

Vol 5, Issue 2, February 2018

The Energy Efficient Of Routing Protocol in Mobility Models Using Manet

^[1] Dr.K.Prabha, ^[2] K.Nirmaladevi

^[1] Assistant Professor, ^[2] Ph.D Research Scholar

^[1] Computer Science & Periyar University PG Extension Centre, Dharmapuri, Tamilnadu, India

Abstract - A MANET is a collection of wireless mobile hosts forming a temporary network if any centralized administration. The design of these routing protocols is challenging due to the mobility and the dynamic nature of the MANET. The networks can communicate with each other using multi-hop links. Each node acts as a router for forwarding and receiving packets. In this paper, the performance analysis is carried out on AODV, OLSR and DSDV protocols using the NS2 simulator. The optical routing protocols are packets and it normally considers at distance vector protocols and link state routing protocols. Ad-hoc routing protocols are divided into flat and NPDU (Network Protocol Data Unit). All nodes are capable of movements can be dynamically random waves. The performance of Normalized Control Overhead, Data Delivery Ratio and Average Consumption Ratio are the common measures are used in this performance in ns2 tools.

Keywords— Mobile Adhoc Network, Mobility Models, NS2(Simulator), NPDU, Controlized Overhead.

I. INTRODUCTION

The Mobile Ad-hoc Network is commonly used in the less infrastructure mobile network it's have no fixed routers and all nodes are capable of movement and connected dynamically in an arbitrary manner. The nodes can be esteemed in commodity and proliferation of backup technology available in the data handling. The MANET are used in communication along with Manet (internet Manet). To share the information and data acquisition operations are inhospitable terrains and mobile nodes link and fixed internet gateway nodes. Ad-hoc routing algorithms are used in the PDU, NCOH and DDR. The Manet have the following characteristics could like infrastructure of flat network. Communication can shared the medium network and mobility models are used in the dynamic topology control. A mobile ad hoc network consists of a group of mobile nodes forming a temporary network on wireless links without the aid of any centralized administration. Some of its characteristics are: dynamic topology, Bandwidth constraint, Energy constraint and limited physical security. Ad hoc networks are used in rescue operations, disaster recovery, hospitals, conferencing, communication and military. Broadcasting a message from a source node to all the nodes in the network need the support of intermediate nodes.

Nodes are generally used in the autonomous in limited versions of unreliability of network and flexible wireless links between the first and last node. To lack of incorporation of security of networks in scalability of security and configured in wireless routing protocol and in ad-hoc environments. The MIB(Message Information Base) through a core of security management and applications are assessed for the value of SNMP(Simple Network Management Protocol).

The energy resources of devices used in MANET are limited, energy consumption is important issues to related the routing protocols. The RP is better than the average energy ratio are the same conditions. TD = Packet Size / Bandwidth + ST = 55 m/s. RTR = 3 / second, RRR = 1.32 / second, RSR = 0.13 / second. Ron = Radio turning on time. Roff = Radio turning off time.

II. MANET OF ROUTING METHODS

A. MANET of Mobility Analysis

Each node can analysis the velocity of direction to the random way point mobility model of ns2 simulator to generate the different mobility scenario. The maximum speed is fixed at 10 m/s and the total number of nodes can fixed with other parameters. The Performance control overhead like PDR, end to end delay and throughput are measured by varying the pause time. The control nodes are

Vol 5, Issue 2, February 2018

sending and receiving packets are required for each data packet transmission along mobility models. The node model of the energy source, memory capacity and processing capabilities.

B. Node Mobility

Node mobility establishes a range of problem that is not managing well by periodically stimulating state information as algorithms intended for static networks typically do. The design of quasi-static cover on top of a mobile topology has been performed. It has power-driven with local connections along with nodes and exhibits self-healing and self-organization capabilities with respect to failures and node mobility.

MANET has statistical models to exactly assess the allocation of the lifetime of a wireless link. In this method a nodes move arbitrarily within constrained areas. In this link the lifetime can be computed through a two-state Markov model and further apply the computed statistic tot eh optimization. It is the optimization of segmentation method of information stream.

Two kinds of routes are resolute roués with the minimum hop count and route with the longest lifetime. It is used to observe a route lifetime-hop count transaction for all the four mobility modes. The general trend of the results is the more realistic and constrained is a mobility model.

Node Mobility for dynamic network topologies as random waypoint mobility model. Traffic model of nodes are sending and receiving the data are destinations reached model in CBR, UDP network model.

C. Density Classifier using Manet

Wireless networks are fast popularity to its peak today in the users want wireless connectivity irrespective of their geographic location. There is an increasing threat of attacks on the MANET. Black hole attack is one of the security threat in which the traffic is broadcast to such a node that in reality does not exist in the network. An analogy to the black hole in the universe in which things vanish. The node presents itself in such a way to the node that it can attack other nodes and networks knowing that it has the shortest path. MANETs must have a secure way for communication and communication which is quite demanding and vital issue.

