
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018

 319

Software Reliability Growth Model using Testing

coverage, Function point and Test point analysis

[1]
 Amol K. Kadam,

[2]
Dr. Shashank D. Joshi,

[3]
Sachin B. Wakurdekar

[1][2][3] Bharati Vidyapeeth Deemed to be university College of engineering, Pune

Abstract – Testing is an important activity to ensure software quality but long time testing may not insure bug free software and

high reliability. Optimum amount of code also need to be covered to make sure that software is of good quality and high reliability.

In these proposed Software Reliability Growth Model analyze all codes files of the project. In this model every code file of the

project is analyze and provide the suggestion to the user for improving performance of the system. Also this model calculate the cost

of the project that cannot be calculate at existing software reliability growth model. This model focused on testing time, testing

coverage, functional point analysis and test point analysis to increases the reliability of software, calculate software cost and

optimize the software maintenance cost.

Keywords: Testing coverage, Functional point analysis, Test point analysis, SRGM, COCOMO.

 INTRODUCTION

Testing is a crucial activity to make sure code quality.

Huge organizations will have many development groups

with their product being take a look at by full test groups.

Take a look at team managers should be able to properly

set up their schedules associated resources and estimates

for the needed take a look at execution effort will be

an extra criterion for take a look at choice, since effort

could be restrictive in follow. An honest take a look at

execution effort estimation approach will profit each

tester managers and code comes. There's estimation

model associated an expertise primarily based approach

for take a look at execution effort. The probability of

failure-less operation in a specified environment in a

specific period of time under specific conditions is called

as Software Reliability. Software Reliability Growth

models (SRGM) is developed for the estimate software

reliability measures such as number of remaining faults,

software failure rate and software reliability. Software

testing can be defined as a process to detect faults in the

entire developed computer software which falls in the

category of Software development life cycle (SDLC)

phases. Software testing helps us to detect the probable

faults and errors in the developed software. Testing of the

software for longer time does not ensure bug free

software with higher reliability. Optimum amount of code

also needs to be covered to make sure that the software is

of good quality. It is hard to remove the entire faults in

the software due to its complex nature. This is also termed

as imperfect debugging. Error generation is defined as

phenomena in which remaining faults in the software

leads to further generation of faults. Test estimation

consists of the estimation of effort and value for a selected

level of testing, exploitation numerous ways, tools, and

techniques. The wrong estimation of testing effort

typically ends up in associate inadequate quantity of

testing, which, in turn, will result in failures of software

package systems once they're deployed in organizations.

Estimation is that the most crucial activity in software

package testing, associated an ineluctable one, however

it's typically performed hurriedly, with those liable for it

simply hoping for the simplest. Testing is directed toward

inputs and program parts wherever errors are a lot of

possible. The main target of testing is on finding defects,

and defects typically often found abundant quicker by

totally different testing attributes. It's vital to balance the

relationships between effort, schedule and quality. It's

wide accepted that merely estimating one in every of

these aspects while not considering the others can lead to

phantasmagorical estimations. Classical estimation

models are established supported linear or non-linear

multivariate analysis, that incorporate mounted input

factors and stuck outputs.

OBJECTIVE OF THE RESEARCH WORK:

 To improve performance & reduce maintenance

cost.

 Estimate Software Cost.

 Check the efficiency of development activities

 Quality and Testability of the test object

 Interdisciplinary Research Project

 Industrial Consultancy

 Academic Research Activities

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 318

In this research work we have developed Software

Reliability Growth Model that contain Testing time and

testing coverage, Function Point Analysis and Test Point

Analysis. It was an attempt to overcome difficulties

associated with lines of code as a measure of software

size, and to assist in developing a mechanism to predict

effort associated with software development.

METHODOLOGY:

Module I: Testing time and Testing coverage, Function

Point Analysis

Enhanced Non Homogenous Poisson process (EHPP):

referred as Testing time.

erage: The prediction of the software

reliability is ensured through testing coverage.

