

 264

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018
Sketching of Big Data

[1]
 M. Parameswari

Department of Computer Science and Engineering, PG scholar,

Francis Xavier Engineering College, Tirunelveli, Tamilnadu.

Abstract: - The Human beings create everything but the most innovative and creative one is the internet. The internet has allowed

for very less transfer of data and information in a fraction of seconds. The next level of the internet with human innovation to

increase the communication, data speed and a large amount of data gathering. The solution for a large amount of data gathering is

big data. Big data is the very large amount of data it does not possible to fit in single machine main memory. The need for big data

analysis in increased day by day. In this paper analysis and evaluate the sketching and streaming of big data algorithms. The

advantages of sketching include less memory consumption, faster algorithms, and reduced bandwidth requirements in distributed

computing environments. Now a day’s sketching of big data is an essential one.

Keywords: Human beings, big data, sketching, internet.

I. INTRODUCTION

Big data is the very large amount of data that it does not fit

in the single main memory of a single machine. To

process big data analysis by space and cost-efficient

algorithms arises in the computer industry and many other

areas. This survey discussed mathematically calculation

models for developing such algorithms, as well as some

verifiable restriction of algorithms. In this analysis using

following techniques. First one is Dimensionality

reduction, it is common techniques and hopelessness

results for data dimension reduction while still maintain

the graphical structure. The second one is Numerical

linear algebra, in this Algorithms used for big matrices.

Regression, matrix calculation etc. The third one

Compressed sensing, it is used to recover sparse signals

approximately based on few linear measurements. The

final one is Sparse Fourier Transform; it is approximately

rapid algorithms for computing the Fourier Transform of

signals.

Sketching:

Sketching is the compression P(a) of some data set ‘ a ‘

that allows us to query S(a). There are some things we

might want when we are designing such a P(a). Perhaps,

we want S to take on two arguments instead of one, as is

the case when we want to compute S(a; b) from P(a) and

P(b). Often, we want P(a) to be composable. In other

words, if a = a1a2a3 : : : an, we want to be able to compute

P(aan+1) using just P(a) and an+1.

Streaming :

If a data set is very large, it may not be possible to store all

the data and information in a single memory. A stream is a

sequence of data attributes that come in bit by bit, like

items on a conveyor belt in manufacturing factory.

Streaming is the perform of processing these data

essentials on they as they appear. The ambition of

streaming is to answers queries within the restrictions of

sublinear memory. Steaming has a following approaches

Continuous monitoring (CM) and Chaining.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 265

Continuous monitoring :

continuous monitoring (CM), we think about data streams

comes nonstop, more involved querying. An an example,

consider a router that sees a flow of IP address and at

every point in time we are involved in what the deep

hitters are, how twisted the allocation is, or whether we

can spot tendency and anomalies in the traffic.

Chaining:

Chaining is a method for computing bounds on EsupcϵC C

that leverages correlations across the C. For the lecture

today, every C looks like <σ, a> for some a. We want to

bound EsupaϵT <σ,a> def = r(T). The way of thinking is

that if you bounce this and the unhelpful of this, we have a

guarantee. If you have two vectors a and b where |a-b| is

close to 0, then <σ,a> is close to <σ,b>. Bounding r(t) We

are going to discover four ways of bounding r(T) that are

gradually tighter. first one is Union Bound, the second one

is - ϵ-net argument, third is Dudley's inequality, the final

bound approach is - Last approach (not full proof).

Dimensionality Reduction :

There are lots of instances in the actual world where we

meet data sets with high dimensionality. The example

brought up in class was the difficulty of spam filtering. A

simple method to spam detection is the bag-of-words

model, where each email can be represented as a high

dimensional vectors whose indices come from a dictionary

of words and the value at each index is 1 the number of

incidences of the equivalent word. In this conditions like

these where we have a high dimensional computational

geometry trouble, we may want to decrease the number of

dimensions in pre-processing while preserving the

estimated geometric structure. Typically we have some

high-dimensional computational geometry trouble, and we

use JL to hurry up our algorithm in two steps: (1) apply a

JL map π to reduce the trouble to low dimension n, then

(2) solve the lower-dimensional trouble. As n is made

smaller, typically (2) becomes quicker However, ideally,

we would also like the step (1) to be as quick as possible.

In this section, we investigate two approaches to speed up

the computation of πx.

Fast JL transform (FJLT):

We said that the time complexity is O(vlog v + n3), where

v is the dimension of the vector a and n is the number of

rows of the transform matrix π. However, in practice, the

vector ’ a ’ is often a sparse vector, and we would expect

that the time complexity for the transform a →πa is

O(n||a||0), where ||a||0 =| {i: ai ≠ 0}|, and the time

complexity of FJLT is terrible if ||a||0 is small relative to v.

Large-Scale Matrix Computations :

Many of the troubles that contract with big data end up

connecting some large-scale matrix computation.

Examples of large-scale matrix computations include

regression & principal component analysis (PCA). For a

least square regression, we estimate that b = f(a) for some

vector a of illuminating variables. We want to learn f, so

we think that f(a) = <β,a> for some β. Here, <•,•>

indicates the internal product of two vectors. We collect

data points (ai; bi) and assume that bi = f(ai) + ϵ i for some

small clatter or error term ϵ i, and from these data points, it

is possible to recover a vector of coefficients β = β LS that

minimizes

∑ β

 2

=||A

β - b||2

2
, by computing β

LS
 =

(A
T
A)

-1
A

T
B . Here, ||·||2 denotes the L

2
 norm

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 266

Compressed Sensing :

As we have seen, many of the troubles faced in the actual

world engage linear signals. Sometimes, when we modify

the basis we use to explain this linear signal, it becomes

sparse. This permits us to accumulate remote less samples

than otherwise necessary. Compressed sensing also

engage the process of finding a basis in which a linear

signal is sparse, taking a small number of linear

measurements, and later roughly rebuild the original signal

from the measurements.