To develop the performance of immediate routing protocols in MANETs the Bayesian classifier model has been used. It can help to enlarge the network throughput and decrease end-to-end delay through controlling the broadcast area. Further information connected to hopcounts and node densities are used to support routing protocol in broadcasting. The number of control packets distributed during route discovery process decreased significantly in comparison with conventional scheme.

III. MOBILITY MODELS USING MANET

Energy is a significant resource that needs to be preserved in order to extend the lifetime of the network. In contrast, the link and path stability among nodes permits the diminution of control overhead and could offer some benefits also in terms of energy saving over MANET. However, as will be shown in this work, the choice of more stable routes below nodes mobility could direct to the choice of shorter routes. This is not forever appropriate in terms of energy consumption. Conversely, on occasion, attempting to optimize the energy could lead to the choice of more weak routes. Therefore, it is obvious that both the abovementioned parameters (specifically, link stability linked with the nodes mobility and energy consumption) must be measured in designing routing protocols, which permit right tradeoff between route stability and least energy consumption to be attained. In recent times, there has been an endeavor to classify the various types of mobile nodes assuming there is a centralized influence that has whole information of the network and its dynamics. In this work we give a new that classifies density of network and node mobility patterns. The Mobility Model is attempt to the movements of real mobile networks. It will be changes in speed and direction must occur in the reasonable time slots. The MM uses the random waypoint model in a random position, the chooses a new random location moves and velocity chosen model.

Vol 5, Issue 2, February 2018

A. Network Management

A network management is defined as apply security management as incorporate firewalls, database, email, teleconferencing, e-commerce intrusion detection and access control applications. A Security management is considered the amendment, spoofing and reply. The Key Management to access the control of reliable implementation of management of Software. The security and network management is controlled by the remote style analysis and pattern recognition of management.

C. Mobility Models using Manet Epidemic Routing Mobile Nodes in Manet:

In the case of the Medium state Mobile Nodes in networks, no contemporaneous end-to-end paths present most of the time and communication is attained by the store, carry and forward model of routing. Such paths are often said to be space-time paths to distinguish them from the contemporaneous space paths used in MANETs. Many routing models have also been proposed for this class of mobile nodes such as Epidemic Routing and Spray and Wait.

High State Mobility Mobile Nodes in Manet:

Such networks are actually sparse and the mobility of the nodes doesn't permit them to converse even through space-time paths. In fact, the lengths of the space-time paths are too elongated. In this class of mobile nodes it is preferable to use extra mobile nodes that shift around the network area collecting messages and transmitting them to the destination nodes.

Based on the states (i.e, slow state, medium state and high mobility state), non linear programming is applied. Non linear programming is used over the three states and identifies stable link path and minimum energy conserved routes for the transmission.

D. NMDC and Algorihims:

Throughout the Node Mobility and Density classification algorithm, it is assumed that the mobile network progresses in timeslots. In addition, we suppose that the nodes distinguish in progress the communication range (K). It is indistinguishable for all the nodes and they also identify the size of the network area (N). It will befall obvious later that the algorithm could work with any node mobility model as long as we have analytical formulas for some fundamental elements of the model. The formulas in previous works for a broad range of mobility models such as the Random Direction, Random Waypoint, Random Walk and the Community-based model. In this work, without loss of generalization we suppose that the nodes shift according to the Random Direction mobility model.

Spatial Dependency:

The movement pattern of a mobile node may be influenced and correlated and neighborhood. Each mobile node moves through indecently. Moreover, it selects a duration T of movement from an exponential distribution and it goes towards'd' with the chosen velocity for T time units. If the network frontier is reached, it re-enters from the contrary side of the network. Once T time units it paemploys for a random amount of time selected from [0, Tmax] with average pause time Tstop. After that, a new epoch starts. For expediency, we review the notation used in the Random Direction model as well as throughout the work.

IV. NMDC ALGORTHIMS IN MANET

The performance metrics considered are the throughput, average delay, overhead and the number of packets drapped. They analyzed the number of packets, nodes, pause time and mobility using NS2 simulator. The source and destination of the routing hops to reach the nodes and sequence number is generated. Every node maintains a route cache to store recently discovered paths. The node receives RREQ packet, the node will check from their cache route to the destination RREP, the route can reply.

Vol 5, Issue 2, February 2018

The mobility model is an important parameter for manet's routing protocol evaluation. Nodes may move either in a high speed or a low pause time but toward the same direction without causing any topology change. The nodes speed and the movement direction and pattern are allowed the following formula.

