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Abstract: - In the real world all events are connected. There is a hidden network of dependencies that governs behavior of natural 

processes. Without much argument it can be said that, of all the known data- structures, graphs are naturally suitable to model 

such information. But to learn to use graph data structure is a tedious job as most operations on graphs are computationally 

expensive, so exploring fast machine learning techniques for graph data has been an active area of research and a family of 

algorithms called kernel based approaches has been famous among researchers of the machine learning domain. With the help of 

support vector machines, kernel based methods work very well for learning with Gaussian processes. In this survey we will explore 

various kernels that operate on graph representations. Starting from the basics of kernel based learning we will travel through the 

history of graph kernels from its first appearance to discussion of current state of the art techniques in practice. 
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I. INTRODUCTION  

Information has always been in the primary focus of 

researchers in the field of computer science. In our world, 

most of the available information is represented as networks 

of meaningfully connected data elements. These 

connections can signify some sort of interde- pendence or 

portray some contextual significance. This relational aspect 

of information is one of the main challenges for researchers. 

In this survey will be explored the utility of various graph 

kernels in this domain of relational information, but before 

we move on to the details of graph kernels, let us first 

understand the importance of ‘‘graphs’’ and ‘‘kernels’’ in 

the field of artificial intelligence. One of the primary tasks 

is sensible representation of such relational data, so that 

they could be used to perform machine learning tasks such 

as classifications, sequence predictions, density estimations 

and so on. Information is mainly stored using data 

structures for comput- ers to process them. While there are 

many data structures avail- able, the most generic format is 

a graph. All other data structures are simply some sort of 

specializations of a graph. As we know, graphs are 

characterized by their network of nodes connected by edges. 

Similarly, natural information in general can be broken 

down to smaller elements that can have some sort of 

semantic connection hence, this property of graph makes it 

most suitable for representing relational information. So, the 

first step of graph based learning is to actually represent the 

information in the form of a graph. Once that is done the 

second step is the learning part. 

The most straightforward technique for learning is to extract 

meaningful features from a sample that uniquely predicts its 

na- ture. However, that is not always feasible given the 

dynamic na- ture of real world problems. Problems can be 

so complicated that manually extracting features can be 

really hectic and sometimes humanely impossible. Data in 

its raw form is not suitable for computational operations. A 

consistent input space is needed to represent the data in its 

actual form. The key idea behind finding features is to move 

the sample from the input space to another dimension where 

similar samples will be mapped in close proxim- ity while 

distance between dissimilar samples will be significantly 

higher. Another branch of machine learning, namely kernel 

based learning, views the problem from a different 

perspective. If we can find some metric to map this 

similarity between samples we can directly map them onto 

the feature dimension without actually having to learn the 

features themselves. Another way to explain this is to 

approximate the nature of the probability distribution of the 

real world process, also know as the Gaussian process, so 

that the similar samples stay in close proximity and vice 

versa. This new dimension is also called an Hilbert space. 

The entire goal of kernel based learning is to map the 

available sample space into a suitable Hilbert space. Once 

we know the Gaussian distribution, also termed as the 

posterior, it will be much easier to calculate the similarity 

among samples. Machine learning dived into a new 

paradigm through the introduction of a special function 

referred to as a kernel function which can directly map the 

input space to such feature dimensions. Throughout the next 

chapters, we will look into details regarding definitions, 

mathematical concepts and old and modern research works 

surrounding the application of kernels to the field of graph 

theory. As we finish the introductory section we will find 

our motiva- tion to study more about this domain in next 

section. Section 3 introduces us to the preliminary concepts 

of some Gaussian Pro- cesses, Kernel based Machine 

Learning, and Graph Theory. This is absolutely necessary 

for understanding the concepts of various graph kernels. As 

we move on to the fourth section, we will discuss the core 
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concepts of graph kernels, starting from the earliest point in 

the history of research where the first idea of structural 

kernels was conceived and slowly moving through time to 

finally analyze a couple of state of the art technologies. 

Utmost effort has been made to keep all explanation as 

simple as possible while maintaining enough mathematical 

formulation to ensure logical clarity. 

 

II. MOTIVATION 

 

Graphs provide one the most generic data structures for 

repre- senting information. Philosophically speaking a 

graph represents a network of relationships among objects. 

All real world phenomena can be interpreted as a system 

with various components that work in tandem. These 

relations and interdependence connect these components to 

form a complex network. Another interpretation may be all 

real world objects or events can either be described as a 

network or can be considered to be a part of a larger 

network. Philosophical arguments have been made in favor 

of graphs as the most ideal data structure to represent the 

world in the language of mathematics [1]. 

