
 

                        264 

 

 

 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
Sketching of Big Data 

 

[1]
 M. Parameswari 

Department of Computer Science and Engineering, PG scholar, 

Francis Xavier Engineering College, Tirunelveli, Tamilnadu.
  

Abstract: - The Human beings create everything but the most innovative and creative one is the internet.  The internet has allowed 

for very less transfer of data and information in a fraction of seconds. The next level of the internet with human innovation to 

increase the communication, data speed and a large amount of data gathering.  The solution for a large amount of data gathering is 

big data. Big data is the very large amount of data it does not possible to fit in single machine main memory. The need for big data 

analysis in increased day by day. In this paper analysis and evaluate the sketching and streaming of big data algorithms. The 

advantages of sketching include less memory consumption, faster algorithms, and reduced bandwidth requirements in distributed 

computing environments. Now a day’s sketching of big data is an essential one.  
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I. INTRODUCTION  

 

Big data is the very large amount of data that it does not fit 

in the single main memory of a single machine. To 

process big data analysis by space and cost-efficient 

algorithms arises in the computer industry and many other 

areas. This survey discussed mathematically calculation 

models for developing such algorithms, as well as some 

verifiable restriction of algorithms. In this analysis using 

following techniques. First one is Dimensionality 

reduction, it is common techniques and hopelessness 

results for data dimension reduction while still maintain 

the graphical structure. The second one is Numerical 

linear algebra, in this Algorithms used for big matrices. 

Regression, matrix calculation etc. The third one 

Compressed sensing, it is used to recover sparse signals 

approximately based on few linear measurements. The 

final one is Sparse Fourier Transform; it is approximately 

rapid algorithms for computing the Fourier Transform of 

signals. 

Sketching: 

Sketching is the compression P(a) of some data set ‘ a ‘ 

that allows us to query S(a). There are some things we 

might want when we are designing such a P(a). Perhaps, 

we want S to take on two arguments instead of one, as is 

the case when we want to compute S(a; b) from P(a) and 

P(b). Often, we want P(a) to be composable. In other 

words, if a = a1a2a3 : : : an, we want to be able to compute 

P(aan+1) using just P(a) and an+1. 

 
 

Streaming :  

If a data set is very large, it may not be possible to store all 

the data and information in a single memory. A stream is a 

sequence of data attributes that come in bit by bit, like 

items on a conveyor belt in manufacturing factory.  

Streaming is the perform of processing these data 

essentials on they as they appear. The ambition of 

streaming is to answers queries within the restrictions of 

sublinear memory. Steaming has a following approaches 

Continuous monitoring (CM) and Chaining.  
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Continuous monitoring : 

continuous monitoring (CM), we think about data streams 

comes nonstop, more involved querying. An an example, 

consider a router that sees a flow of IP address and at 

every point in time we are involved in what the deep 

hitters are, how twisted the allocation is, or whether we 

can spot tendency and anomalies in the traffic. 

 
  

Chaining: 

Chaining is a method for computing bounds on EsupcϵC C 

that leverages correlations across the C. For the lecture 

today, every C looks like  <σ, a> for some a. We want to 

bound EsupaϵT <σ,a>  def = r(T). The way of thinking is 

that if you bounce this and the unhelpful of this, we have a 

guarantee. If you have two vectors a and b where |a-b| is 

close to 0, then <σ,a> is close to <σ,b>.  Bounding r(t) We 

are going to discover four ways of bounding r(T) that are 

gradually tighter. first one is Union Bound, the second one 

is - ϵ-net argument, third is Dudley's inequality, the final 

bound approach is  - Last approach (not full proof). 

 

Dimensionality Reduction : 

There are lots of instances in the actual world where we 

meet data sets with high dimensionality. The example 

brought up in class was the difficulty of spam filtering. A 

simple method to spam detection is the bag-of-words 

model, where each email can be represented as a high 

dimensional vectors whose indices come from a dictionary 

of words and the value at each index is 1 the number of 

incidences of the equivalent word. In this conditions like 

these where we have a high dimensional computational 

geometry trouble, we may want to decrease the number of 

dimensions in pre-processing while preserving the 

estimated geometric structure. Typically we have some 

high-dimensional computational geometry trouble, and we 

use JL to hurry up our algorithm in two steps: (1) apply a 

JL map π to reduce the trouble to low dimension n, then 

(2) solve the lower-dimensional trouble. As n is made 

smaller, typically (2) becomes quicker However, ideally, 

we would also like the step (1) to be as quick as possible. 

In this section, we investigate two approaches to speed up 

the computation of πx. 

 

Fast JL transform (FJLT): 

We said that the time complexity is O(vlog v + n3), where 

v is the dimension of the vector a and n is the number of 

rows of the transform matrix π. However, in practice, the 

vector ’ a ’ is often a sparse vector, and we would expect 

that the time complexity for the transform a →πa is 

O(n||a||0), where ||a||0 =| {i: ai ≠ 0}|, and the time 

complexity of FJLT is terrible if ||a||0 is small relative to v. 

 
Large-Scale Matrix Computations :  

Many of the troubles that contract with big data end up 

connecting some large-scale matrix computation. 

Examples of large-scale matrix computations include 

regression & principal component analysis (PCA). For a 

least square regression, we estimate that b = f(a) for some 

vector a of illuminating variables. We want to learn f, so 

we think that f(a) = <β,a> for some  β. Here, <•,•> 

indicates the internal product of two vectors. We collect 

data points (ai; bi) and assume that bi = f(ai) + ϵ i for some 

small clatter or error term ϵ i, and from these data points, it 

is possible to recover a vector of coefficients β = β LS that 

minimizes 

∑      β     
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Compressed Sensing :  

As we have seen, many of the troubles faced in the actual 

world engage linear signals. Sometimes, when we modify 

the basis we use to explain this linear signal, it becomes 

sparse. This permits us to accumulate remote less samples 

than otherwise necessary. Compressed sensing also 

engage the process of finding a basis in which a linear 

signal is sparse, taking a small number of linear 

measurements, and later roughly rebuild the original signal 

from the measurements. 

 
 

Sparse Fourier Transform 

For a little predetermined integer n, let SFn = [SFjk] be the 

matrix hand over by the terms SFjk = e-2πijk/n and let x = 

(x1; x2; : : : ; xn) be a series of compound numbers. The 

discrete Fourier transform (DFT) sends x to SFnx. In 

1942, Danielson and Lanczos published an algorithm that 

computed the DFT in O(n log n) floating-point operations 

(FLOPS) [DL42]. In 1965, Cooley & Tukey published a 

more general version of the fast Fourier transform (FFT) 

[CT65]. Cooley and Tukey are often credited with the 

discovery of the modern generic FFT algorithm, but in an 

unpublished manuscript from 1805, Gauss had already 

found a similar algorithm and used it to interpolate the 

orbits of Pallas and Juno. For more information, please see 

refer to the Theoria Interpolationis Methodo Nova 

Tractata. The sparse Fourier transform (SFT) is an 

algorithm that computes the Fourier transform in time O(k 

log n) if the output of the DFT is exactly k-sparse. If the 

output of the DFT is approximately k-sparse, SFT can 

approximate the Fourier transform in time that is 

approximately but a little worse than O(k log n). 

 

II. CONCLUSION 

 

Big data  is a very large amount of data set , it does not 

possible to store a single RAM so we using some 

sketching and streaming algorithm , advantages of the 

sketching and streaming algorithm is to reduce the 

memory usage and easy to access . in this discussion we 

clearly known about seven techniques of sketching 

algorithms.   
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