

 329

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018
A Study of Graph Kernels through Two Decades

[1]
 Jyoti

MCA, M. D. University, Rohtak

Abstract: - In the real world all events are connected. There is a hidden network of dependencies that governs behavior of natural

processes. Without much argument it can be said that, of all the known data- structures, graphs are naturally suitable to model

such information. But to learn to use graph data structure is a tedious job as most operations on graphs are computationally

expensive, so exploring fast machine learning techniques for graph data has been an active area of research and a family of

algorithms called kernel based approaches has been famous among researchers of the machine learning domain. With the help of

support vector machines, kernel based methods work very well for learning with Gaussian processes. In this survey we will explore

various kernels that operate on graph representations. Starting from the basics of kernel based learning we will travel through the

history of graph kernels from its first appearance to discussion of current state of the art techniques in practice.

Keywords: Graph kernels, Support vector machines, Graph similarity, Isomorphism.

I. INTRODUCTION

Information has always been in the primary focus of

researchers in the field of computer science. In our world,

most of the available information is represented as networks

of meaningfully connected data elements. These

connections can signify some sort of interde- pendence or

portray some contextual significance. This relational aspect

of information is one of the main challenges for researchers.

In this survey will be explored the utility of various graph

kernels in this domain of relational information, but before

we move on to the details of graph kernels, let us first

understand the importance of ‘‘graphs’’ and ‘‘kernels’’ in

the field of artificial intelligence. One of the primary tasks

is sensible representation of such relational data, so that

they could be used to perform machine learning tasks such

as classifications, sequence predictions, density estimations

and so on. Information is mainly stored using data

structures for comput- ers to process them. While there are

many data structures avail- able, the most generic format is

a graph. All other data structures are simply some sort of

specializations of a graph. As we know, graphs are

characterized by their network of nodes connected by edges.

Similarly, natural information in general can be broken

down to smaller elements that can have some sort of

semantic connection hence, this property of graph makes it

most suitable for representing relational information. So, the

first step of graph based learning is to actually represent the

information in the form of a graph. Once that is done the

second step is the learning part.

The most straightforward technique for learning is to extract

meaningful features from a sample that uniquely predicts its

na- ture. However, that is not always feasible given the

dynamic na- ture of real world problems. Problems can be

so complicated that manually extracting features can be

really hectic and sometimes humanely impossible. Data in

its raw form is not suitable for computational operations. A

consistent input space is needed to represent the data in its

actual form. The key idea behind finding features is to move

the sample from the input space to another dimension where

similar samples will be mapped in close proxim- ity while

distance between dissimilar samples will be significantly

higher. Another branch of machine learning, namely kernel

based learning, views the problem from a different

perspective. If we can find some metric to map this

similarity between samples we can directly map them onto

the feature dimension without actually having to learn the

features themselves. Another way to explain this is to

approximate the nature of the probability distribution of the

real world process, also know as the Gaussian process, so

that the similar samples stay in close proximity and vice

versa. This new dimension is also called an Hilbert space.

The entire goal of kernel based learning is to map the

available sample space into a suitable Hilbert space. Once

we know the Gaussian distribution, also termed as the

posterior, it will be much easier to calculate the similarity

among samples. Machine learning dived into a new

paradigm through the introduction of a special function

referred to as a kernel function which can directly map the

input space to such feature dimensions. Throughout the next

chapters, we will look into details regarding definitions,

mathematical concepts and old and modern research works

surrounding the application of kernels to the field of graph

theory. As we finish the introductory section we will find

our motiva- tion to study more about this domain in next

section. Section 3 introduces us to the preliminary concepts

of some Gaussian Pro- cesses, Kernel based Machine

Learning, and Graph Theory. This is absolutely necessary

for understanding the concepts of various graph kernels. As

we move on to the fourth section, we will discuss the core

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 330

concepts of graph kernels, starting from the earliest point in

the history of research where the first idea of structural

kernels was conceived and slowly moving through time to

finally analyze a couple of state of the art technologies.

Utmost effort has been made to keep all explanation as

simple as possible while maintaining enough mathematical

formulation to ensure logical clarity.

II. MOTIVATION

Graphs provide one the most generic data structures for

repre- senting information. Philosophically speaking a

graph represents a network of relationships among objects.

