and energy-efficient neighbor-

discovery protocols in mobile wireless networks. We have

designed Diff-Codes for the case of symmetric duty cycle

and extended it to ADiff-Codes to deal with the

asymmetric case. We have derived a tighter lower bound

for the worst-case latency by exploiting active slot

nonalignment. Both our simulation and experiment results

have shown that (A)Diff-Codes can achieve significantly

better performance in both one-to-one and clique

neighbor discovery, compared to state-of-art neighbor

discovery protocols. Specifically, in the one-to-one

scenario, Diff-Codes can reduce the worst-case latency by

up to 50 % and achieve a median gain of around 30%;

while ADiff-Codes are also 30% better in the median case

and outperform existing neighbor discovery protocols in

more than 99% simulations and experiments. In the clique

scenario, both Diff-Codes and ADiff-Codes have smaller

latencies to discover 90% of all the neighbors.

ACKNOWLEDGMENT

This paper was supported by the Sree Sowdambika

College of Engineering, Final Year PG Computer Science

student D.Iswarya (Reg.no:921816405004) guided by

Asst.Prof of Computer Science Mrs. G.Rajeswari. The

authors thank to their colleagues for their help and

support at different stages of the system development.

Finally, we would like to thank the anonymous reviewers

for their helpful comments.

REFERENCES

[1] Sony, “Sony PS Vita–Near,” [Online].

Available: http://us.playstation. com/psvita

[2] Y. Agarwal et al., “Wireless wakeups revisited:

Energy management for VoIP over Wi-Fi smartphones,”

in Proc. MobiSys, 2007, pp. 179–191.

[3] M. Bakht, M. Trower, and R. H. Kravets,

“Searchlight: Won't you be my neighbor?,” in Proc.

MobiCom, 2012, pp. 185–196.

[5] L.D.Baumert, Cyclic Difference Sets. NewYork,

NY,USA:

[6] S. Bitan and T. Etzion, “Constructions for

optimal constant weight cyclically permutable codes and

difference families,” IEEE Trans. Inf. Theory, vol. 41, no.

1, pp. 77–87, Jan. 1995.

[7] S. Boyd and L. Vandenberghe, Convex

Optimization. Cambridge, U.K.: Cambridge University

Press, 2004.

[8] F. R. K. Chung, J. A. Salehi, and V. K. Wei,

“Optical orthogonal codes: Design, analysis, and

applications,” IEEE Trans. Inf. Theory, vol. 35 , no. 3, pp.

595–604, May 1989.

[9] P. Dutta and D. E. Culler, “Practical

asynchronous neighbor discovery and rendezvous for

mobile sensing applications,” in Proc. SenSys, 2008, pp.

71–84.

[10] T. Evans and H. Mann, “On simple difference

sets,” Sankhyâ, Indian J.

Statist., vol. 11, pp. 357–364, 1951.

[11] E. Felemban et al., “SAND: Sectored-antenna

neighbor discovery protocol for wireless networks,” in

Proc. IEEE SECON, 2010, pp. 1–9.

[12] H. Han, Y. Liu, G. Shen, Y. Zhang, and Q. Li,

“DozyAP: Power-efficient Wi-Fi tethering,” in Proc.

MobySys, 2012, pp. 421–434.

[13] G. G. H. Hardy and E. M. Wright, An

Introduction to the Theory of Numbers. Oxford, U.K.:

Oxford Univ. Press, 1979.

[14] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H.

Lai, “Quorum-based asynchronous power-saving

protocols for IEEE 802.11 ad hoc networks,”

Mobile Netw. Appl., vol. 10, no. 1–2, pp. 169–181, 2005.

[15] A. Kandhalu, K. Lakshmanan, and R. Rajkumar,

“U-connect: A lowlatency energy-efficient asynchronous

neighbor discovery protocol,” in Proc. IPSN, 2010, pp.

350–361.

[16] N. Karowski, A. C. Viana, and A. Wolisz,

“Optimized asynchronous multi-channel neighbor

discovery,” in Proc. IEEE INFOCOM, 2011, pp. 536–

540.