In computational terms it has already been mentioned that 

graph are the most generic form of data structure as all 

common datatypes can simply be referred to as an instance 

of a graph. For example, a scalar or a constant can be 

treated as single node graph, and array or matrix can be 

seen as a graph where each nodes represent an index in the 

array and their adjacency is represented by an edge. Stacks 

and queues have similar structure but with limitation of 

insertion and deletion property of the nodes. A time series 

can be modeled by representing time stamps as nodes and 

connecting each stamp with an edge to the next one. 

So, with all this said, the real question is why graphs are not 

being used as the most common data structure for decades? 

The simple answer is that handling graphs is complicated. 

On one hand graphs provide a lot of flexibility  to  represent  

complex  data in an efficient way but, the same flexibility 

stands in the way when computational operations are 

performed. Normal vectors can be easily represented in a 

co-ordinate space, hence allowing simple metric like 

euclidean distance to serve as an excellent choice for vector 

comparison. However, it is much more difficult to represent 

a graph in an n-dimensional space hence the difficulty of 

compar- ing them. The straightforward or brute force 

method would be to identify the common parts in both 

graphs. For this purpose we must find all sub-graphs of the 

graph. A graph with n nodes will always have 2n possible 

sub-graphs. Hence the problem shifts to  an exponential 

search space. As aptly stated by Horst Bunke [2]: 

‘‘computing the distances of a pair of objects[...] is linear in 

the number of data items in the case of feature vectors, 

quadratic in case of strings, and exponential for graphs’’ 

Hence, to overcome this curse of exponential time 

complexity, researchers have avoided graph based machine 

learning for long time before the introduction of stronger 

computational resources in the last couple of decades. 

Gradually, analysis revealed that these problems need 

crucial attention for the sake of progress of research in this 

field [3]. 

 

 

III. PRELIMINARY CONCEPTS 

 

As we progress in our  journey  of  rediscovering  the  

domain of graph kernels we must equip ourselves with the 

proper tools and techniques to ensure proper and clear 

understanding of the Fig. 1 shows how µ and σ affects the 

Gaussian distribution. For conceptual clarity we may 

visualize a single dimensional Gaussian process as a set of 

observations that depend on a single variable. The 

expectation of these observations are said to exhibit the 

nature of a Gaussian distribution. We may notice that we 

have only talked about a Gaussian distribution that depends 

only on one random variable (X ). Such a distribution is 

called uni- variate Gaussian distribution. When we take into 

consideration more than one random variable we get a 

multivariate Gaussian distribution which depends on a 

random vector (X1, X2, . . . , Xk). Any linear combination 

of these random variables would give us an multi-variate 

Gaussian distribution. The multivariate Gaussian 

distribution can be represented in terms of a linear 

combination of uni-variate distributions as shown in Fig. 2. 

In this case the probability density function fx(x1, . . . , xk) 

for a k-variate Gaussian is given by: 

 

   

  

core concepts. This refresher section is divided into three 

main subsections, namely, Gaussian processes and 

Covariance function, Kernels and Support Vector 

Machines, and Graph Theory. 

1.1. Gaussian process and co-variance functions 

The concept of kernel deals with expressing samples in an 

alter- nate feature space where they exhibit some properties 

which allow similar samples to remain closer. Most 

processes in the real-world deal with random variables that 

govern the outcome of the process. In real-world random 

variables that trigger events are not always completely 

random but in fact exhibits a probabilistic nature or can be 

expressed through a probabilistic distribution. Hence the 

output of the process also exhibits probabilistic properties. 

We will see one of the most common kind of process called 

Gaussian process. This Gaussian process can be expressed 

in terms of a co- variance function which computes the 

relation between different components of the input 
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dimensions. Furthermore, we will see the positive semi 

definite property for covariance functions which is an 

essential property to define a kernel. Finally we will 

associate these kernels to a Hilbert space which is the 

alternate feature space that we need.   

 
Fig. 2. A multivariate distribution (bi-variate in this case). 

3.1. Gaussian process and co-variance functions 

The concept of kernel deals with expressing samples in an 

alter- nate feature space where they exhibit some properties 

which allow similar samples to remain closer. Most 

processes in the real-world deal with random variables that 

govern the outcome of the process. In real-world random 

variables that trigger events are not always completely 

random but in fact exhibits a probabilistic nature or can be 

expressed through a probabilistic distribution. Hence the 

output of the process also exhibits probabilistic properties. 

We will see one of the most common kind of process called 

Gaussian process. This Gaussian process can be expressed 

in terms of a co- variance function which computes the 

relation between different components of the input 

dimensions. Furthermore, we will see the positive semi 

definite property for covariance functions which is an 

essential property to define a kernel. Finally we will 

associate these kernels to a Hilbert space which is the 

alternate feature space that we need. 