All real world phenomena can be interpreted as a system

with various components that work in tandem. These

relations and interdependence connect these components to

form a complex network. Another interpretation may be all

real world objects or events can either be described as a

network or can be considered to be a part of a larger

network. Philosophical arguments have been made in favor

of graphs as the most ideal data structure to represent the

world in the language of mathematics [1].

In computational terms it has already been mentioned that

graph are the most generic form of data structure as all

common datatypes can simply be referred to as an instance

of a graph. For example, a scalar or a constant can be

treated as single node graph, and array or matrix can be

seen as a graph where each nodes represent an index in the

array and their adjacency is represented by an edge. Stacks

and queues have similar structure but with limitation of

insertion and deletion property of the nodes. A time series

can be modeled by representing time stamps as nodes and

connecting each stamp with an edge to the next one.

So, with all this said, the real question is why graphs are not

being used as the most common data structure for decades?

The simple answer is that handling graphs is complicated.

On one hand graphs provide a lot of flexibility to represent

complex data in an efficient way but, the same flexibility

stands in the way when computational operations are

performed. Normal vectors can be easily represented in a

co-ordinate space, hence allowing simple metric like

euclidean distance to serve as an excellent choice for vector

comparison. However, it is much more difficult to represent

a graph in an n-dimensional space hence the difficulty of

compar- ing them. The straightforward or brute force

method would be to identify the common parts in both

graphs. For this purpose we must find all sub-graphs of the

graph. A graph with n nodes will always have 2n possible

sub-graphs. Hence the problem shifts to an exponential

search space. As aptly stated by Horst Bunke [2]:

‘‘computing the distances of a pair of objects[...] is linear in

the number of data items in the case of feature vectors,

quadratic in case of strings, and exponential for graphs’’

Hence, to overcome this curse of exponential time

complexity, researchers have avoided graph based machine

learning for long time before the introduction of stronger

computational resources in the last couple of decades.

Gradually, analysis revealed that these problems need

crucial attention for the sake of progress of research in this

field [3].

III. PRELIMINARY CONCEPTS

As we progress in our journey of rediscovering the

domain of graph kernels we must equip ourselves with the

proper tools and techniques to ensure proper and clear

understanding of the Fig. 1 shows how µ and σ affects the

Gaussian distribution. For conceptual clarity we may

visualize a single dimensional Gaussian process as a set of

observations that depend on a single variable. The

expectation of these observations are said to exhibit the

nature of a Gaussian distribution. We may notice that we

have only talked about a Gaussian distribution that depends

only on one random variable (X). Such a distribution is

called uni- variate Gaussian distribution. When we take into

consideration more than one random variable we get a

multivariate Gaussian distribution which depends on a

random vector (X1, X2, . . . , Xk). Any linear combination

of these random variables would give us an multi-variate

Gaussian distribution. The multivariate Gaussian

distribution can be represented in terms of a linear

combination of uni-variate distributions as shown in Fig. 2.

In this case the probability density function fx(x1, . . . , xk)

for a k-variate Gaussian is given by:

core concepts. This refresher section is divided into three

main subsections, namely, Gaussian processes and

Covariance function, Kernels and Support Vector

Machines, and Graph Theory.

1.1. Gaussian process and co-variance functions

The concept of kernel deals with expressing samples in an

alter- nate feature space where they exhibit some properties

which allow similar samples to remain closer. Most

processes in the real-world deal with random variables that

govern the outcome of the process. In real-world random

variables that trigger events are not always completely

random but in fact exhibits a probabilistic nature or can be

expressed through a probabilistic distribution. Hence the

output of the process also exhibits probabilistic properties.

We will see one of the most common kind of process called

Gaussian process. This Gaussian process can be expressed

in terms of a co- variance function which computes the

relation between different components of the input

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 331

dimensions. Furthermore, we will see the positive semi

definite property for covariance functions which is an

essential property to define a kernel. Finally we will

associate these kernels to a Hilbert space which is the

alternate feature space that we need.

Fig. 2. A multivariate distribution (bi-variate in this case).

3.1. Gaussian process and co-variance functions

The concept of kernel deals with expressing samples in an

alter- nate feature space where they exhibit some properties

which allow similar samples to remain closer. Most

processes in the real-world deal with random variables that

govern the outcome of the process. In real-world random

variables that trigger events are not always completely

random but in fact exhibits a probabilistic nature or can be

expressed through a probabilistic distribution. Hence the

output of the process also exhibits probabilistic properties.