 A software developer make use of Testing Coverage to

evaluate the quality of the tested software and also helps

to determine the additional effort required for improving

the reliability of the software.

Threshold value: We have to set threshold values in

testing coverage and function point analysis. This

threshold values we have to set from the reference of

reputed journal papers and industry experts in various

companies.

The threshold value is interpreted based on previous

projects experience and historical information. While

considering the threshold value, benchmarks designed by

industries also taken into grant. From the team experience

and various processes involved the threshold is monitored

and updated.

Basic Testing Coverage Measures:

1. Statement Coverage: Number of lines processed in the

program. If number of the lines are exceeded more than

threshold range then giving advice to user.

2. Path Coverage: It indicates number of viable paths that

exist in the code and also find the inheritance tree.

3. Decision / Condition Coverage: It tells whether

Boolean expressions tested in control structures are true

or false. If Boolean expressions are more than threshold

range then giving to advice

4. Procedure Coverage: It gives number of procedures

determined by the testing Software reliability growth

models (SRGM). In that also giving advice to user when

no of the procedures and functions are more than

threshold value.

So We have to find out reliability of the software and also

giving advice for increases reliability of the software.

 Function Point Analysis:

 FPA is the method of calculating the size of the

software by using the complexity of software

functionalities using the function points. Then function

point is used for the estimating the effort to develop it.

Calculate Size of Project: In this phase it calculates the

lines of code, blank spaces as well as comments in the

project. If the number of lines per class is greater than

threshold value then it advice for splitting of the class.

Calculate Number of Object in Class: Total number of

object in class are identified For the project given to

system then after clicking on calculate number of object

of class it calculates number of attributes of the class. if

the total number of attributes in class are more than

threshold range then advice for splitting the class.

Calculate Number of Methods: In this module it

calculates how many methods in each class of the project.

If method values don’t match between threshold range 3-7

then provide suggestion for splitting the methods.

PROPOSED MODEL:

Fig: Architecture of Proposed SRGM

Level 1-Input to SRGM: All files from project code are

been read line by line in temporary data structure for

future processing.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 319

Level 2-Test Time &Testing Coverage: Firstly statement

coverage is been done which analysis no of lines of code,

blank lines. Secondly loop and control structure analysis

is been done in decision coverage finding numerical value

of metrics. Threshold range is been initialized for all

classes. Finally in procedure coverage weighted methods

are been found with function description.

Level 3- Function Point Analysis: This level in depth

analysis of code is been done finding software complexity

with functionality analysis. Complete effort are been

computed in function point analysis. Number of objects

that are been initialized in complete code. This values are

been compared with threshold for number advisable

objects . Additionally attributes in all class are been

computed. Finally methods functions written in single

class are been found, this values are also computed

against threshold set. Finally if any threshold are been

violated then suggestion are been reported.

Level 4-Test Point Analysis: Mainly we focused on

accuracy of estimating the cost of the software. In that we

provide the complexity of that software to Basic

COCOMO Model. Complexity is mainly depends upon

five parameters like Methods, Boolean Expressions,

Objects, Line of code, Procedure coverage.

RESULTS & DISCUSSION:

Graph 1: Before and After using Threshold values

(Difference in complexity)

In above graphs 1 before using threshold values the

zigzag lines are more so we analyze the complexity of

that software is high and after using threshold values and

modified the project according to our suggestions find out

the zigzag lines are less compare to before using threshold

values, So we declare that when developer develop the

software using our threshold range then definitely

reliability of that software is increases.

Module II: TEST POINT ANALYSIS

Mainly we focused on accuracy of estimating the cost of

the software. In that we provide the complexity of that

software to Basic COCOMO Model. Complexity is

mainly depends upon five parameters like Methods,

Decision coverage, Objects, Line of code, Procedure

coverage

Proposed SRGM for estimating cost: E=ai (KLoC) (bi)*

Complexity

where E is the effort applied in person-months,

 KLoC is the estimated number of thousands of delivered

lines of code for the project,

 ai, bi, ci di are Constants.