3.1.2. Covariance functions 

In the previous section, we talked about how a Gaussian 

dis- tribution can be expressed in terms of a mean function 

and a co- variance matrix. As expressed in (2), the 

covariance matrix can be found using a covariance function 

Cov(x, x′). A covariance function is crucial in the field of 

Gaussian process prediction, as it is a latent representation 

of the function we wish to predict. 

3.1.3. Gaussian process regression 

Gaussian process regression can be considered an 

interpolation method such that interpolated samples from 

Gaussian processes are constrained by prior covariances as 

per the training data points. The Gaussian process itself can 

be explained through different perspectives; the simplest 

representation may be as an infinite di- mensional Gaussian 

random variable with a specified co-variance structure. 

While this process demonstrates its properties it is not 

useful for practical models. A weight-space view represents 

Gaus- sian processes as weighted averages of training target 

values. An- other interpretation views Gaussian processes 

as distribution over functions: finite dimensional Gaussian 

processes are distributions 

over finite dimensional vectors, while infinite dimensional 

Gaus- sian Processes are distributions over infinite 

dimensional vectors or functions. 

 

IV. GRAPH KERNELS 

 

Before we move on to study graph kernels we need to go 

through a brief summarization of different classes of kernels 

on structured data. Kernel methods and support vector 

machines especially have succeeded in various learning 

problems on data represented as a single table. But most of 

the ‘real-world’ data   is structured, i.e., it has no default 

representation in a equation format. Generally, to apply 

such kernel methods to ‘real-world’ data, we need extensive 

pre-processing to map the data into a real vector space and 

therefore into a single table. Most of the datasets used can 

be found either from links provided by the respective 

authors in the papers or this website which has a good 

collection of Graph Kernel datasets.1 Fig. 7 shows the 

various types of kernels that will be taken into account in 

the consequent chapters. Graph Kernels can be broadly 

categorized into two major branches based on the principal 

driving force of their definition, namely, model based 

kernels and syntax based kernels. 

Model driven kernels rely on some kind of knowledge about 

the sample space, i.e., about the relationships among data. 

There are principally two subcategories in this branch 

namely, generative 

models and transformative models. While parameters of 

genera- tive models are treated as features for comparison, 

transformative models study the ability of the graphs to 

transform them in certain 

way as per the problem domain. These transformed graphs 

can be seen as a model of the instance space; while each 

edge only contains local information about neighboring 

vertices during the process of transformation, the set of all 

edges contain information about the global structure of the 

sample space 

4.1. Model driven kernels 

Syntax based models focus on the semantics of the data. It 

comprises of the largest family of kernels, namely the 

convolu- tional kernels. Most of the algorithms deal with 
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manipulation of syntactic elements like walk, paths, cycles, 

subgraphs, subtrees and so on. We will see that lots of these 

kernels preserve both local and global features for 

comparison and hence are applicable in various domains 

4.2. Syntax driven kernels 

Syntax based models focus on the semantics of the data. It 

comprises of the largest family of kernels, namely the 

convolu- tional kernels. Most of the algorithms deal with 

manipulation of syntactic elements like walk, paths, cycles, 

subgraphs, subtrees and so on. We will see that lots of these 

kernels preserve both local and global features for 

comparison and hence are applicable in various domains. 

4.4. Choosing the right kernel 

Throughout the last two decades various kernels surfaced in 

the field of graph based algorithms as it can be seen in Fig. 

13. However, the application of a graph kernel to a specific 

domain requires the understanding of the advantages and 

disadvantages of the various available techniques. While 

earlier versions of random walk kernels prove to be quite 

efficient for simple graphs, as the size and complexity 

increases we need to shift to other modern techniques. 

Normally complexity of random walk kernels are in the 

order of O(n6), however faster computations up to O(n3) 

were obtained by extending concepts of linear algebra to 

Reproducing Kernel Hilbert Spaces [47]; even further 

speedups up to O(n2) were obtained by Kang [43] 

considering rank approximation of the adjacency matrix. 

4.5. Future of graph kernels 

Graph kernels show considerable amount of promise in the 

future. As discussed before, many real world scenarios or 

events can be conceptualized through graphs. Most 

scientific fields show increasing use of structured data. 

From nuclear studies in CERN,3 to decoding our own 

genome,4 we have been generating tremen- dous amount of 

structured information. Through internet we have access to 

an immensely large network connecting almost 3.78 

billion5 people across the world. These huge sources of 

structured information must be processed to extract what is 

essential for the progress of science. Structured data 

provides a different level of challenge to traditional 

artificial approaches because of the complexity of 

information. But with graph kernels it is possible handle 

such challenges. One of the most significant progress in 

machine learning is the onset of deep learning [64]. 