We will see one of the most common kind of process called

Gaussian process. This Gaussian process can be expressed

in terms of a co- variance function which computes the

relation between different components of the input

dimensions. Furthermore, we will see the positive semi

definite property for covariance functions which is an

essential property to define a kernel. Finally we will

associate these kernels to a Hilbert space which is the

alternate feature space that we need.

3.1.2. Covariance functions

In the previous section, we talked about how a Gaussian

dis- tribution can be expressed in terms of a mean function

and a co- variance matrix. As expressed in (2), the

covariance matrix can be found using a covariance function

Cov(x, x′). A covariance function is crucial in the field of

Gaussian process prediction, as it is a latent representation

of the function we wish to predict.

3.1.3. Gaussian process regression

Gaussian process regression can be considered an

interpolation method such that interpolated samples from

Gaussian processes are constrained by prior covariances as

per the training data points. The Gaussian process itself can

be explained through different perspectives; the simplest

representation may be as an infinite di- mensional Gaussian

random variable with a specified co-variance structure.

While this process demonstrates its properties it is not

useful for practical models. A weight-space view represents

Gaus- sian processes as weighted averages of training target

values. An- other interpretation views Gaussian processes

as distribution over functions: finite dimensional Gaussian

processes are distributions

over finite dimensional vectors, while infinite dimensional

Gaus- sian Processes are distributions over infinite

dimensional vectors or functions.

IV. GRAPH KERNELS

Before we move on to study graph kernels we need to go

through a brief summarization of different classes of kernels

on structured data. Kernel methods and support vector

machines especially have succeeded in various learning

problems on data represented as a single table. But most of

the ‘real-world’ data is structured, i.e., it has no default

representation in a equation format. Generally, to apply

such kernel methods to ‘real-world’ data, we need extensive

pre-processing to map the data into a real vector space and

therefore into a single table. Most of the datasets used can

be found either from links provided by the respective

authors in the papers or this website which has a good

collection of Graph Kernel datasets.1 Fig. 7 shows the

various types of kernels that will be taken into account in

the consequent chapters. Graph Kernels can be broadly

categorized into two major branches based on the principal

driving force of their definition, namely, model based

kernels and syntax based kernels.

Model driven kernels rely on some kind of knowledge about

the sample space, i.e., about the relationships among data.

There are principally two subcategories in this branch

namely, generative

models and transformative models. While parameters of

genera- tive models are treated as features for comparison,

transformative models study the ability of the graphs to

transform them in certain

way as per the problem domain. These transformed graphs

can be seen as a model of the instance space; while each

edge only contains local information about neighboring

vertices during the process of transformation, the set of all

edges contain information about the global structure of the

sample space

4.1. Model driven kernels

Syntax based models focus on the semantics of the data. It

comprises of the largest family of kernels, namely the

convolu- tional kernels. Most of the algorithms deal with

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 332

manipulation of syntactic elements like walk, paths, cycles,

subgraphs, subtrees and so on. We will see that lots of these

kernels preserve both local and global features for

comparison and hence are applicable in various domains

4.2. Syntax driven kernels

Syntax based models focus on the semantics of the data. It

comprises of the largest family of kernels, namely the

convolu- tional kernels. Most of the algorithms deal with

manipulation of syntactic elements like walk, paths, cycles,

subgraphs, subtrees and so on. We will see that lots of these

kernels preserve both local and global features for

comparison and hence are applicable in various domains.

4.4. Choosing the right kernel

Throughout the last two decades various kernels surfaced in

the field of graph based algorithms as it can be seen in Fig.

13. However, the application of a graph kernel to a specific

domain requires the understanding of the advantages and

disadvantages of the various available techniques. While

earlier versions of random walk kernels prove to be quite

efficient for simple graphs, as the size and complexity

increases we need to shift to other modern techniques.

Normally complexity of random walk kernels are in the

order of O(n6), however faster computations up to O(n3)

were obtained by extending concepts of linear algebra to

Reproducing Kernel Hilbert Spaces [47]; even further

speedups up to O(n2) were obtained by Kang [43]

considering rank approximation of the adjacency matrix.

4.5. Future of graph kernels

Graph kernels show considerable amount of promise in the

future. As discussed before, many real world scenarios or

events can be conceptualized through graphs. Most

scientific fields show increasing use of structured data.