 $Mob = {}^{n}\sum_{1-i} \mu i / n$

Table 1: Simulation Setup

Parameters	Value	
Area	100*1000 m	
Number of Nodes	10 to 50 nodes	
Number of repetition	5 times	
Node Movement	5 to 35 m/s	
Mobility Model	Random Direction Models	
Each Packet	412 bytes	
Tools	NS2 Simulation	
Traffic Type	CBR	

The performance of the proposed Lifetime Forecast Routing with Node Mobility and Density Classifier (PDU-NM) Model is measured in terms of nodes.

*Data Delivery Ratio

*Nodes Lifetime

*Normalized Control

Overhead

Data Delivery Ratio:

The data delivery ratio obtained for various number of nodes in the MANET environment. The outcome of the proposed TD with LQ model in MANET is compared with an existing LAER and PERRA and it shows LFR-NMDC achieves higher delivery ratio.

RH = Total no. of routing packets / Total no. of delivered data packets

Nodes Lifetime:

The PDR (Packet Data Ratio) it's a ratio of

number of packets received by destination to n number of packets sent by source. Its takes a data packet to reach the destination.

Control Overhead:

The number of packets generated by the routing protocol during the simulation.

Overhead = $\sum_{i=1}^{n} i - I$ overhead i

The Normalized control overhead obtained when mobility rate increases in the MANET environment. The outcome of the proposed LFR with NMDC model in MANET is compared with an existing LAER and PERRA for detecting control overhead. Routing Overhead is the total number of routing packets in the total number of delivered packets.

Energy Consumption Ratio:

The n number of packets can sending and receiving data energy ratio through NMPU (Node Mobility and Protocol Unit). The packet delivery ratio is table driven protocol its require to delivering packets to next node of response and request method.

Temporal Dependency:

Due to the physical constraints the mobility nodes can be velocity to change the random waypoint model. To analyze the MANET routing protocol in ad-hoc network is correct and efficient route establishment between a pair of nodes. The manet packages are used in the tunneling protocols are create a private network through the point to point tunneling protocols.

V. EXPERIMENTAL RESULTS OF MANET

Table 1: Node Lifetime in Manet

Performances Metrics:

End to End Delay (EED)

EED = PT+TT+QT+PD

Propagation Time, Transmission Time, Queuing Time, Processing Time.

Vol 5, Issue 2, February 2018

Table 1

Node Mobility (n)	Mobility Models (m/s)	Node Lifetime (Proposed)	PDU
10	20	73	83
20	40	72	86
30	60	86	92
40	80	91	98
50	100	95	102

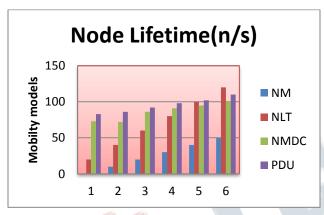


Figure 1: Node Life Time

Normalized Control Overhead

The n number of packets are generated by the routing protocol during the simulation. Overhead I is the control packets generated by node I. The protocol performance is less than the control packets are essential. The research was done by the past but the most significant contributions are PGP (Pretty Good Privacy). A MANET network is considered at the type of the data transmission using PPTP is not encrypted which less than the secured. The Network Entity corresponds to a mobile nodes with enriched a set of Reputation Tables (RT) and a Watchdog Mechanism (WDM). The RT is defined as the data structure stored in each network data entity. The CORE scheme envolves the two various type of protocol entities at a requestor and one of the more provider that are with in the wireless transmission range.

Table 2: Normalized Control Overhead

Node	Mobility	NCO	PDU
Mobility	Models	(Proposed)	in

(n)	(m/s)		Manet
5	2	5.4	4
10	4	6.2	5.1
15	6	5.8	4.8
20	8	5.2	4.9
25	10	4.8	3.9
30	12	4.2	3.6
35	14	3.8	2.5
40	16	5.4	4.5

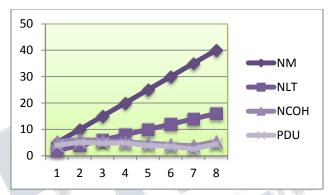


Figure 2: Normalized Control Overhead

Data delivery ratio

It is the number of packets received at destination on data packets sent by source in MM and NMPU protocols. The data delivery ratio obtained for various number of nodes in the MANET environment. The outcome of the proposed DR with model in MANET is compared with an existing PDU in Manet and NCO and it shows NLT – NLT achieves higher delivery ratio. The lack of centralized MANET to be monitored the transmission and centralized destructions and packet dropping.

The security challenges are monitored the mobile ad-hoc network. MANET uses the wireless ad – hoc medium and ad – hoc the direction at any node to transmit the source and destination at moving nodes.

The MANET can self-configuring, self-organization, self-management and configuring the communication control management through the mobility models.