4.6. Applications 

Having studied the theoretical aspects of graph kernel, it is 

essential to know about the possible domains where they 

can be applied. In the subsections below, some of the most 

prominent application areas will concisely discussed. 

4.6.2. Bioinformatics 

A major reason for the growing interest in graph-structured 

data is the advent of large volumes of structured data in 

molecular biology. This structured data comprises graph 

models of molecular structures, from RNA to proteins [72], 

and of net- works which include protein–protein interaction 

networks [73], metabolic networks [74], regulatory 

networks [75], and phyloge- netic networks [76]. 

Bioinformatics seeks to establish the function of these 

networks and structures. Currently, the most success- ful 

approach towards function prediction of structures is based 

on similarity search among structures with known function. 

For instance, if we want to predict the function of a new 

protein structure, we compare its structure to a database of 

functionally annotated protein structures. The protein is 

then predicted to exert the function of the (group of) 

protein(s) which it is most similar to. This concept is 

supported by models of evolution: proteins that have similar 

topological structures are more likely to share a common 

ancestor, and are more likely to carry out the same 

biochemical function [77]. 

 

4.6.3. Social network analysis 

Another important source of graph structured data is social 

network analysis [78]. In social networks, nodes represent 

individ- uals and edges represent interaction between them. 

The analysis of these networks is both of scientific and 

commercial interest. On the one hand, psychologists want to 

study the complex social dynamics between humans, and 

biologists want to uncover the social rules in a group of 

animals. On the other hand, industries want to analyze these 

networks for marketing purposes. Detecting influential 

individuals in a group of people, often referred to as ‘key-

players’ or ‘trend-setters’, is relevant for marketing, as com- 

panies could then focus their advertising efforts on persons 

known to influence the behavior of a larger group of people. 

In addition, telecommunication and Internet surfing logs 

provide a vast source of social networks, which can be used 

for mining tasks ranging from telecommunication network 

optimization to automated rec- ommender systems. 

 

4.6.4. Internet, HTML, XML 

A fourth application area for graph models is the Internet 

which is a network and hence a graph itself. HTML 

documents are nodes in this network, and hyperlinks 

connect these nodes. In fact, Google exploits this link 

structure of the Internet in its famous PageRank algorithm 

[79] for ranking websites. Furthermore, semi-structured 

data in form of XML documents is becoming very popular 

in the database community and in industry. The natural 

mathematical structure to describe semi-structured data is a 

graph. As the W3 Consortium puts it ‘‘The main structure 

of an XML document is tree-like, and most of the lexical 

structure is devoted to defining that tree, but there is also a 

way to make connections between arbitrary nodes in a 

tree’’.7 Consequently, XML documents should be regarded 

as graphs. 
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Various tasks of data manipulation and data analysis can be 

performed on this graph representation, ranging from basic 

opera- tions such as querying [80] to advanced problems 

such as duplicate detection [81]. 

 

4.6.5. Natural language processing 

Language in general possesses a very generic entity 

relationship structure, hence graph based algorithms have 

always been used in this field [82–84]. Tree kernels are 

particularly common [85] in NLP because of parse tree 

representations of the language which are very precise to 

deal with common concepts. 

4.6.6. Image processing 

Images can also be treated as graphs if we consider similar 

components in an image as node and their semantic 

relations as edges. A lot of work has been seen in this area: 

earlier, image classi- fication was performed using methods 

like graph edit distance [16] or marginalized kernels [86] 

later much sophisticated approaches that involved point 

clouds [87] or segmentation graphs [88] has also been seen. 

 

 

 

V. CONCLUSION 

 

Graph Kernels is a beautiful concept that has immense 

future prospect. It can deal with problems of numerous 

domains and un- like many other learning techniques, it 

excels in learning relational models. Information around us, 

no matter from which source, can somehow be expressed in 

terms of graphs through their inherent semantic 

dependencies, thus making graph kernels a powerful tool 

for researchers. 

We started from the absolute basics of Linear algebra and 

graph theory, and slowly climbed up the ladder to learn how 

kernels operate in the field of machine learning. Starting 

from the historical aspects of the domain, we saw that graph 

kernels can be computed through various walk-based, path-

based, subgraph-based or sub- tree based techniques. 

Finally, we saw how modern researchers have been 

successful in creating very fast techniques that can be used 

for larger graphs. With all this research, graph kernel is at 

its pinnacle of development. Now is the time to dive into 

even more challenging problems with these techniques. 
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