From nuclear studies in CERN,3 to decoding our own

genome,4 we have been generating tremen- dous amount of

structured information. Through internet we have access to

an immensely large network connecting almost 3.78

billion5 people across the world. These huge sources of

structured information must be processed to extract what is

essential for the progress of science. Structured data

provides a different level of challenge to traditional

artificial approaches because of the complexity of

information. But with graph kernels it is possible handle

such challenges. One of the most significant progress in

machine learning is the onset of deep learning [64].

4.6. Applications

Having studied the theoretical aspects of graph kernel, it is

essential to know about the possible domains where they

can be applied. In the subsections below, some of the most

prominent application areas will concisely discussed.

4.6.2. Bioinformatics

A major reason for the growing interest in graph-structured

data is the advent of large volumes of structured data in

molecular biology. This structured data comprises graph

models of molecular structures, from RNA to proteins [72],

and of net- works which include protein–protein interaction

networks [73], metabolic networks [74], regulatory

networks [75], and phyloge- netic networks [76].

Bioinformatics seeks to establish the function of these

networks and structures. Currently, the most success- ful

approach towards function prediction of structures is based

on similarity search among structures with known function.

For instance, if we want to predict the function of a new

protein structure, we compare its structure to a database of

functionally annotated protein structures. The protein is

then predicted to exert the function of the (group of)

protein(s) which it is most similar to. This concept is

supported by models of evolution: proteins that have similar

topological structures are more likely to share a common

ancestor, and are more likely to carry out the same

biochemical function [77].

4.6.3. Social network analysis

Another important source of graph structured data is social

network analysis [78]. In social networks, nodes represent

individ- uals and edges represent interaction between them.

The analysis of these networks is both of scientific and

commercial interest. On the one hand, psychologists want to

study the complex social dynamics between humans, and

biologists want to uncover the social rules in a group of

animals. On the other hand, industries want to analyze these

networks for marketing purposes. Detecting influential

individuals in a group of people, often referred to as ‘key-

players’ or ‘trend-setters’, is relevant for marketing, as com-

panies could then focus their advertising efforts on persons

known to influence the behavior of a larger group of people.

In addition, telecommunication and Internet surfing logs

provide a vast source of social networks, which can be used

for mining tasks ranging from telecommunication network

optimization to automated rec- ommender systems.

4.6.4. Internet, HTML, XML

A fourth application area for graph models is the Internet

which is a network and hence a graph itself. HTML

documents are nodes in this network, and hyperlinks

connect these nodes. In fact, Google exploits this link

structure of the Internet in its famous PageRank algorithm

[79] for ranking websites. Furthermore, semi-structured

data in form of XML documents is becoming very popular

in the database community and in industry. The natural

mathematical structure to describe semi-structured data is a

graph. As the W3 Consortium puts it ‘‘The main structure

of an XML document is tree-like, and most of the lexical

structure is devoted to defining that tree, but there is also a

way to make connections between arbitrary nodes in a

tree’’.7 Consequently, XML documents should be regarded

as graphs.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 333

Various tasks of data manipulation and data analysis can be

performed on this graph representation, ranging from basic

opera- tions such as querying [80] to advanced problems

such as duplicate detection [81].

4.6.5. Natural language processing

Language in general possesses a very generic entity

relationship structure, hence graph based algorithms have

always been used in this field [82–84]. Tree kernels are

particularly common [85] in NLP because of parse tree

representations of the language which are very precise to

deal with common concepts.

4.6.6. Image processing

Images can also be treated as graphs if we consider similar

components in an image as node and their semantic

relations as edges. A lot of work has been seen in this area:

earlier, image classi- fication was performed using methods

like graph edit distance [16] or marginalized kernels [86]

later much sophisticated approaches that involved point

clouds [87] or segmentation graphs [88] has also been seen.

V. CONCLUSION

Graph Kernels is a beautiful concept that has immense

future prospect. It can deal with problems of numerous

domains and un- like many other learning techniques, it

excels in learning relational models. Information around us,

no matter from which source, can somehow be expressed in

terms of graphs through their inherent semantic

dependencies, thus making graph kernels a powerful tool

for researchers.