Vol 5, Issue 2, February 2018

Table 3: Data Delivery Ratio

No. of Nodes(n)	Mobility Models (m/s)	Node Lifetime (Proposed)	DR(nodes)
10	20	60.25	72.25
20	40	67.75	77.21
30	60	68.2	78.2
40	80	70.01	79.91
50	100	75.15	86.23

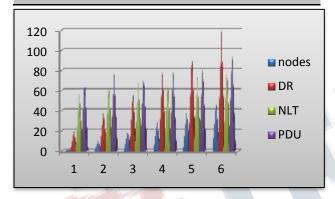


Figure 3: Data Delivery Ratio

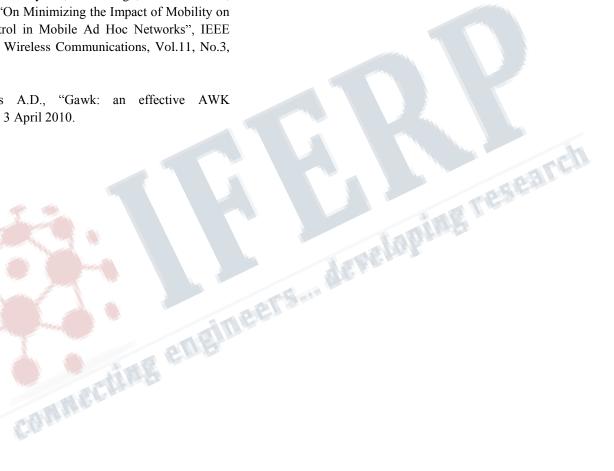
The route discovery function the PF function does not offer the separate operations that can be qualified as RREQ. The original data packet can be included in the purpose of security. Each node stores a RT that are used to classify the other nodes of the network with response to the PF function.

VI. CONCLUSION

In this paper we evaluate, the performance measures to control overhead, PDR, end-to-end delay and throughput with different number of nodes. LFR with NMDC protocol inherits the scalability, improving the performance in terms of node selection with superior link duration when a higher weight is set to the stability index. LFR with NMDC outperforms LAER and PERRA in terms of control overhead and in terms of a higher capacity to balance traffic load because of the less energy consumption included in the joint metric. In future,

utilizing these performances on a protocol in a data integrity as well as data delivery in highly random mobility network.

REFERENCES


- [1] BhupendraSuman, Dr.SC Sharma, and Dr. Millie Pant, "BeMAP: Bandwidth Efficient Medium Access Protocol for Tactical MANET Waveforms", International Journal of Engineering Research and Applications, Vol.2, Issue.3, pp.2434-2440, Jun 2012.
- [2] Chan Yeob Yeun, Kyusuk Han, Duc Liem Vo, and Kwangjo Kim, "Secure authenticated group key agreement protocol in the MANET environment", pp.158-164, 2008.
- [3] Kavitha Ammayappan, Vinjamuri Narsimha Sastry, and Atul Negi, "A New Secure Route Discovery Protocol for MANETs to Prevent Hidden Channel Attacks", May 2012.
- [4] F. Guerriero et al., "A Biobjective Optimization Model for Routing in Mobile Ad Hoc Networks," Applied Math. Modeling, vol. 33, pp. 1493-1512, Mar. 2008.
- [5] ns-2 Manual. http://www.isi.edu/nsnam/ns/doc/index.html
- [6] N. Li and J. C. Hou, "Localized fault-tolerant topology control in wireless ad hoc networks," IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 4, pp. 307–320, Apr. 2006.
- [7] Abhishek Majumden and Nityananda Sarma, "DEMAC: A Cluster-Based Topology Control for Ad Hoc Networks", International Journal of Computer Science Issues, Vol.7, Issue.5, Sep 2000.
- [8] S. Karunakaran and P. Thangaraj, "Topology Control Using Efficient Power Management", Journal of Computer Science, Vol.7, Issue.4, pp.561-567, 2011.
- [9] P. Manickam, T. Guru Baskar, M. Girija, and Dr.

Vol 5, Issue 2, February 2018

- D. Manimegalai, "Performance Comparisons of Routing Protocols in Mobile Ad Hoc Networks" Feb 2015.
- [10] Quansheng Guan, Yu F.R, Shengming Jiang, and Leung V.C.M, "Capacity-Optimized Topology Control for MANETs with Cooperative Communications", IEEE Transactions on Wireless Communications, Vol.10, Issue.7, pp. 2162-2170, July 2011.
- Hiroki Nishiyama, Thuan Ngo, Nirwan Ansari, [11] and Nei Kato, "On Minimizing the Impact of Mobility on Topology Control in Mobile Ad Hoc Networks", IEEE Transaction on Wireless Communications, Vol.11, No.3, March 2012.

[12] Robins A.D., "Gawk: an effective AWK Programming", 3 April 2010.