Sparse Fourier Transform

For a little predetermined integer n, let SFn = [SFjk] be the

matrix hand over by the terms SFjk = e-2πijk/n and let x =

(x1; x2; : : : ; xn) be a series of compound numbers. The

discrete Fourier transform (DFT) sends x to SFnx. In

1942, Danielson and Lanczos published an algorithm that

computed the DFT in O(n log n) floating-point operations

(FLOPS) [DL42]. In 1965, Cooley & Tukey published a

more general version of the fast Fourier transform (FFT)

[CT65]. Cooley and Tukey are often credited with the

discovery of the modern generic FFT algorithm, but in an

unpublished manuscript from 1805, Gauss had already

found a similar algorithm and used it to interpolate the

orbits of Pallas and Juno. For more information, please see

refer to the Theoria Interpolationis Methodo Nova

Tractata. The sparse Fourier transform (SFT) is an

algorithm that computes the Fourier transform in time O(k

log n) if the output of the DFT is exactly k-sparse. If the

output of the DFT is approximately k-sparse, SFT can

approximate the Fourier transform in time that is

approximately but a little worse than O(k log n).

II. CONCLUSION

Big data is a very large amount of data set , it does not

possible to store a single RAM so we using some

sketching and streaming algorithm , advantages of the

sketching and streaming algorithm is to reduce the

memory usage and easy to access . in this discussion we

clearly known about seven techniques of sketching

algorithms.

REFERENCES

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space

Complexity of Approximating the Fre-quency Moments.

Proceedings of the 28th Annual ACM Symposium on

Theory of Computing (STOC), pp. 20{29, 1996.

[2] Kasper Larsen, Jelani Nelson. Optimality of the

Johnson-Lindenstrauss Lemma. Proceedings of the 58th

Annual IEEE Symposium on Foundations of Computer

Science (FOCS) 2017.

[3] [CT65] James W. Cooley and John W. Tukey. An

algorithm for the machine calculation of complex fourier

series. Math. Comp., 19(90):297{301, 4 1965.

[4] [DL42] Gordon C. Danielson and Cornelius Lanczos.

Some improvements in practical fourier analysis and their

application to x-ray scattering from liquids. J. Franklin

Inst., 233(4):365{ 380, 4 1942.

[5] [Mor78] Robert Morris. Counting large numbers of

events in small registers. Commun. ACM,

21(10):840{842, 10 1978.8

[6] [AC09] Nir Ailon and Bernard Chazelle. The fast

Johnson{Lindenstrauss transform and ap- proximate

nearest neighbors. SIAM J. Comput., 39(1):302{322,

2009.

[7] [BDF+11] Jean Bourgain, Stephen Dilworth, Kevin

Ford, Sergei Konyagin, and Denka Kutzarova. Explicit

constructions of RIP matrices and related problems. Duke

Mathematical Jour- nal, 159(1):145{185, 2011.

[8] [Bou14] Jean Bourgain. An improved estimate in the

restricted isometry problem. Geometric Aspects of

Functional Analysis, 2116:65{70, 2014.

[9] [CT06] Emmanuel J. Cand_es and Terence Tao. Near-

optimal signal recovery from random projections:

universal encoding strategies? IEEE Trans. Inform.

Theory, 52(12):5406{ 5425, 2006.

[10] [HR16] Ishay Haviv and Oded Regev. The restricted

isometry property of subsampled fourier matrices. In

Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages

288{297, 2016.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 267

[11] [KW11] Felix Krahmer and RachelWard. New and

improved Johnson-Lindenstrauss embeddings via the

Restricted Isometry Property. SIAM J. Math. Anal.,

43(3):1269{1281, 2011.

[12] [NPW14] Jelani Nelson, Eric Price, and Mary

Wootters. New constructions of RIP matrices with fast

multiplication and fewer rows. In Proceedings of the 25th

Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1515{1528, January 2014.

[13] [RV08] Mark Rudelson and Roman Vershynin. On

sparse reconstruction from Fourier and Gaussian

measurements. Comm. Pure Appl. Math.,

61(8):1025{1045, 2008.

[14] [Ach01] Dimitris Achlioptas. Database-friendly

random projections. In Proceedings of the twen- tieth

ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 274{281. ACM,

2001.6

[15] [BOR10] Vladimir Braverman, Rafail Ostrovsky, and

Yuval Rabani. Rademacher chaos, random eulerian graphs

and the sparse johnson-lindenstrauss transform. arXiv

preprint arXiv:1011.2590, 2010.

[16] [DKS10] Anirban Dasgupta, Ravi Kumar, and

Tam_as Sarl_os. A sparse johnson: Lindenstrauss

transform. In Proceedings of the forty-second ACM

symposium on Theory of computing, pages 341{350.

ACM, 2010.

[17] [DlPG12] Victor De la Pena and Evarist Gin_e.

Decoupling: from dependence to independence. Springer

Science & Business Media, 2012.