Software

Project

ai bi ci di

Organic 2.4 1.05 2.5 0.38

Semi-

Detached
3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Table I: Constant Values from COCOMO

Complexity : Low:0.75, High: 1.25.

We have to analyse more than 30 project and decide

constant values for high and low complexity. That values

are mainly depends upon KLoC of that project shown in

following table

KLoC Parameters Range

Low High

Methods 0-50 <50

Decision 0-30 <30

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 320

2-50

Coverage

Objects 0-45 <45

Line of code 0-5000 <5000

Procedure

Coverage

0-20 <20

51-300

Methods 51-120 <120

Decision

Coverage

31-75 <75

Objects 46-100 <100

Line of code 5000-

51000

<51000

Procedure

Coverage

21-50 <50

Above

300

Methods 121-

180

<180

Decision

Coverage

36-100 <100

Objects 101-

150

<150

Line of code 3 lacks <3

lacks

Procedure

Coverage

51-100 <100

TableII: Set values for Complexity

Accuracy in Cost:

 Basic COCOMO do not find the actual complexity, it’s

find out the efforts using KLoC so it don’t know how

much complexity in that project/software but our

proposed model analyze complexity and provide that

complexity to Basic cocomo then definitely we have to

achieve accuracy in efforts, development time, staff size

and productivity.

Following calculations shows the comparison between

Basic cocomo and our proposed model:

Low Complexity:

Basic COCOMO Model: E=ai (KLoC)
(bi

)

KLOC= 3227/1000

 = 3.327

Efforts: E[i]= a[i]* (KLoC)
(bi)

 = 2.4* 3.327
(1.05)

 = 08.21 Man-Month

 Development: D[i]= c[i]* E[i]
(di)

 = 2.5*08.21

.38

= 5.56 Months

 Productivity: P[i]=KLoC/E[i]

 =3.327/08.21

 = 0.392 Per month

Proposed Model: E=ai (KLoC)
(bi

)
*Complexity

KLOC= 3327/1000

 = 3.327

Efforts: E[i]= a[i]* (KLoC)
(bi)

*Complexity

 = 2.4* 3.327
(1.05)

 * 0.75

 = 06.15 Man-Month

 Development: D[i]= c[i]* E[i]
(di)

 = 2.5*06.15

.38

= 04.98 Months

 Productivity: P[i]=(KLoC/E[i])

 =(3.327/06.15)

 = 0.529 Per month

High Complexity:

 Basic COCOMO Model: E=ai (KLoC)
(bi

)

KLOC= 7749/1000

 = 7.749

Efforts: E[i]= a[i]* (KLoC)
(bi)

 = 2.4* 7.749
(1.05)

 = 20.62 Man-Month

Development: D[i]= c[i]* E[i]
(di)

 = 2.5*20.62

0.38

= 7.89 Months

 Productivity: P[i]=KLoC/E[i]

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 321

 =7.808/20.74

 = 0.3761 Per month

 Proposed Model: E=ai (KLoC)
(bi

)
*Complexity

KLOC= 7749/1000

 = 7.749

Efforts: E[i]= a[i]* (KLoC)
(bi)

*Complexity

 = 2.4* 7.749
(1.05)

 * 1.25

 = 15.45 Man-Month

 Development: D[i]= c[i]* E[i]
(di)

 = 2.5*15.45

0.38

= 7.07 Months

 Productivity: P[i]=(KLoC/E[i])

 =(7.749/15.45)

 = 0.501 Per month

COCOMO Proposed

 KLoC=3.327 KLoC=3.327

 Eff

ort

Produc

tivity

Ti

me

Effor

t

Prod

uctivi

ty

Ti

me

Organ

ic

Mode

08.

47

0.39 5.6

3

06.35 0.52 5.0

4

Semi

detach

ed

11.

52

0.28 5.3

8

08.64 0.38 5.3

1

Embe

dded

10.