We started from the absolute basics of Linear algebra and

graph theory, and slowly climbed up the ladder to learn how

kernels operate in the field of machine learning. Starting

from the historical aspects of the domain, we saw that graph

kernels can be computed through various walk-based, path-

based, subgraph-based or sub- tree based techniques.

Finally, we saw how modern researchers have been

successful in creating very fast techniques that can be used

for larger graphs. With all this research, graph kernel is at

its pinnacle of development. Now is the time to dive into

even more challenging problems with these techniques.

REFERENCES

[1] R.R. Dipert, The mathematical structure of the world:

The world as graph, J. Philos. 94 (7) (1997) 329–358.

[2] H. Bunke, Graph-based tools for data mining and

machine learning, in: International Workshop on Machine

Learning and Data Mining in Pattern Recognition, Springer,

2003, pp. 7–19.

[3] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years

of graph matching in pattern recognition, Int. J. Pattern

Recognit. Artif. Intell. 18 (03) (2004) 265– 298.

[4] T. Gärtner, A survey of kernels for structured data,

ACM SIGKDD Explor. Newslett. 5 (1) (2003) 49–58.

[5] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor,

K.M. Borgwardt, Graph kernels, J. Mach. Learn. Res. 11

(Apr) (2010) 1201–1242.

[6] N. Shervashidze, Scalable Graph Kernels (Ph.D. thesis),

Universität Tübingen, 2012.

[7] K.M. Borgwardt, Graph Kernels (Ph.D. thesis), lmu,

2007.

[8] N. Aronszajn, Theory of reproducing kernels, Trans.

Amer. Math. Soc. 68 (3) (1950) 337–404.

[9] B. Scholkopf, A.J. Smola, Learning With Kernels:

Support Vector Machines, Regularization, Optimization,

and Beyond, 2002, arXiv: arXiv:1011.1669v3,

http://dx.doi.org/10.1198/jasa.2003.s269.

[10] I. Tsochantaridis, T. Joachims, T. Hofmann, Y.

Altun, A.-C. Org, Large margin methods for structured and

interdependent output variables, J. Mach. Learn. Res. 6

(2005) 1453–1484. http://dx.doi.org/10.1007/s10994-008-

5071-9.

[11] V. Vapnik, a. Lerner, Pattern recognition using

generalized portrait method, Autom. Remote Control 24

(1963) 774–780 doi:citeulike-article-id:619639.

[12] H. Bunke, Graph matching : Theoretical

foundations, algorithms, and applica- tions, Algorithmica

2000 (2) (2000) 82–88.

[13] H. Bunke, P. Foggia, C. Guidobaldi, C.

Sansone, M. Vento, A comparison of algorithms for

maximum common subgraph on randomly connected

graphs, in: Joint IAPR International Workshops on

Statistical Techniques in Pattern Recognition (SPR) and

Structural and Syntactic Pattern Recognition (SSPR),

Springer, 2002, pp. 123–132.

[14] M.R. Garey, D.S. Johnson, A Guide to the

Theory of NP-Completeness, 1979,

http://dx.doi.org/10.1137/1024022.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 334

[15] B. McKay, Nauty User’s Guide (version 2.4),

Computer Science Dept., Australian National University,

2007, pp. 1–70.

[16] M. Neuhaus, H. Bunke, Edit distance-based

kernel functions for structural pattern classification, Pattern

Recognit. 39 (10) (2006) 1852–1863. http://dx.

doi.org/10.1016/j.patcog.2006.04.012.

[17] H. Bunke, K. Shearer, A graph distance metric

based on the maximal common subgraph, Pattern Recognit.

Lett. 19 (3) (1998) 255–259.

[18] M.L. Fernández, G. Valiente, A graph distance

metric combining maximum common subgraph and

minimum common supergraph, Pattern Recognit. Lett. 22

(6–7) (2001) 753–758. http://dx.doi.org/10.1016/S0167-

8655(01)00017-4.

[19] I. Koch, Enumerating all connected maximal

common subgraphs in two graphs, Theoret. Comput. Sci.

250 (12) (2001) 1–30. http://dx.doi.org/10.1016/ S0304-

3975(00)00286-3.

[20] C. Bron, J. Kerbosch, Algorithm 457: Finding

all cliques of an undirected graph, Commun. ACM 16 (9)

(1973) 575–577. http://dx.doi.org/10.1145/362342. 362367.

arXiv:citation.cfm?doid=362342.362367.