15

0.32 5.2

4

08.06 0.41 4.8

7

Table III: Comparison in Low Complexity Project

Table III: In low complexity project we analyze the result

with cocomo in that efforts and time is decreases and

productivity is increases than Cocomo because of the

project is low complexive.

 Also In high complexity project we analyze the result

with cocomo in that efforts and time is increases and

productivity is decreases than Cocomo because of the

project is high complexive but we provide the accuracy in

estimating cost of that software.

CONCLUSION:

 This research presented a modified software reliability

growth model that is based on debugging software and

detecting faults that might be removed from the software.

I implement this reliability growth model along with

quality and testability analyzer. Quality and testability

analyze the coadaded file from input project and give the

suggestion to the users for improving performance. This

Reliability Growth Model also calculate the cost of the

project that cannot calculated existing model. This model

check the developers development skills according to

written code files of developer. Also checks efficiency of

the developments activities.

REFERENCES:

[1]Yamada, Shigeru, Mitsuru Ohba, and Shunji Osaki. "S-

shaped reliability growth modeling for software error

detection." IEEE Transactions on reliability 32.5 (1983):

475-484.

[2]Malaiya, Y. K., Li, M. N., Bieman, J. M., & Karcich,

R. (2002). Software reliability growth with test coverage.

IEEE Transactions on Reliability, 51(4), 420-426.

[3]Pham, H., & Zhang, X. (2003). NHPP software

reliability and cost models with testing coverage.

European Journal of Operational Research, 145(2), 443-

454.

[4]Ledoux, J. (2003). Software reliability modeling.

Handbook of Reliability Engineering, 213-234.

[5] Zheng, J. (2009). Predicting software reliability with

neural network ensembles. Expert systems with

applications, 36(2), 2116-2122.

[6] Martens, A., Koziolek, H., Becker, S., & Reussner, R.

(2010, January). Automatically improve software

architecture models for performance, reliability, and cost

using evolutionary algorithms. In Proceedings of the first

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, March 2018

 322

joint WOSP/SIPEW international conference on

Performance engineering (pp. 105-116). ACM.

[7] Martens, A., Koziolek, H., Becker, S., &Reussner, R.

(2010, January). Automatically improve software

architecture models for performance, reliability, and cost

using evolutionary algorithms. In Proceedings of the first

joint WOSP/SIPEW international conference on

Performance engineering (pp. 105-116).ACM.

[8] Zio, E. (2009). Reliability engineering: Old problems

and new challenges. Reliability Engineering & System

Safety, 94(2), 125-141.

[9]Aljahdali, S., &Sheta, A. F. (2011, April). Predicting

the reliability of software systems using fuzzy logic. In

Information Technology: New Generations (ITNG), 2011

Eighth International Conference on (pp. 36-40). IEEE.

[10]Lohmor, S., &Sagar, B. B. (2014). Overview:

Software Reliability Growth Models. Int. J. Comput. Sci.

Inf. Technol.

[11]Pawar, V. E., Kadam, A. K., & Joshi, S. D. (2015).

Analysis of Software Reliability using Testing Time and

Testing Coverage.International Journal of Advance

Research in Computer Science and Management Studies.

[12]Washizaki, H., Honda, K., & Fukazawa, Y. (2015,

August). Predicting release time for open source software

based on the generalized software reliability model. In

Agile Conference (AGILE), 2015 (pp. 76-81). IEEE.

[13]Pawar, V. E., Kadam, A. K., & Joshi, S. D. (2015).

Analysis of Software Reliability using Testing Time and

Testing Coverage.International Journal of Advance

Research in Computer Science and Management Studies.

[14]Mane, M., Joshi, M., Kadam, A., & Joshi, S. D.

(2014). Software Reliability and Quality Analyser with

Quality Metric Analysis Along With Software Reliability

Growth Model.International Journal of Computer Science

& Information Technologies, 5(3).

[15]Sabnis, P., & Kadam, A. Software Reliability Growth

Model with Bug Cycle and Duplicate Detection

Techniques.

